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Abstract
The standard theory of rationality posits that agents order preferences according to average utilities asso-
ciated with different choices. Expected utility theory has repeatedly failed as a predictive theory, as
reflected in a growing literature in behavioural economics. Evolutionary theorists have suggested that
seemingly irrational behaviours in contemporary contexts may have once served important functions,
but existing work linking fitness and choice has not adequately addressed the challenges of constructing
an evolutionary theory of decision making. In particular, fitness itself is not a reasonable metric for deci-
sion making since its timescale exceeds the lifespan of the decision-maker. Consequently, organisms use
proximate systems that work on appropriate timescales and are amenable to feedback and learning. We
develop an evolutionary principal–agent model in which individuals utilize a set of proximal choice vari-
ables to account for the non-linear dependence of these variables on consumption. While this is insuffi-
cient to maximize fitness in the presence of environmental stochasticity, maximum fitness can be achieved
by adopting pessimistic probability weightings compatible with the rank-dependent expected utility family
of choice models. In particular, pessimistic probability weighting emerges naturally in an evolutionary
framework because of extreme intolerance to zeros in multiplicative growth processes.

Keywords: Utility; risk; behavioural economics; evolutionary demography; fitness

Media summary: Fitness-maximizers employ pessimistic probability weighting for decisions under
risk.

1. Introduction

A herder in in the arid north of Kenya has to make decisions about the composition of his herd (Mace
& Houston, 1989; Mace, 1990, 1993). Should he restrict his herd to small, high-productivity goats or,
when he gets enough goats, should he trade them for larger, slower-breeding camels? The growth rate
of goat herds, even accounting for their increased susceptibility to high mortality during drought years,
is three times that of camels and the expected energetic payoff to keeping goats – more precisely, the
instantaneous rate at which wealth accumulates – is therefore substantially higher than a mixed herd of
goats and camels. However, pastoralists in the region favour mixed herds and will even increase the
fraction of camels dramatically above a critical wealth threshold (Mace &Houston, 1989; Mace,
1990). Are these herders engaging in irrational economic decision making by under-valuing the payoff
of an all-goat herd? While the expected return is lower for a mixed herd of predominantly camels,
households pursuing this strategy have a much higher probability of long-term persistence, nearly
70%, compared with a 0.4% probability of persistence for the goats-only strategy. Why is this so?
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In part, mixed herding diversifies risk. More importantly, however, the growth of these herds, like
any biological growth process, is multiplicative and the rate of increase is stochastic. Furthermore, the
herder faces more than just a decision about long-term wealth accumulation, a well-studied topic in
finance (e.g. Karatzas & Shreve, 1998) and economics (e.g. Peters & Gell-Mann, 2016). Rather, herd
products and income from the herd provide each household’s primary yearly consumption, and con-
sequently there are two processes that matter to the herder: herd growth and household consumption.
We might better interpret the herder’s decision as not about herd management, per se, but rather
about household consumption through time, for which herd dynamics can lead to very uneven yearly
consumption that cannot be fully accounted for by available smoothing mechanisms.

Like growth of the herd, household survival can be thought of as a stochastic gamble in which the
survival probability is a function of household consumption. For such a multiplicative process, a severe
shortfall in any time period that leads to a low survival probability can never be compensated for by
high survival in other time periods (even a large number of other time periods). A virtually identical
perspective arises when considering the evolutionary fitness of individuals because, as we will describe
and formalize, fitness is determined by stochastic, multiplicative processes; most obviously, individual
survival through time is a component of fitness, and like household survival, individual survival is a
binary outcome variable with differing probabilities for each time period. In this article, we explore
what this means for the evolution of organisms’ decision making.

Our challenge is to account for how selection might construct a decision-making system that is
responsive to fitness-relevant decisions in real, variable environments. The first core contribution of
this paper is our suggestion of a hierarchical framework for evolutionary decision making that arises nat-
urally from Mayr’s proximate/ultimate distinction (Mayr, 1961). We then employ the logic of an evolu-
tionary principal–agent problem, an idea we adopt from Binmore (1994), to link proximate and ultimate
ends. This framework reflects the limitations natural selection faces in imparting fitness-optimizing
behaviours to organisms. Other authors have suggested that natural selection addresses these limitations
by imparting proximate preferences to agents. However, we add that natural selection may have separ-
ately, or in tandem, influenced more than one component of human decision making. Much like the
utility function in expected utility theory, proximate currencies can be used to map the consequences
of specific decisions onto evolutionarily salient proximate variables such as fertility and survival. The
hierarchical model we propose possesses proximate value functions that map consumption onto prox-
imate variables, while probability weighting fixes a mismatch that arises from the enforced inability of
these value functions to respond to time-dependent environmental uncertainty.

