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Abstract

Human movement contributes to the probability that pathogens will be introduced to new
geographic locations. Here we investigate the impact of human movement on the spatial
spread of Chikungunya virus (CHIKV) in Southern Thailand during a recent re-emergence.
We hypothesised that human movement, population density, the presence of habitat condu-
cive to vectors, rainfall and temperature affect the transmission of CHIKV and the spatio-
temporal pattern of cases seen during the emergence. We fit metapopulation transmission
models to CHIKV incidence data. The dates at which incidence in each of 151 districts in
Southern Thailand exceeded specified thresholds were the target of model fits. We confronted
multiple alternative models to determine which factors were most influential in the spatial
spread. We considered multiple measures of spatial distance between districts and adjacency
networks and also looked for evidence of long-distance translocation (LDT) events. The best
fit model included driving-distance between districts, human movement, rubber plantation
area and three LDT events. This work has important implications for predicting the spatial
spread and targeting resources for control in future CHIKV emergences. Our modelling
framework could also be adapted to other disease systems where population mobility may
drive the spatial advance of outbreaks.

Introduction

Infectious diseases emerge due to a variety of factors. The transmissibility of pathogens, envir-
onmental changes, economic development and human behaviour all contribute to the prob-
ability of emergence [1]. Human mobility intuitively plays a key role in emergence [2] and
can determine the speed at which pathogens are introduced to areas where previously absent.
Rvachev and Longini showed the importance of air travel in dictating the timing of emergence
of H3N2 influenza in the pandemic of 1968 using a metapopulation model [3]. Recently, net-
works of human movement have been shown to be integral in predicting and understanding
the global spread of influenza A (H1N1), Ebola and SARS [4–6]. Consequently, restriction of
travel has been discussed as a potential disease control strategy [2], though the feasibility of
these controls may be limited [7].

Rarely, though, has empirical data been used to compare multiple competing transmission
models to determine which one shows the greatest correspondence with the spatio-temporal
pattern of cases in an outbreak. Here, we demonstrate the importance of human movement
in the spatial spread and emergence of a vector-borne disease. We compared models that
incorporate different measures of human mobility, different distance metrics between popula-
tions (i.e. driving distance vs. geodesic) as well as environmental conditions of each location.

Chikungunya (CHIK) is an acute illness caused by an arthropod-borne alphavirus,
Chikungunya virus (CHIKV). CHIKV is transmitted to hosts via bites from an infected mos-
quito, predominantly of the genus Aedes [8, 9]. Chikungunya, translated from Makonde as
‘that which bends up’, is so called due to the severe joint pain in both the acute and chronic
stages [10]. The first recognised outbreak of CHIKV occurred in 1952–1953 in present-day
Tanzania [11]. The pathogen has since spread widely throughout India and several countries
in Southeast Asia [12]. Scattered importations and autochthonous cases have been reported in
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Europe [13], the USA [14] and sub-Saharan and West Africa [15].
Over one million cases have been reported in the Americas since
CHIKV was detected in December 2013 [16].

The first urban outbreaks in Bangkok, Thailand, occurred in
the early 1960s [17]. After a 13-year absence from Thailand, an
outbreak of CHIKV was reported in 2008 in the province of
Narathiwat near the Malaysian border [18]. By the end of 2010,
CHIKV had been identified in over one-third of districts in
Thailand. Whereas previously circulating strains in Thailand
were of Asian lineage [19], the 2008 outbreak was the result of
an introduction of the East Central and South African lineage
[20, 21]. Sequencing of CHIKV isolated during the 2008 outbreak
revealed the presence of a point mutation, A226V, shown to
increase vector specificity for Aedes albopictus [22].

