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Trace rings of generic matrices are U.F.D. A. W. Chatters and D. A. Jordan defined
in [0] a unique factorization ring to be a prime ring in which every height one prime ideal
is principal. In this note we will prove that the trace ring of m generic n X rt-matrices
satisfies this condition.

Throughout this note, k will be a field of characteristic zero. Consider the polynomial
ring S = i t [ / J - ; l < i , / < n , l < ! < m ] and the nXn matrices X, = (/!,) in Mn(S). The
/c-subalgebra of Mn(S) generated by {X,; 1 < / < m} is called the ring of m generic n X n
matrices Gmn. Adjoining to it the traces of all its elements we obtain the trace ring Tnhn

of m n X n generic matrices, cfr. e.g. [1].
The main aim of this note is to prove:

THEOREM 1. Height one prime ideals o / T m n are cyclic.

M. Artin and A. Schofield [2] have proved that Jm „ is always a maximal order, cfr.
[3]. The following two results liberate their proof from Hilbert-Mumford theory.

LEMMA 2. Let B be a unique factorization domain and G a group of automorphisms
of Bs.t. Hl(G, B*) = 1. If A is the fixed ring of B under G, then:

(a) AaB satisfies no blowing up
(b) A is a unique factorization domain.

Proof, (a) Let P = Bp be a height one prime of B s.t. PDA^O. Then P has a finite
orbit under G, say {Bp, Bpu . . . , Bpk} (take an element a e PDR write a =pkql{. . . q'z,
then o{Bp) e {Bp, Zty,}). This shows that for every a eG there exists a unit fo e B* s.t.
a(p • Pi . . .Pk)-fo 'PPi • • -Pk{fo\oeG} is clearly a 1-cocycle, so by assumption there
exists a unit a e B* s.t. fa = o(a)a~l for every aeG. Replace p by p' = a-"1 . p, then
p'px...pkeA. Therefore, any element O^aePDA can be written as
a = (p'/?,.. .pk)'q'i' ...q'f, i.e., ae{p'pl. . .pk)A. So, PC\A = (p'p, . . .pk)A and there-
fore AczB satisfies no blowing up (b). By (a) and [4] we know that the natural map
C/(y4)—»C/(fl) is a homomorphism. Suppose Q is a nonprincipal height one prime of A,
then (BQ)** = Bp1}. . .p'% for irreducible elements p, e B. Clearly, Q = Bpx DA which is
a principal ideal by the proof of part (a), done.

Let us return to trace rings. Procesi [6] has shown that there exists an action of
PGLn(k) on 5 and Mn(S) s.t.

(1) PGLn(k) acts trivially on k
(2) The fixed ring of Mn(S) under PGLn{k) equals Tm n

(3) The fixed ring of S under PGL{k) equals Rmn, the center of Jm_„.
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COROLLARY 3. The extension Rmn<=S satisfies no blowing up and Rmn is a unique
factorization domain.

Proof. Because PGLn(k) acts trivially on k, H\PGLn(k), S*) = H\PGLn{k),
k*) = Hom(PGLn(k), k*) = 1 because PGLn(k) is a simple group.

It follows immediately from this result that Jm „ is reflexive as an Rm ,,-module. A
reflexive order A over a normal domain R is said to be a reflexive Azumaya algebra, cfr.
e.g. [8], if the natural map:

(p : (A 0R A°PP)* * -> EndR(A)

is an isomorphism. It is fairly easy to show that for every divisorial A-ideal / (i.e. a
fractional A-ideal which is reflexive as an R-module) / = A(/n R)**. We are now in a
position to prove Theorem 1.

Proof of Theorem 1. The proof of the Artin-Schofield theorem shows that the
localization of Tmn at every central height one prime ideal p is an Azumaya algebra
(except if m = n = 2). This shows that (pp is an isomorphism for every p eXw(R). Jmn

being a reflexive Rm ,,-module, this yields that Tm „ is a reflexive Azumaya algebra and the
theorem follows from Corollary 3 and the remark above.

If m = n = 2, then the only height one prime which is not centrally generated is
^2,2(XY-YX) which is cyclic, done.

We will give two applications of this result:

THEOREM 4 (Montgomery). Every automorphism of Gmn which leaves the center
invariant is the identity.

Proof. By the Skolem-Noether theorem such an automorphism is given by
conjugation with a normalizing element of Gmn, h . Gnun cz Jm n being a central extension,
h is also a normalizing element of Tm n, i.e. Jm<n . h is a divisorial Tm/I-ideal.

If m or n ̂  2, this entails that h = y . c for some y e Tm?n = k and c in the field of
fractions of Rmn, done.

If m = n-2, the only noncentral normalizing element of Tm„ is XY- YX. This
element does not normalize G2,2, done.

If A is a maximal order over a normal domain R in some central simple algebra 2, we
denote by h(A) the (pointed) set of left A-module isomorphism classes of left fractional
A-ideals which are reflexive i?-modules and with tR(L) we denote the conjugacy classes of
maximal R -orders in 2.

THEOREM 5. There is a one-to-one correspondence between h(Jmn) and
tRmn{Q(Jm,n))- (m anu" n not both equal to 2).

Proof. The correspondence is given by assigning to an (isomorphism class) of a left
fractional Tm,„-ideal L, its right order

https://doi.org/10.1017/S0017089500006261 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006261


TRACE RINGS OF GENERIC MATRICES 13

This map is well defined and epimorphic because for any maximal Rm n-order in Q(Jm<n)
we can take:

L = (A :,¥„,„) = {xe Q{Tm,n):xA^JmJ

civ., e.g., [4]. Now suppose L and L' are left fractional Jm?n-ideals s.t. Or{L) =
a-"1 . 0r(L')a/, then replacing L' by L'a we may assume that 0r(L) = 0r(L') = A.

Let M = ((A:rTmin)L)** and Af' = ((A:rTm,B)L')**, then M and AT are twosided
divisorial A-ideals, i.e., M = M' . c for some element c in the field of fractions of Rmn

(because A is also a reflexive Azumaya algebra and therefore every twosided divisorial
A-ideal is generated by a central element).

Finally

L = ((Jm,n:rA)M)** = ((Jm,n:rA)M'c)** = L'c

finishing the proof.

REMARK. Even if one restricts attention to projective left Am ,,-ideals, some of them
are not free (cfr. [7] in m = n = 2 case and similarly in m = 3, n = 2 case [5]), so there are
maximal orders over Rmn not conjugated to ¥„, „.
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