Our second core contribution arises from applying this framework and understanding the conse-
quences of selection for both the value functions mapping consumption to proximate currencies and
the probability weighting that then links these to fitness. It has long been recognized in evolutionary
biology that stochastic fluctuations in single-period growth rates lower the long-term growth rate
below what would be achieved from deterministic growth at the mean rate each period (Haldane &
Jayakar, 1963; Lewontin & Cohen, 1969; Tuljapurkar, 1982). In our hierarchical framework, we
limit the role of value functions to only map consumption onto proximate outcomes such as age-
specific fertility and mortality (we do allow that the mapping itself can depend on environmental
or social contexts). Hence, they can play no role in addressing the long-term lowering of fitness
exacted by environmental stochasticity. This is where the probability weighting contributes to the
model. The optimal level of weighting does depend on the exact universe the organism occupies,
which sets the gambles the organism faces and how those gambles vary with time. We show that,
regardless of these details, the optimal probability weighting involves pessimistic probability weighting.
This result is of fundamental theoretical importance because it links evolutionary theory with import-
ant work in economics. Pessimistic probability weighting of unlikely, negative outcomes is a core
aspect two of the most successful behavioural economic models, rank-dependent expected utility the-
ory and cumulative prospect theory, both of which recover expected utility theory as a special case. We
thus offer a grounded evolutionary explanation for one of the cornerstones of modern behavioural
economics.
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Because we anticipate a diverse readership for this article, we have provided substantial background
material, especially in Sections 2 and 5. Section 2 summarizes pertinent economic ideas, notably
expected utility theory and alternatives to it such as rank-dependent expected utility theory. Section
3 frames our hierarchical model with respect to recent literature on the evolution of economic prefer-
ences, describes the evolutionary principal–agent problem and summarizes our hierarchical model.
Section 4 gives a high-level, verbal outline of our model. Section 5 describes the evolutionary compo-
nent of our model, stochastic age-structured population models (the economic model, rank-dependent
expected utility theory, is described in Section 2). Section 6 brings together the preceding material to
establish our core result on pessimism. Section 7 discusses our results.

2. Expected utility theory and its alternatives

Organisms, humans included, must make decisions about foraging, reproductive, social and political
behaviours that have consequences for proximate outcomes such as satiety, income, wealth, happi-
ness, sexual satisfaction and well-being. These decisions also have consequences for ultimate out-
comes such as fitness and, consequently, there are strong expectations that selection acting on
differential fitness will shape the decision-making system. The rational-choice tradition suggests
that individuals make decisions that maximize some quantity typically denoted by the catch-all
term ‘utility’. In the presence of variability in outcomes, the objective function for maximization
is the expectation of utility. In particular, a set of possible payoffs (i.e. a ‘lottery’)
x = [x1, x2, . . . , xn]T with associated probabilities p = [p1, p2, . . . , pn]T is preferred to some other
lottery y = [y1, y2, . . . , yn]T with probabilities q = [q1, q2, . . . , qn]T if some preference functional
(Machina, 1982) that associates payoffs with probabilities V(x; p) is greater than that associated
with V(y; q): V(x; p) . V(y; q). Here and elsewhere vectors (bolded) are column vectors by default
and T indicates a transpose. A preference functional thus contains two inputs: (1) a measure of the
value of outcomes (i.e. utilities associated with outcomes); and (2) weights for these outcomes. In
the absence of other information, a reasonable value function is linear in the probabilities and util-
ities of distinct outcomes,

V (EUT) =
∑

piu(xi). (1)

This linear specification yields an expectation over utility and the theory that uses maximization of
expected utility is known as expected utility theory (EUT). This theory was first formalized in its mod-
ern form by von Neumann and Morgenstern (1947) and further axiomatized by Savage (1954).
Expected utility, combined with exponential time discounting of delayed outcomes, represents the
canonical economic model of decision making (Samuelson, 1937; von Neumann & Morgenstern,
1947; Machina, 1982; Starmer, 2000; Frederick et al., 2002). The EUT approach has been very fruitful
for economics, political science and other behavioural sciences. Like many economic theories it is
axiomatic and the fundamental axioms that underlie EUT (completeness, transitivity, continuity
and independence) are sensible requirements that ensure that preferences are consistent (von
Neumann & Morgenstern, 1947; Savage, 1954). However, an enormous literature has developed show-
ing that people violate the axioms underlying EUT in both experimental and naturalistic contexts.
Some examples include the common consequence effect (Allais paradox), the common ratio effect
(Allais, 1953), ambiguity aversion (Ellsberg, 1961), preference reversals between gambles represented
as bids vs. choices (Lichtenstein & Slovic, 1971), the incommensurability of risk-sensitive behaviour
for high- vs. low-stakes gambles (Rabin, 2000), overconfidence (Heller, 2014) and abundant evidence
that framing and reference points induce departures from canonically predicted behaviour (Kahneman
& Tversky, 1979; Tversky & Kahneman, 1992; Loewenstein & Prelec, 1992). Violations of the statio-
narity of time preferences, another canonical assumption although not the focus of this article, include
the common difference effect and the absolute magnitude effect (Loewenstein & Prelec, 1992;
Frederick et al., 2002).
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One consequence of these empirical observations is that they spurred theorists to develop new
choice models that could accommodate the empirical findings. Starmer (2000) divides these efforts
into conventional and non-conventional. Regarding the conventional strategy, Starmer (2000,
p. 338) writes, ‘The general spirit … is to seek “well behaved” theories of preferences consistent
with observed violations of independence’. In this spirit, Starmer defines conventional theories as
those that maintain the completeness, transitivity and continuity axioms, but rather than maintaining
the independence axiom insist on monotonicity, ‘the property that stochastically dominating prospects
are preferred to prospects which they dominate’ (Starmer, 2000, p. 335). First-order stochastic dom-
inance occurs when the cumulative distribution function (or cumulative mass function for a discrete
distribution) of a gamble is at least equal to that of another gamble over its entire domain (Quiggin,
1993, p. 77). It is common to require the cumulative distribution function to be strictly greater than
that of the other gamble on at least part of its domain (Wakker, 2010, p. 65).