Several factors have been hypothesised to have influenced the
spread of CHIKV in Thailand. We investigate here several weather
and environmental covariates that have previously been identified
as potentially affecting the transmission of CHIKV. Increased
rainfall [23], higher temperatures [24, 25] and increased forest
[26] or marshy rubber plantation coverage [27] provide favour-
able conditions for vector replication and survival and therefore
could impact the transmission of CHIKV. Rainfall and ambient
temperature may impact the abundance of Ae. albopictus [28]
through multiple mechanisms, including increased availability
of breeding sites [23], increased emergence rates [23], improved
larval survival [24], increased biting rates and reductions in the
extrinsic incubation period [24, 25]. Human movement and
population densities could facilitate geographic spread through
human hosts [26]. Long distance movement of infected indivi-
duals into uninfected areas, here termed long-distance transloca-
tion (LDT) events [29], may have also contributed to the
re-emergence and spread of CHIKV. In this work, we used
district-level CHIK incidence data to fit metapopulation transmis-
sion models to elucidate which of these factors were major deter-
minants of spatial spread. We identified the model for which the
data had the maximum likelihood and used likelihood ratio tests
to compare models.

Materials and methods

Data

Clinical cases of CHIK in Thailand were reported to the National
Surveillance System administered by the Bureau of Epidemiology,

Department of Disease Control in the Ministry of Public Health.
CHIKV was first isolated at Yi-ngo, Narathiwat, Thailand in
August 2008 [18]. From August 2008 to December 2010,
there were a total of 56 112 cases and at least one case of
CHIK was detected in 316 of 926 districts in Thailand (see sup-
plemental animation) [30]. Serum samples were obtained from
3434 of 56 112 (6.1%) reported cases for either virologic or sero-
logic testing. Of those samples tested, 1219 (35.5%) were subse-
quently confirmed as CHIKV infections. The epidemic was
focused in Southern Thailand, where 94.8% of all cases
occurred. Figure 1 shows incident cases per week in the south-
ern districts and for the entire country. In this work, we focused
on districts in the Southern region. A district was considered
infected once total incidence exceeded one reported case per
10 000 inhabitants. A total of 127 of 151 southern districts
meet this definition during the outbreak. We modelled the pro-
cess by which districts moved between uninfected and infected
states.

We obtained data describing population sizes, rainfall, tem-
perature and percentage forest and rubber plantation district
coverage in each of the 151 southern districts. Population
sizes were obtained from the Department of Provincial
Administration, Ministry of Interior of the Kingdom of
Thailand [31].

The fraction forest coverage was calculated as the total area
covered by forest, based on Landsat remote sensing [32], divided
by the total district area. We considered only forestation, exclud-
ing plantations, eucalyptus plantation, secondary forest and other
agricultural area. The fraction rubber plantation coverage was cal-
culated in a similar manner using data from the Provincial
Agricultural Extension, Department of Agriculture Extension,
Thailand [33, 34].

Rainfall data were obtained from the real-time TRMM
Multi-Satellite Precipitation Analysis (TMPA-RT) [35]. The
daily accumulated precipitation in millimeters was obtained
from TRMM 3B42RT Daily for the centroid of each district
[36, 37]; we assumed homogeneity of district-level rainfall from
that reported at the centroid.

The average temperature was obtained from the Moderate
Resolution Imaging Spectroradiometer of the Terra satellite,
which records the average value of daytime and nighttime land
surface temperature on a 1 km2 sinusoidal grid [38]. The average
temperature in each district is taken to be the average temperature
of all 1 km2 image pixels within the district.

Fig. 1. Time series of the incident reported cases by week (left) and heat map of total reported cases in each province (right). The Southern region studied in this
work is outlined.
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Model

Metapopulation transmission model

We built a metapopulation model of transmission across the 151
districts of Southern Thailand to model the spatiotemporal
process by which districts became infected as a function of the
state of neighbouring districts and network distances. We
extended a model developed by Smith et al. for examining the
dynamics of rabies in raccoons in Connecticut [29]. We assumed
that, once a patch reaches a particular threshold, the risk asso-
ciated with dispersion of cases to other areas is independent of
the overall incidence within a patch [39, 40].

