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1. Introduction

Let {/(«)} be a linear recurrence of order two, i.e.,

(1) /(»+2) = af(n+l)+bf(n), a.beQ, for all positive integers n.

Its companion polynomial is G(y) = y2—ay—b. We assume that none
of its roots or ratios of roots are roots of unity. A problem is to determine
an upper bound for the number of positive integers n such that f(n) = a,
where a is a given algebraic number. It has been proved that such an upper
bound exists which is independent of a but the bound is dependent on the
particular linear recurrence. K. Mahler [3] has shown that the greatest prime
divisor of f(n) tends to infinity with n. More recently in [4] he has proved
that if a and b are integers and that (a, b) = 1, \b\ S; 2 and G(y) has complex
conjugate roots, then for every s > 0 and all sufficiently large n, \f(n)\ >
|5|<i-e)n/2. the s a m e is true if the contributions of finitely many prime
factors from /(«) is omitted. One assumes that an upper bound exists which
is independent of both a and the particular linear recurrence; indeed it is
conjectured that this bound is 5 (see the article [5] of Morgan Ward, and
the references contained therein).

Denote by P{G) the set of primes p e Q such that the coefficients a,
b of G(y) are p-a.dic integers and the constant term b is a p-a.6ic unit. We
prove

THEOREM. Let {/(»)} be a linear recurrence of order two with companion
polynomial G(y) = yz—ay—b eQ\y] whose roots and ratios of roots are
not roots of unity. Then for any algebraic number x, /(«) = a has at most M
Positive rational integral solutions n, where

( 8 if p = 2,
M = Min Mv and M , = I 10 if p = 3,

pePlG) { p* if p # 2, 3.

We use the p-adic method of Skolem.
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[2] Linear recurrences of order two 109

2. Reduction to a p-adic problem

Let the roots of G{y) = 0 be & and yS2. None of ^, /?2, pjp2 or
are roots of unity. Since /?! ̂  |52) we can write

where At and .42 are algebraic numbers (see [1]).
Let peP(G), K be the field generated by /?x, /S2, 4̂X and A2 over (?

and Kp be the completion of if at a prime p of if lying over p in. Q. Put
J> n QiP) = Pi a n d let (^ denote the completion of Q((i) at px. 3)p denotes
the ring of p-adic integers in Kp. Let j t b e a uniformizing element of K
and nx a uniformizing element of Q±; thus p = (TZ) in K and px = (%) in ( ^

The normalized valuation of Kp induced by p will be denoted by | |;
this valuation induces a valuation in each of the fields Qx and Qv and
\p\ = Up. There exists a positive integer t such that \n*\ = 1^1, a positive
integer e such that \n'x\ = \p\ and a positive integer / which is the degree
of the residue class field QJp! over Qjp. We know that ef = 1 or 2.

If »t is {pf—^p'-1 when £ # 2 and is (j>f-l)pe when £ = 2, then
#" = 0™ = 1 (mod w™'). where W = 1 when >̂ # 2 and W = 2 when
p = 2. Therefore we may assume that ^ is the least positive integer when
p =£ 2 and the /eastf positive integer of thejorm rp when p = 2 such that

(4) /S« = /S;= 1 (mod*™*).

Put

(5) «5rf = ^ for i = 1, 2.

Then 5X and (52 are p-adic units and <5*, 62 are defined for all x e 2)p. Further-
more, the p-adic logarithms log 8X, log 82 are defined and are p-adic in-
tegers.

Put

(6) df = l-\-y{n
s, where yf e Sp, for some S e Z+.

Because /?< is not a root of unity d( ̂  1 and so we may assume that either
y1 or y2 is not congruent to zero modulo n; assume that

(7) yi =£ 0 (mod n).

Clearly \ns\ ^ \nwt'\ = \pw\. It follows that

oo —Sr i oo _5r-2

log dt = 2 (-i)r-VJ — = ^ *+** 2 (-irv* •
r=l r I r=2 »"

and, as
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r=2

by our choice of W, that

(8) |lQg*il

Let a be an algebraic number. We wish to determine an upper bound
for the number of rational integral solutions x of

(9) /(*, «) = A&+A&-* = 0.

It is clear that we may assume that both Ax and Az are not zero.
If a; is a rational integer we may write x = i-\-qy for some unique

y e Z and i, 0 ^ i < q. If x is a solution of (9), then y is a rational integral
solution of one of

(10) gi(y, a) = Bu%+Bu%-<t = 0, • = 0, 1, • • •, q-1,

where B}i = A^* for i = 0, 1, • • •, q—l and j = 1, 2. Therefore a rational
integral solution of (9) gives rise to one and only one rational integral
solution of one of the equations (10). Consequently we need only consider
equations of the form (10). Furthermore, our upper bound for the
number of rational integral solutions of the equations of the form (10)
will be independent of the BH and a. We multiply (9) throughout by
a power of n and take the At's, and so the Bjt's, and a to be p-adic integers
and at least one of Bu, B%j, a to be a p-adic unit. We note that |BU| = |.4i|
and \BV\ = \A2\ for all j = 0, • • •, q-1.