The reason Starmer uses independence as the criterion to distinguish conventional from non-
conventional theories is that its violation was (and almost certainly is) seen as the primary challenge
to EUT arising from behavioural economics experiments. The independence axiom asserts that adding
a common outcome to two prospects should not change the preference ordering of the prospects.
Perhaps the most notable behavioural anomaly is the Allais paradox (Mongin, 2019, for a recent
review), or common consequence effect, which uncovers a violation of the independence assumption.
Quiggin (1993, p. 30) writes: ‘The Allais problem is the pons asinorum of theories of choice under
uncertainty. Almost all of the many authors who have introduced new models of choice under uncer-
tainty in the last 10 years [i.e. alternatives to expected utility theory] have included a demonstration
that the model is consistent with the behaviour revealed in this problem’.

Machina (1981, 1987) noted there is nothing inevitable about expected utility serving as the object-
ive function for preference ordering and suggested that nonlinear functions mapping proximate values
and probabilities might account for these types of systematic departures from the predictions of EUT.
An important class of non-linear models that can accommodate the Allais paradox does so via sub-
jective probability weights. In the simplest formulation of probability weighting, the decision weights
are a direct function of the probability of each individual outcome,

U =
∑

W( pi)u(xi), (2)

where W is the weighting function and pi is the probability of outcome i. Preson and Baratta (1948)
may have been the first to suggest the use of subjective probability weights in this way. They showed
that when individuals could competitively bid on lotteries with uncertain outcomes they systematically
over-weighted low probabilities (up to about p = 0.1) and under-weighted high probabilities. This
straightforward method of probability weighting was adopted in the original formulation of prospect
theory (PT; Kahneman & Tversky, 1979), an early, heuristic-based alternative to EUT that gained
widespread attention. However, it was quickly pointed out that PT and other theories that simplistic-
ally implement probability weighting violate monotonicity (Wakker, 2010, p. 153). An ad hoc fix of
the PT violation of stochastic dominance was incorporated via an editing process that occurred before
the probability weighting occurred. In addition to lacking parsimony, this editing process can induce
intransitivity in pairwise choices (Quiggin, 1982). The appeal of PT was its selective incorporation of
the more desirable features of EUT, while nevertheless rejecting the independence axiom, so that the
Allais paradox and other behavioural violations could be accommodated, but a model that leads to the
favouring of stochastically-dominated choices or intransitivity was clearly unacceptable.

The publication and response to PT spurred work to develop alternatives, including axiomatic, con-
ventional theories (sensu Starmer) that maintained EUT’s less controversial axioms (completeness,
transitivity, and continuity) while simultaneously avoiding the violation of stochastic dominance
exhibited by PT in its unedited form. The culmination of this work was the simultaneous and inde-
pendent discovery of RDEUT by at least three scholars (Quiggin, 1982; Schmeidler, 1989; Yaari, 1987).
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RDEUT avoids violations of monotonicity by re-weighting probabilities in a quite specific manner.
Assume that the probabilities of some prospect are sorted from most desirable to least desirable
according to the values of their corresponding outcomes (x1≥ x2≥ x3≥ ⋅ ⋅ ⋅ ). Next, define the cumu-
lative probability, or rank (Wakker, 2010), as

ui =
∑i

j=1

pj. (3)

where θi is the probability of receiving an outcome that is as good as or better than i. The probability
weighting on outcome i is given by

ri = w(ui)− w(ui−1), (4)

where w is the weighting function defined on ranks and we assume that θ0 = 0. In equation (4), w is
used rather than W to emphasize that w is defined on probability ranks, whereas W is defined on
probabilities; w maps the interval [0, 1] onto itself, must be an increasing function of θ, and must sat-
isfy w(0) = 0 and w(1) = 1. The rank-dependent expected utility is

U =
∑
i

riu(xi). (5)

Figure 1 plots three different probability weighting functions. The middle curve is a standard
form that exhibits two suggested biases in the psychophysics of probability distortions: likelihood
sensitivity and pessimism (Gonzalez and Wu, 1999; Wakker, 2010). Likelihood sensitivity occurs
because differences near the endpoints of the probability scale (0 and 1) loom larger than differences
in the interior of the interval. Conversely, differences in the middle of the scale loom smaller, so that
the difference between 0 and 1% is psychologically much more salient than the difference between
60 and 61%. To account for diminished likelihood sensitivity for intermediate probabilities, the
probability weighting function must have an inverse-S shape so that the centre is more flat than
the endpoints.