Each district was represented by a node in a weighted graph,
with each pair of adjacent districts connected by a link (Fig. 2,
panel a). We define Tj to be the simulated time in weeks elapsed
from the first observed case in Southern Thailand to the time that
the jth district reached the infection threshold. Tj was computed
as a function of the adjacency network, N, the rate of spatial
spread between infected district k and uninfected district j in
units of kilometers per week, λkj and the set of pairwise distances
between districts k and j, dkj. Therefore, time of infection in dis-
trict j, Tj, can be defined as Tj = Tk + τkj, where τkj is the expected
time for cases to be introduced to district j directly from district k,
defined as dkj/λkj. The weight of each node is assigned to be τkj.

The times of infection for each district were computed by
iteratively identifying the next district to become infected. This
was done by identifying at each time point the district, j, which
minimised Tj = Tk + τkj across all infected districts k. In identify-
ing the sequence of these individual infection events, the spatial
progression of districts exceeding the specific threshold is deter-
mined for each model parameterisation. For example (Fig. 2,
panel b), there may be three currently infected districts from
which CHIKV can be spread to any of the four uninfected dis-
tricts at a constant rate, λ. Possible routes of transmission are

defined by the adjacency network, N. At this time point, the
time of infection Tj is least for District 6 (T6 = (16 km + 27 km)/
λ), so it is said to be newly infected by District 2. The algorithm
was repeated until all districts became infected. The output Tj was
compared with the observed data to find the optimised model.

We consider three metrics of distance, dkj. First, we measure
the geodesic distance (‘as the bird flies’) from the centroid of
each district. We also consider both the geodesic and driving dis-
tances (as measured by Google Maps [41]) between the adminis-
trative offices of each district, which are typically located in areas
with the largest population density in each district and may more
accurately reflect travel distances between districts.

We also define several different adjacency networks to explore
whether the data were most consistent with spread only between
neighbouring districts, or with spread occurring from neighbours
of neighbours or beyond. Adjacency matrices defined the degree
of separation (DoS) between two districts, an integer number
that defined the minimum number of shared boundaries that
must be crossed to reach one district from another. If two districts
were adjacent (i.e. share a boundary), they were considered to be
separated by 1° of separation (DoS = 1). In this work, we consid-
ered a model that included transmission events between districts
with a DoS of 2 or lower. However, this model does not perform
as well as DoS = 1.

For districts that remained uninfected for the length of the
observed data, we arbitrarily set the time of infection to the
week after the latest observed data point. This reflects the fact
that our observations of time of infection in each district is cen-
sored. We explored the assumption of the arrival time for these
uninfected districts and found that model results were insensitive
to the specific assumption (e.g., 1 week or 2 weeks after last obser-
vation) of the arrival time for these districts. These putatively
uninfected districts can infect and spread to other districts in
the model.

Fig. 2. (a) The network model overlaid on a map of Southern Thailand with DoS = 1. (b) An example of the metapopulation transmission model; red circles
represent infected districts and blue circles uninfected districts. For all infected districts at this time point (Districts 1–3), the spatial spread of the infection pro-
ceeds along the link with the shortest time to next infection, Tj = Tk + τkj, (from District 2 to District 6). The process is repeated iteratively until all districts are
infected.
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We tested multiple forms of the rate of spread between dis-
tricts, λkj, as a function of heterogeneous environmental variables
to examine the influence of various factors on CHIKV transmis-
sion. We used a simple rule for generating the rates of spread. We
examined five forms for λkj, corresponding to five environmental
variables:

(1) Homogeneous, λ(H0): constant rate of spread, i.e. λkj = α for
all k and j.

(2) Human movement (gravity model), λ(H): here, λkj depends
on the population density of nodes k and j, through a gravity
model, where the probability that an individual visits a dis-
trict is directly proportional to the population sizes of the
origin (Nk) and destination districts (Nj) [42, 43]. We took
lkj = max(a(1+ u{(Np1

j Np2
k )/dskj}), 0), where θ is a constant,

p1, p2 and σ are the exponents and dkj is the geodesic or
driving distance between districts k and j.