Pessimism involves the under-weighting of desirable outcomes relative to their probability of occur-
rence, and leads to an overall lowering of the weighting function. Two types of pessimism can be
defined relative to the probability weighting function, w(θ): regular pessimism and strong pessimism
(Quiggin, 1993). Regular pessimism (or simply pessimism) occurs where w is below the identity line w
= θ, whereas optimism occurs where w is above the identity line. Strong pessimism occurs where w is
convex (second derivative greater than zero), whereas strong optimism occurs where w is concave
(second derivative less than zero). For many functional forms of w, regular pessimism and strong pes-
simism occur on the same or nearly the same intervals (and similarly for optimism).

RDEUT accounts for the Allais paradox through pessimistic probability weighting. Segal (1987), for
example, has formulated a general statement of the Allais paradox using arbitrary payoffs and non-
discrete probability distributions, and shown that RDEUT with a probability weighting function w
exhibiting strong pessimism on its entire domain (i.e. the unit interval) can accommodate any and
all formulations of the generalized Allais paradox. However, only a subset of the generalized formula-
tions are encountered in daily life or economic choice experiments, so less restrictive probability
weighting functions can accommodate the empirically relevant cases, although some pessimism is
still a necessary element. For example, as already discussed, pessimism is one of the two primary com-
ponents of the standard probability weighting curve (the other being likelihood sensitivity), which
exhibits pessimism over only part of its domai n. Consequently, we utilize regular pessimism as
opposed to strong pessimism as the relevant definition of pessimism. A crucial result proven by
Quiggin (1993, chapter 6) follows from this assumption:
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Theorem 1. If an RDEUT decision maker (agent) possesses a function u(⋅) that is increasing and con-
cave, the following are equivalent,

(i) the agent exhibits regular pessimism, w(θ)≤ θ.
(ii) the agent ascribes a lower value to the RDEUT than the EUT valuation, V(RDT)≤V(EUT).

When it was realized that RDEUT avoided violations of stochastic dominance and could accommodate
the Allais paradox, PT was reformulated to include RDEUT, becoming cumulative prospect theory
(CPT; Tversky & Kahneman, 1992). Consequently, RDEUT, either in its own right or as a component
of CPT, is one of the most important components of contemporary work to generalize EUT (Starmer,
2000; Wakker, 2010).

Having summarized some of the pertinent economic ideas and models, we can now to turn to the
central focus of the article. What mechanistic or functional basis might nonlinear preference func-
tionals have? A reasonable working hypothesis is that their origins are found in evolutionary history.
Indeed, there is a thread of evolutionary logic that runs through parts of the behavioural-economic
literature. For example, an interpretation of Kahneman & Tversky’s dual-process model, as articulated
by Kahneman (2003, p. 697), suggests that ‘intuitive judgments occupy a position – perhaps corre-
sponding to evolutionary history – between the automatic operations of perception and the deliberate

Figure 1. Probability weighting functions for the RDEUT model. The top curve exhibits optimism over its entire domain. The bot-
tom curve exhibits pessimism. The middle curve is a standard curve adopted in much of the recent literature; it combines pessim-
ism with likelihood sensitivity.
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operations of reasoning’. Various well-known decision biases – particularly loss-aversion – have been
interpreted in light of evolutionary success (Haselton & Nettle, 2006; McDermott et al., 2008). Aside
from this, there is a small but growing literature, mostly within economics, that seeks to model the
evolution of human economic preferences (Rogers, 1994; Robson, 1996; Robson & Samuelson, 2009).

3. Natural selection, preferences and the evolutionary principal–agent problem
We are interested in economic decisions in the broadest sense. At the basic level, organisms are mak-
ing decisions over what can be thought of as different lotteries. For example, should a herder focus on
one animal or create a mixed herd? Should a forager hunt for sand monitor lizards or hill kangaroo
(Jones et al., 2013)? Should a peasant farmer intensify cultivation of a nearby garden plot or spread
effort across two geographically distinct plots (Norman, 1974)? Should a woman wean her infant
and have another baby or continue nursing and delay reproduction (Hobcraft et al., 1983; Jones
and Bliege Bird, 2014)? Should an individual buy or rent a home (Shelton, 1968). In these examples,
each lottery yields different payoffs probabilistically. All of these examples could have a clear impact on
fitness, but it is extremely unlikely that any conscious fitness-maximization goal plays significantly
into any of the decision makers’ choices. Instead, their decisions are shaped by preferences over a var-
iety of proximate currencies like hunger/satiety, feelings of security or feelings of love and responsibil-
ity for children. Samuelson and Swinkles (2006) raise the important question, given the evolutionary
mandate to successfully leave descendants, why do people have preferences for anything but fitness?

Why have preferences for proximate quantities?

In the substantial literature that addresses the question of why people have preferences for proximate
currencies rather than fitness itself (Rogers, 1994; Binmore, 1994; Robson & Samuelson, 2011;
Glimcher, 2016), three inter-related factors loom largest. First, natural selection operates on timescales
that are longer than the lifespans of the organisms whose behaviour it shapes and, furthermore, selec-
tion is a stochastic, undirected process. Second, organisms regularly encounter novel situations for
which natural selection is unable to directly specify behaviours. Third, the types of solutions that
might emerge via natural selection to address the first two factors are constrained by trade-offs
imposed by the cost of gathering and processing information. These observations can be accommo-
dated within a single analytic framework by utilizing the economic concept of the principal–agent
problem (Binmore, 1994), which will allow us to address the question of why organisms have prefer-
ences defined over proximate currencies, rather than the ultimate currency of fitness.