(3) Weather conditions, λ(C): we assumed the rate of spread
depends on rainfall or temperature conditions at the time
step before infection (Tk) in the infecting and infected districts.
Weather variation could affect the transmissibility of CHIKV
by influencing the mosquito vector life cycle or growth of the
virus in the vector.
(3.1) Rainfall, λ(R): λkj =max(α(1 + ρ(Raink(Tk) + Rainj(Tk))),

0), where Rainj is rainfall in mm for the district j and
ρ is a constant.

(3.2) Temperature, λ(T): λkj =max(α(1 + γ(Tempk(Tk) +
Tempj(Tk))), 0), where Tempj is the temperature in
degrees C for the district j and γ is a constant.

(4) Forest, λ(F) and rubber plantation, λ(P): we assumed the rate
of spread is linearly proportional to the percent of the forest,
Fj, or rubber plantation, Pj, an area in the jth district: λkj =
max(α(1 + βFj), 0) or λkj =max(α(1 + βPj), 0). The forest or
rubber plantation areas provide suitable breeding habitats
for CHIKV vectors [26, 27].

We also considered linear combinations of the above rates in
multi-factor models. For example, λ(H, R, F) is the combination
model of human movement, rainfall and the percent of the
forest, which equal to a(1+ u{(Np1

j Np2
k )/dskj} + r(Raink(Tk)+

Rainj(Tk)) + bFj), while λ(H, R, T, F) is the combination
model of human movement, rainfall, temperature and the percent
of the forest, which is equal to a(1+ u{(Np1

j Np2
k )/dskj}+

r(Raink(Tk) + Rainj(Tk)) + g(Tempk(Tk) + Tempj(Tk)) + bFj).
The weight of each rate of spread was adjusted by a constant α so
that, if one of the environmental coefficients was equal to zero,
the transmission rate collapsed to the homogeneous model.

LDT events

Epidemics may not diffuse contiguously between neighbouring
districts due to infectious individuals travelling beyond neigh-
bouring districts. LDT events could progress the spread of advan-
cing epidemics across multiple boundaries at speeds independent
of the rates described above. We identified potential LDT events
and included them in the model to improve fit. In constructing
candidate models, our criteria for identifying LDT events were:

• LDTs must be at least 2 DoS from the most recently infected
districts,

• The LDT must be the first reported case in the focal district and
its neighbouring districts (DoS = 1),

• The LDT must be before the median week of cases in the prov-
ince containing the focal district (Supplemental Figure S1
shows province and district boundaries).

Estimation

To find the best model, we simulated all possible combinations of
λ, including multi-factor models, for each of the three possible
pairwise distance metrics. We compared models using the max-
imum likelihood estimate. The best fit was found by maximising
a normal log-likelihood, which found the simulation results that
were most likely from the observed data [29]. We used a likeli-
hood of the form:

L m,s, x
( ) = s−n 2p( )−(n/2)exp − 1

2s2

∑n
i=1

xi − m
( )2[ ]

where the simulated arrival date appears as the expectation of the
random variable and the observed date as xi.

We used Nelder–Mead optimisation to set initial parameter
values, which is the simplex method to minimise a function of n
variables [44]. Then, we used a quasi-Newton method (Broyden–
Fletcher–Goldfarb–Shannon, BFGS) to choose new search direc-
tions. This technique searches the solution in the vicinity based
on mathematical gradients, which dictate the convergence rate of
response surface methodology [45, 46]. The likelihood ratio test
was used to calculate the 95% partial likelihood-based confidence
interval of fitted parameters.