Consider a principal that possesses certain goals that it is unable to achieve unless it acts through
agents over which it has only indirect control (Binmore, 1994). Natural selection is the ultimate arbiter
of which biological entities remain and increase in a population. While the process of natural selection
lacks agency, it is nonetheless useful to consider the outcomes of selection as having been designed
(Williams, 1966). It is in this sense that natural selection can be thought of as a principal with a
goal of maximization of fitness. However, there are clear limitations in the ability of selection to
achieve a solution, as enumerated above. Owing to the obvious lack of direct control, selection shapes
cognitive mechanisms which are, on the whole, consistent with fitness maximization. As noted by
Binmore (1994), these collective proximate cognitive mechanisms can be thought of as the agent in
the evolutionary principal–agent problem, wherein the principal (selection) ‘seeks to design an incen-
tive scheme that minimizes the distortions resulting from having to delegate to the agents’ (Binmore,
1994, p. 151). The extent to which selection minimizes these distortions for a given organism in a
given setting depends on the structure and strengths of the constraints it faces. A virtually identical
perspective underlies the so-called ‘indirect approach’, in which the utility function is defined on prox-
imate goods or outcomes, and the utility function in turn determines the success of an organism (Güth
& Yaari, 1992; Güth, 1995; Dekel et al., 2007).
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Figure 2 encapsulates the conceptual model that emerges from the principal–agent framework. At
the bottom level, an individual is choosing between lotteries that influence the outcomes x1, x2, . . ..
The outcomes of these lotteries contribute to utilities, uj, at the next level. These lotteries can be
thought of either as motivational systems such as satiety, sexual gratification or happiness (akin to
the classical notion of utility) or as proximate determinants of fitness such as infant survival or
total fertility. What links these two different notions of ‘utility’ is that they work on a timescale
where the organism can use feedback from outcomes to change its preferences and therefore decision
making. These proximal utilities then contribute ultimately to fitness.

4. Model outline

The preceding section describes a conceptual framework for understanding the evolution of economic
preferences. The main conclusion is that the evolutionary principal–agent problem implies the exist-
ence of proximate decision-making mechanisms within a hierarchical framework. In this section, we
describe how to implement a formal model in accordance with this conceptual framework. In so
doing, we provide a high-level summary of the actual model described below upon which our results
and conclusions are based. Three elements are needed to apply the conceptual framework encapsu-
lated by Figure 2: (1) an evolutionary model that defines how fitness depends on some determinants
of fitness; (2) an economic model of decision making; and (3) a mechanism to link the evolutionary
and economic models and thus provide novel predictions or insight into behaviour.

Evolutionary model

The evolutionary formalism we use is stochastic age-structured life history theory as described by
Tuljapurkar (1982). We assume a randomly mating, diploid population. Different phenotypes make
different consumption decisions when faced with risk and environmental uncertainty. These differing
consumption streams lead to different realizations of age-specific survival and fertility and thus to dif-
ferent growth profiles for the phenotypes. Tuljapurkar (1982) shows that the rate of exponential
growth (logarithm of the growth rate) of a phenotype, a, governs invade-ability (formalized below).
In terms of Figure 2, the rate of exponential growth is the measure of fitness whereas age-specific sur-
vival and fertility – which change through time – are the determinants of fitness. The core result is
equation (13), and readers already familiar with this result could skip the other material in the section.

Economic model

The economic formalism we use is RDEUT, which is summarized above in Section 2. The key result is
Theorem 1.

Linking the models

To link the models, we assume that the determinants of fitness in the evolutionary model (age-specific
survival and fertility) can be associated with the utility function in EUT. That is, at least to first order,
an organism makes proximate decisions based on the expected values of the determinants of fitness.
Other assumptions can be made to link the models, but we consider this an eminently sensible
assumption to make given the limitations implied by the evolutionary principal–agent problem. It
seems much easier for an organism to reason about the mean number of offspring a given strategy
will yield (perhaps with a time discount factor applied on the timing of reproduction) than for an
organism to reason about the ultimate fitness consequences of a given strategy.

However, we will show that averaging survival or fertility is systematically ‘wrong’ – i.e. leads to
lower fitness – when stochastic uncertainty in achieved outcomes is accounted for. Specifically, the
true fitness of a strategy that involves stochastic uncertainty is lower than that implied by the
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corresponding mean strategy that accounts for only mean survival and fertility. This is precisely the
condition for pessimism in RDEUT and implies that an organism can ‘correct’ its expected utility
bias by re-weighting the probabilities of a gamble as in RDEUT.

5. Stochastic, age-structured population matrices

To model the population dynamics and genetics, we utilize the formalism described by Tuljapurkar
(1982). We assume a diploid locus with alleles A(m) (m = 1, 2, 3, …), random mating and a fixed sex-
ratio, and ignore sex-differences. The genotypes A(m)A(n) code behavioural strategies that interact with
the environment to determine an individual’s life-history traits in each time period. Tuljapurkar
(1982) derives two essential results. First, he shows that the rate of exponential growth of A(m)A(n)

governs invade-ability. That is, a population of homozygotes with allele A(1) is resistant to invasion
by allele A(2) if a(11) > a(12), where a(mn) is the rate of exponential growth achieved by genotype
A(m)A(n). Second, Tuljapurkar provides an analytical formula for a when the variance in life history
traits is small. The fundamental tool on which these results rely is the Leslie matrix; we introduce the
Leslie matrix in the next section, then describe how stochastic uncertainty can be added.

Life history traits

Consider an age-structured population where each age class j accounts for individuals between yj = j Δy
and yj+1 = ( j + 1) Δy years of age. The key demographic traits that govern the population’s dynamics
are the age-specific fertility, Fj, and the age-specific survival probabilities, Pj. Fj is the mean number of
offspring that an individual in age class j contributes to the juvenile age class ( j = 1) going from time tn
to time tn+1 = tn + Δy, where n indexes time steps. Pj is the probability that an individual will survive

Figure 2. Hierarchical model of
decision making as a principal–
agent problem. Input variables (xi)
contribute to intermediate utility
(u(x)), which itself contributes to fit-
ness (a(u)).
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from age class j to age class j + 1. The Leslie matrix, A, has the age-specific fertilities on the first row
and the age-specific survivals on the sub-diagonal,

A =

F1 F2 F3 F4 · · · FM
P1 0 0 0 · · · 0
0 P2 0 0 · · · 0
0 0 P3 0 · · · 0

0 0 0 . .
. · · · 0

0 0 0 . .
.

PM−1 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

whereM is the number of age classes. The Leslie matrix projects the population vector zn one time step
into the future, zn+1 = Azn. We assume that the Leslie matrix is irreducible and primitive (Caswell,
2001). Given these assumptions, there exists a unique dominant eigenvalue λ that is the per-period
growth factor of the population. In the absence of stochastic fluctuations of the Leslie matrix elements,
a = log λ (stochasticity is considered below). Hence, a population of homozygotes with genotypes
A(1)A(1) is resistant to invasion by allele A(2) if λ(11) > λ(12). Associated with λ are the dominant
left and right eigenvectors of A, which we represent by v and ω, respectively. v is the vector of age-
specific reproductive values and ω is the stable age distribution vector.

Stochastic uncertainty

We now account for stochastic uncertainty in the Leslie matrix elements. The crucial idea is that the
Leslie matrix is not fixed from one time step to another, but instead depends on the changing state of
the world. Following Tuljapurkar (1982), consider an environmental sequence E with an associated
sequence of Leslie matrices A1, A2, . . . , An. Let

nY1 = An An−1 · · · A1 (7)
represent the product matrix which governs population growth to time period n, and let λn, ωn, and vn
represent, respectively, the dominant eigenvalue, corresponding right eigenvector and corresponding
left eigenvector of nY1. Let l̃, ṽ, and ṽ represent the corresponding quantities for the mean Leslie
matrix. Without loss of generality, we assume that ωn and vn are normalized to 1. Weak ergodicity
guarantees certain results. First, it guarantees that

lim
n�1

nY1 � ln
vnvTn
vTnvn

. (8)

Second, it guarantees the convergence of age structure to a stable age structure for any non-negative
and non-zero starting vector z0. To formalize this, let

zi+1 = Ai+1zi
|Ai+1zi| (9)

be the normalized age structure at time period n, where the normalization is |y| = ∑
k
yk. Then

lim
n�1 zn � vn (10)

An analogous result holds for v′n with left multiplication. The rate of exponential growth is

a = lim
n�1

1
n
log |nY1z|, (11)
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where ζ is an arbitrary initial age structure. Stochasticity lowers the rate of exponential growth com-
pared with a non-stochastic reference Leslie matrix with the same mean life history traits. Effectively,
this is because growth is a multiplicative process and the geometric mean is always less than the
arithmetic mean (Lewontin & Cohen, 1969). Tuljapurkar (1982) derives a useful ‘small noise
approximation’ for a assuming small fluctuations of the Leslie matrix elements relative to the
mean values,

a = log l̃− 1

2l̃
2
(ṽTṽ)

2 (ṽ ⊗ ṽ)TC(ṽ⊗ ṽ), (12)

where C is the covariance matrix of the mean covariance matrix Ã, ⊗ is the Kronecker product, and
the serial auto-correlation term in Tuljapurkar’s approximation is not included. If only one Leslie
matrix element is considered, equation (12) simplifies to

a = log l̃− 1

2l̃
2

∂l̃

∂Aij

( )2

s2
ij, (13)

where s2
ij is the stochastic variance associated with matrix element Aij. Equation (13) is the key evo-

lutionary result. Caswell (2010) provides a formula for the partial derivatives of λ with respect to the
matrix elements,

∂l

∂Aij
= nivj

Accommodating the hierarchical framework

The elements of the Leslie matrix, Aij, are the determinants of fitness at the intermediate level of
Figure 2 (in this section, we do not explicitly show the time dependence of these matrix elements).
We assume that they depend on a valuable but limited resource that can be traded off between fer-
tility and survival across an individual’s life cycle. More precisely, we assume that each Leslie matrix
element Aij is an increasing function of the consumption xij allocated to it with a negative second
derivative (the latter condition ensures that weak pessimism is equivalent to the RDEUT sum being
less than or equal to the EUT sum (Quiggin, 1993, chapter 6). xij is at the bottom level of Figure 2.
For the reasons outlined in Section 3, we limit the role of proximate preferences in our model to
accounting for the functional dependence of the Aij on the xij, including how these mappings
may depend on social or ecological context. This leaves a fitness mismatch that cannot be accom-
modated by proximate preferences since environmental stochasticity, which lowers the time-
averaged rate of exponential growth, is unaccounted for. In the next section, we show that account-
ing for the effect of environmental stochasticity using probability weights implies pessimistic prob-
ability weighting.