Results

Twenty-four models were fitted to the observed data for each dis-
tance metric (Fig. 3). In general, we found that human movement
and rainfall improved fit when included as single factors, while
rubber plantation models fit the data poorly. The optimal homo-
geneous model, λ(H0), gives an average rate of spread of 8.5 km/
week (R2 = 0.9868), indicating that CHIKV spread throughout
Southern Thailand from the outbreak source in 82.3 weeks, slower
than the observed 61 weeks between the first and last district
infection events.

The human movement model using straight line distance
between district offices was the best one-factor model, with a
reduction in log likelihood of 21 332.12 from the homogeneous
transmission model. This result highlights the importance of
human movement in CHIKV spread (Fig. 3). Rubber plantation
area alone may not be significant to the transmission dynamics
of CHIKV, as these models showed the worst performance of
all the one-factor models. The inclusion of weather conditions
in the formulation of λ(R, T) slightly improved fit, with rainfall
and temperature having similar effects when compared with one-
factor model of rainfall or temperature.

The HP (human movement and rubber plantation coverage)
model had the lowest negative log-likelihood among models
with driving distance. The HF (human movement and forest
coverage) model showed the best performance in straight-line
office distance, while the RP (rainfall and rubber plantation cover-
age) model showed the best performance in straight-line centroid
distance. The four-factor HRTF model fits better than the HRTP
model using any of the three-distance metrics, though neither
performed as well as the HP model with driving distance
(Fig. 3). Thus, we selected the HP using driving distance model,
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which has maximum log likelihood (minimum negative log like-
lihood) and fewer parameters, as the best-fit model for further
study.

Maps of residual error for one-factor models using driving dis-
tance are presented in Fig. 4. Overall, the one-factor models pre-
dicted later emergence of CHIKV than observed in Southern
Thailand. The error was distributed across the region, with gener-
ally early prediction in the mid-south, near the first infected dis-
trict and late predictions in the northern and southernmost
districts. The rainfall model had the lowest overall residual error
among the one-factor models. The multi-factor HP model showed
the largest reduction in error compared to the other models,
including reduction of late-prediction errors observed in the one-
factor models.

LDT events could progress the spread of advancing epidemics
across multiple districts at speeds independent of the rates
described above and account for the non-contiguous spread of
CHIKV. Due to limitations in computational time, LDT events
were considered only in the best fit multi-factor model (HP). A
total of 22 districts were found to meet the criteria described
above for CHIKV introduction through an LDT event. We tested
each possible LDT event independently to see if its inclusion
improved the model fit and found 14 LDT events that improved
model fit by maximum log-likelihood estimator (MLE;
Supplemental Table S1). The LDT event that showed the greatest
increase in MLE was an introduction into Kathu, Phuket, located
in the middle-west part of southern (Supplemental Figure S2).
The worst performing LDT event was an introduction into Saba
Yoi, Songkhla. We sequentially added additional LDT events, test-
ing all possible sets of 1, 2, 3, 4 and 14 LDT events. The model
with 14 LDT events (all events that improved the performance
of the model when added independently) was tested as a model
with a high degree of freedom.

Model fit observably improved with the addition of more than
one LDT event (Fig. 5). We found that the inclusion of all 14 LDT
events did not result in the best performance. Rather, the HP
model with 3 LDT events, with introductions into Thalang,
Phuket; BanTaKhun, Surat Thani; and YanTaKhao, Trang, was
selected to be the best fitting models (Fig. 6). The best-fit HP
model with 3 LDT resulted in an absolute difference of log

likelihood of 614.17 from the best fitting model including 4
LDT events. The 3 LDT model also demonstrated strong positive
correlation (0.74, P-value <0.001 using Pearson correlation test) to
the observed data (Fig. 6). The fitted parameters and 95% confi-
dence interval are shown in Supplemental Table S2. Again, the
most residual error involved early prediction of CHIKV emer-
gence in southern districts. The most likely network model indi-
cated that CHIKV moved adjacently district-to-district with few
LDT events (Fig. 6, panel c).

Discussion

In this work, we presented a metapopulation transmission model
of the invasion and spread of Chikungunya virus across districts
in Southern Thailand from 2008 to 2010. Of the factors investi-
gated in this study (human movement, rainfall, temperature, for-
est coverage and rubber plantation coverage), we found human
movement and rubber plantation coverage (HP model) most
improved fit to the observed data. We also identified three LDT
events that statistically significantly improved model fit.

Our analysis demonstrated that driving distance between dis-
trict offices offers a better fit to the observed data than straight
line distance between districts. This result lends credence to the
importance of human movement in the spread of CHIKV.
While straight line distance may have some influence on
human behaviour regarding travel (longer distances being less fre-
quented), the actual movement of individuals is likely dictated
more by travel or driving distance. The road infrastructure and
landscape of Southern Thailand may limit the frequency of travel,
even between geographically close districts [47] and therefore may
restrict the paths of CHIKV emergence and movement.

Implicit in the use of a gravity model of human movement is
the dependence of movement patterns on population density.
Here, metapopulation models dependent on distance alone
showed much worse fit than models incorporating a gravity
model of human movement. Thus, two key drivers of human
movement, travel distance and population density, are important
in the movement of CHIKV across Thailand. This echoes previ-
ous findings explaining transmission dynamics of seasonal influ-
enza [43] and dengue introductions in the USA [48].

Fig. 3. Negative log likelihood for the 24 candidate mod-
els of CHIKV spread with three different metrics of
between-district distance. Ho indicates the null model,
the homogenous rate of spread between districts.
Other models indicate single- and multi-factor models
of the rate of spread. H, human movement; R, rainfall;
T, temperature; F, forest; and P, rubber plantation.
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CHIKV strains isolated during the 2008–2010 outbreak in
Thailand were most closely related to African genotypes and to
isolates from a 2007 outbreak in India, suggesting the novel intro-
duction of CHIKV to Thailand, rather than descent from previ-
ously circulating strains [20]. All isolates contained the A226V
mutation, known to enhance viral infectivity and dissemination
in Ae. albopictus and to have an overall selective advantage in
Ae. albopictus, but not in Ae. aegypti [22]. In this outbreak,
blood meals from wild-caught mosquitoes showed a significantly
higher infection rate in Ae. albopictus than in Ae. aegypti [28].

Climate may affect the abundance and life cycle of Ae. albopic-
tus [49] and therefore have consequences for chikungunya

transmission. In this work, we included two weather factors (rain-
fall and temperature) known to influence vector survival and the
extrinsic incubation period of CHIKV within the vector [24, 25]
in models of CHIKV spread. Although neither rainfall nor tem-
perature was included in the best-fit HP model, they did generally
improve model fit, notably in one-factor models. In this model,
we considered only district-level average temperatures and pre-
cipitation. Recent work has indicated that a single extreme rainfall
event could increase the abundance of Ae. albopictus and conse-
quently extend CHIKV transmission period [23]. Weather events
may also influence human mobility patterns, by modulating travel
demand or increasing travel times. Increasing rainfall and higher
temperatures create more favourable conditions for the vectors
that spread CHIKV and may also influence the extrinsic incuba-
tion period of CHIKV within the vector [24, 25]. Rainfall may
influence in combination with mobility. On a rainy day, travel
demand may decrease. During periods of high rainfall, travel
time could increase as drivers tend to reduce their speed, exacer-
bating distances between places.

Rubber plantation coverage was included in the best fit multi-
factor model, though we found little improvement in model fit
in the one-factor model of rubber plantation coverage. Rubber
farming is a major agricultural occupation in Southern
Thailand which may drive human migration patterns. The mar-
shy conditions of rubber plantations provide favourable environ-
mental conditions for vector growth and increased human
exposure to these vectors [27, 50]. Farmers work under shaded
rubber trees, where Ae. albopictus is abundant and latex cups
used to collect rubber could increase the number of available
breeding sites [27, 51].