6. Pessimism

In this section, we show that organisms that face uncertainty – arising, e.g. from the interaction of
environmental fluctuations interacting with strategic choices – will act as pessimistic decision makers
sensu RDEUT. Let s index strategies an agent can choose and let k index distinct outcomes (for
example, achieved survival or fertility in a given time period). The agent faces uncertainty in choosing
the strategy since the state of the world is not known when the strategy is chosen, but the agent does
know the probability p(s)k that each outcome will occur given strategy s. For notational convenience, we
assume the outcome variable is age-specific fertility in some age class. For outcome k, the achieved
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fertility is fk; we use a lower case f to distinguish this fertility from the age-specific fertilities of the
Leslie matrix in equation 6. The mean fertility for strategy s is

f (s) =
∑
k

p(s)k fk. (14)

Table 1 illustrates this model for a simple case with three possible strategies and five possible out-
comes. What makes these three strategies interesting is that they offer the same expected utility (i.e.
fertility) but, as we show next, different evolutionary fitnesses. In particular, strategy s = 1 offers the
highest fitness because it has the lowest variance and strategy s = 3 offers the lowest fitness because
it has the highest variance. The gambles we discuss in this section all depend implicitly on underlying
consumption levels that determine fertility. However, the details of the dependence do not impact the
results so for simplicity we choose not to explicitly show them. Let A represent a Leslie matrix in
which all elements are fixed except for one stochastic fertility term, A(s)

1j , which equals fk with prob-
ability p(s)k as described above and summarized in Table 1. In equation (13), the second term is always
negative. The effect of stochastic uncertainty, therefore, is to reduce a if the mean Leslie matrix is held
constant. That is, sij , s′

ij implies a A〈 〉, sij
( )

, a A〈 〉, s′
ij

( )
, and vice versa. Strategy s = 1 in Table 1 is

preferred to s = 2 and s = 2 is preferred to s = 3 since variance increases from s = 1 to s = 3.
The stage is now set to incorporate the economic theory and show that stochastic uncertainty

induces deviations from expected utility maximization consistent with pessimistic subjective probabil-
ity weighting. An expectation maximizer will evaluate strategies solely by the mean fertility, f(s), which
is equivalent to writing a(s,EUT) = a A〈 〉, 0( ), where a(s,EUT) is the expected utility valuation of the fit-
ness. Symbolically, we can write

s(s) . 0 ⇔ a(s,EUT) ≤ a(s), (15)
where ⇔ indicates that the left-hand side implies the right-hand side and the implication is in both
directions. This result is pertinent to RDEUT since the definition of pessimism in RDEUT is that a
re-weighted lottery is valued as less than its expected-utility value (Theorem 1). For a concave utility
function, this is equivalent to assuming that w( p) ≤ p for all p (Theorem 1). Symbolically, we can write

Pessimism ⇔ V (s,RDT) ≤ V (s,EUT). (16)

If we assume that natural selection (the principal) has imparted subjective probability weighting to
the agent in order to ‘fix’ the optimism of the EUT decision rule, we can posit, by comparing equation
(15) with equation (16), that natural selection should instill its agents with pessimistic subjective prob-
ability weights. It is worth emphasizing that the example in Table 1 is merely for illustration. Equations
(14)–(16) apply generally given equation (13).

7. Discussion

The key scientific finding of this article is the derivation of RDEUT-like pessimistic decision weighting
from evolutionary first principles. An explanation for pessimistic probability weighting emerges nat-
urally from coupling utility-maximizing decision making and fitness maximization. This pessimism
arises from a profound intolerance for zeros in key evolutionary parameters which, in turn, arises
from a fundamental difference between economic utility and fitness. As we have previously observed,
cumulative expected utility is additive across time periods, whereas fitness and key components of fit-
ness, such as survival, are multiplicative across time, a point made for models of the ‘survival’ of firms
by Radner (1998). Consequently, additive decision metrics such as EUT do not necessarily lead to
optimal behaviour from a fitness standpoint, and can even lead to catastrophic outcomes. This
explains the apparent violations of EU optimization observed in subsistence populations such as
the herders discussed in the introduction.
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There is, in fact, a striking correspondence between the evolutionary intolerance for zeros and the
theoretical foundations of RDEUT. John Quiggin, in describing the mentality with which he
approached the derivation of RDEUT, writes, ‘The crucial idea was that the overweighting of small
probabilities proposed by Handa and others should be applied only to low probability extreme out-
comes, and not to low probability intermediate outcomes’ (Quiggin, 1993, p. 56). Since low probability
extreme outcomes are the key factor driving both the evolutionary intolerance for zeros and the devel-
opment of RDEU, it may come as no surprise that our evolutionary model predicts the biasing of
probability weights for survival and fertility (i.e. utility) in a manner consistent with RDEUT.
Aversion to zeros has been used in population biology to explain a range of life-history phenomena
which are not favoured under standard non-stochastic models such as the regular production of
clutches smaller than the most productive clutch (Boyce & Perrins, 1987), delayed reproduction
(Tuljapurkar, 1990) and iteroparity (Orzack & Tuljapurkar, 1989).