Forested land is also an important habitat for Ae. albopictus
and therefore may play a role in CHIKV transmission [26, 51],

Fig. 4. Comparison of residual errors of driving distance
model of the one-factor models and the best-factors
(HP) model. Positive errors indicate late prediction;
negative errors indicate early prediction. Black dots indi-
cate the first infected district.

Fig. 5. Negative log likelihood estimates of the best-fit model (HP model) with the
several numbers of LDT events.
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though the impact of forest coverage is likely to depend on land
use patterns. If people spend less time in forested areas where
Ae. albopictus is present, increased forest coverage could be asso-
ciated with less transmission, particularly if high forest coverage is
associated with fewer areas of overlapping vector abundance and
human activity, such as rubber plantations. This may explain why
forest coverage is not included in the best fit model but does
improve model fit in univariate models (Fig. 3). Our results indi-
cate that CHIKV spread throughout Southern Thailand in a rela-
tively linear fashion, with introduction and transmission largely
limited to neighbouring districts. Three LDTs substantially
improved model fit: BanTaKhun, Surat Thani; Thalang, Phuket;

and YanTaKhao, Trang. BanTaKhun is located about 447 km
from the origin of the outbreak (Yi-ngo, Narathiwat) above a geo-
graphical bottleneck at about 7.5° of latitude, which separated
areas of relatively slow transmission to the south and faster trans-
mission to the north (Fig. 6). The presence of this difference in
rates of spread lends evidence to this LDT. The second and
third identified LDT events were to Thalang, Phuket and
YanTaKhao, Trang, both near the border of the bottleneck.

While including long-distance translocations of CHIKV in
Thailand did improve model fit, these events were less critical
to understanding transmission dynamics than in the work of
Smith et al. to understand raccoon rabies in Connecticut [29].

Fig. 6. Scatter plot compares the simulated and observed week of chikungunya from the model fit (a). Maps show the residual error (b) and most likely network
model (c) of the best-fit HP model with 3 LDT events (Thalang, Phuket; BanTaKhun, Surat Thani; and YanTaKhao, Trang). Black dots indicate the first outbreak
district. Green stars indicate the location of LDTs.
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The geography of each region and disease host may help explain
this difference. Certain geographic features, such as rivers, are
more likely to affect raccoon movement on small spatial scales
than human movement. This could limit the ability for popula-
tions – and therefore disease – to move between neighbouring
regions and increase the importance of LDTs in understanding
spatial spread. We employed a standard gravity model to
represent human movement, which relies on relatively simplistic
assumptions that ignore individual preferences (including influ-
ences of social networks) when modelling movement. However,
little or no data exist specifically related to human movement in
Thailand and the gravity model remains an important approxi-
mation of travel patterns. The resolution and accuracy of data
describing weather conditions, forest coverage and rubber planta-
tion area are also limited due to the available data.

We assume in multi-factor models that different covariates
combine linearly to influence rates of transmission. We do not
consider possible interactions or non-linear combinations of
multiple factors. Furthermore, we focus on the effect of human
movement without directly considering heterogeneity in vector
abundance or movement, which are important factors when
designing vector control strategies. The accuracy and resolution
of district-level weather and land use covariates is limited due
to the available data and, due to the nature of CHIKV disease,
case reports may be of high specificity [20]. Limitations of the
National Surveillance System meant some samples were tested
for the presence of CHIKV only by serology, a less sensitive meas-
ure than RT-PCR. Some of the observed error in final model fit
may be due to asymptomatic transmission or poor reporting to
the National Surveillance System.

The significance of the association of human movement in
CHIKV movement across Thailand and the observation that
CHIKV spread predominantly between neighbouring districts
(as demonstrated by statistical support for a small number of
LDT) will aid in predicting paths of emergence and preparing
for future outbreaks of chikungunya. Entwined with this under-
standing is the importance of passive surveillance in tracking
ongoing outbreaks. This work has clear applications to other
disease systems where human movement and physical attributes
of locations contribute to the speed of transmission across
landscapes.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818001917.
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