Our results suggest that evolution will strongly favour pessimistic probability weighting. At first
glance, this seems to be at odds with the widely recognized form of nonlinear weighting associated
with CPT, namely, the inverse-S shape indicated in the middle plot of Figure 1. Starting with
Tversky and Kahneman (1992), weights have been estimated from measures of the
certainty-equivalent payoff in experiments (Wilcox, 2017). However, these certainty-equivalents con-
flate risk attitudes resulting from, respectively, the probability weights, ρi, and the curvature of the util-
ity function, u(xi) (Diecidue & Wakker, 2001). While fitness may be a nonlinear function of fertility
(Jones & Bliege Bird, 2014) and fitness in turn depends on underlying consumption variables in a
non-linear fashion, the decision maker in our model uses mean fertility as a first-order decision met-
ric, and accounts for the (non-linear) influence of stochasticity via probably weighting. This approach
is comparable with the dual model of Yaari (1987), although unlike Yaari we do not assume a linear
utility function; rather, we account for non-linearity in the utility function as a first-order effect, and
account for stochasticity via probability weighting.

Our results suggest a new life to long-standing debates on the persistent risk-aversion of agricul-
tural peasants (Lipton, 1968; Popkin, 1979; Henrich & McElreath, 2002) and, more recently, the will-
ingness of the poorest poor to adopt microfinance and other development schemes (Banerjee & Duflo,
2011). The general normative prediction stemming from EUT, and following the foundational paper of
Friedman and Savage (1948), is that the poorest poor should be willing to take substantial risks to
remove themselves from poverty because of the convexity of the putative sigmoid utility function.
This logic contributes to the notion that the poorest poor are natural entrepreneurs. However, an
increasing body of evidence indicates that the poorest poor are entrepreneurial only to the extent
that they lack alternatives such as reliable wage employment. As Banerjee and Duflo (2011) write,

Table 1. Three strategies with the same expected utility (fertility) but different evolutionary fitnesses; s = 1 is preferred to
s = 2 is preferred to s = 3 since variance increases from s = 1 to s = 3. The first five rows summarize the outcomes for each
achieved fertility level, with the first column giving the index k, the second column the fertility for each outcome, fk, and
the remaining columns the probabilities of each outcome given the chosen strategy s. The last two rows summarize, for
each strategy s, the mean and standard deviation for fertility

fk s = 1 s = 2 s = 3

k = 1 0.5 0.5

k = 2 1.0 0.5

k = 3 1.5 1.0

k = 4 2.0 0.5

k = 5 2.5 0.5

f(s) 1.5 1.5 1.5

σ(s) 0 0.5 1
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‘are there really a billion barefoot entrepreneurs, as the leaders of MFIs and the socially minded busi-
ness gurus seem to believe? Or is this just an illusion, stemming from a confusion about what we call
an “entrepreneur”?’

As the decisions of the chronically poor have a far more direct bearing on their survival than those
of, e.g. American undergraduate students in a lab experiment, we expect greater enforcement of the
evolutionarily favoured risk preferences. This raises important questions about the ontogeny of risk
preference. While models typically treat preferences as fixed, there is experimental evidence that atti-
tudes towards risk are mediated through HPA stress response, both acute (Cahlikova & Cingl, 2017)
and chronic (Kandasamy et al., 2014; Kusev et al., 2017), suggesting the possibility for a strong
environmental-developmental component to risk preference.

The decision making of organisms has been shaped by natural selection to render outcomes that are
favourable to fitness (Real, 1991). While the human brain is considerably more complex than, say, that
of a bumblebee, the logic that its capabilities have been shaped by natural selection to execute
fitness-enhancing behaviour is no less compelling (Cosmides & Tooby, 1994). Biological growth pro-
cesses are inherently multiplicative, suggesting that decision-making processes shaped by fitness
should be especially sensitive to the particulars of persisting when persistence is governed by multi-
plicative processes. Goats may yield a greater short-term profit, but the mixed herd of goats and camels
allows households to persist in the long run (Mace & Houston, 1989; Mace, 1990, 1993). This perspec-
tive is supported by evidence that non-human decision-makers, for whom the idea that decision-
making algorithms have been shaped by selection is more straightforward, are subject to many of
the same apparent biases that characterize human decision making (Santos & Rosati, 2015). By dem-
onstrating that fitness maximization in our hierarchical principal–agent model leads directly to pes-
simistic probability weighting for risky economic decisions linked to fitness – thereby providing a
link between evolutionary theory and the rank-dependent family of economic choice models
(Quiggin, 1982; Wakker, 2010) – we hope to stimulate more work on the possible evolutionary foun-
dations of key results from behavioural economics.
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