3. The p-adic analysis

We have to determine an upper bound for the number of p-adic integral
solutions y of the equation

(11) g(y, a) = B&+B&-* = 0,

where Blt B2 and a are p-adic integers with at least one a p-adic unit,
B1 and B2 are non-zero and d1, d2 are p-adic units with the properties
described in § 2.

Assume that (11) has one rational integral solution; then by a change
of co-ordinates, if necessary, we may assume that this solution is y = 0
(this will involve multiplying the coefficients B± and B2 by p-adic units
only). In this new coordinate system

(12) Bi+flj-a = 0.

We divide equation (11) by d% to obtain
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(13) h(y, «) = B1 (^J + B^-xid^y = 0;

now h(y, a) = 0 if and only if g(y, a) = 0.

Since A(0, a) = 0, we can expand h(y, a) as a p-adic power series in y;

(14) h(y, a) = f (2^ (log SJSJ-* (log £*)') - | •

The coefficient of yr in this expansion has valuation
\{B1 ( l o g W - o c (log S?Y)}r\ | i£|**/r! | ^ | ^ ' / r ! | ,

which has value ^ 1 and tends to zero as r -> oo. Therefore the expansion
(14) converges for all ye ®p.

We will determine an upper bound for the number of p-adic integral
solutions of h(y, a) = 0 with the aid of Strassman's lemma. This states
that if h(x) — 2^=0 Yr>x* has yv e ®p, converges for all x e ®p and is non-
zero for some y e 2)p, then A(a;) has at most / = {max v for which |yr| is
maximal} zeros in %$ (see [1]). We will see that in our case / ^ 2 by com-
paring the coefficients of y and y2 with the coefficients of yr for r ^ 3.

Put a = Bi^logdjdz and b = oclog^1; then the coefficients of y in
(14) is a—b and that of y2 is (apart from a factor of 1/2) [a(log <5i/<52) —
b (log a^1)]. Now a =£ 0 (for ^ ^ 0 and log d^ ^ 0 as ^//52 is not a root
of unity) and so we may put Max (|«|, \S\) = \jfi\\ clearly I^ I^ ITT 5 ] .

Assume that

a-b = 0 (mod nR+1)
a (log djdj-b (log Si1) = 0 (mod ^ + s +

If we put a' = a/re11, 6' = bJ7iR, hx = (log SJSJIn11 and A2 = (log
then all the elements a', b', hx and h2 are p-adic integers and at least one of
a', b' is a p-adic unit. Therefore the simultaneous equations

( Z1—Za ^ 0 (mod JI)
^Ai—Z2A2 == 0 (mod n)

have a non-trivial solution (mod TT) whereas its determinant of coefficients is

\ I I „ /I Si ISt \ I / 1 _ ~ S—1\

A =
1

= h2—hx = (logV—!
K

= (—log <52—log ^1+log d2)/n
s = —log i

which is a p-adic unit by (8). Consequently the simultaneous congruences of
(15) are impossible, therefore either the coefficient of y in (14) is not con-
gruent to 0 (mod re*"1"1) or the coefficient of y2 in (14) is not congruent
to 0 (mod re*+5+1).
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However, the coefficient Cr of yr in (14) for r ^ 3 has valuation

X ( logW-oc (log d?Y)lr\\ ^

r\ r\

If j> # 3, |Cr |^|^B+5| H<|w«+«| for all r ^ 3, whereas if p = 3, \Cr\<\nR+s\
only for r ^ 4. This follows from our choice of TP in (4). Therefore, if p ^ 3
(/> = 3) the valuations of all the coefficients of & for r Sg 3 (resp. r ^ 4)
in the power series (14) are strictly less than the valuation of the coefficient
of y or y2. By Stassman's lemma, h(y, a) = 0 can have at most two (resp.
three) p-adic integral solutions and so each of the q equations of (10) can
have at most two (resp. three) rational integral solutions.

Now if G(y) splits over the local field Qv its roots fix and /?2 lie in QP,
IrcJ = Up and we have q ^ (p— 1) for p =£ 2 and q ^ {p—l)p = 2 for
f = 2.

Therefore the above result shows that in this case the original equation
(9) can have at most 2(̂ >—1) rational integral solutions if p ^ 2, 3, at
most 4 if p = 2 and at most 3(3—l) = 6 i f£ = 3. These estimates are less
than those we will obtain below for the case when G(y) is irreducible over Qp.

The coefficient of y2 in (14) is ^{B1 (log djdj*—* (log d?)*} which
has valuation 5S \itR+s~n\, where n — te if p = 2 and n = 0 if p ^ 2 (recall
that |w"| = |/>|). Now if (14) is to have two p-adic integral solutions, then
necessarily the coefficient of y must be congruent to 0 (mod nR+s~n) i.e.
# i Qog 6Jdt)-tt (log (5^) = 0 (mod^+5-") .

Returning to (10), we see that if two different equations gk(y, a) = 0
and gt(y, <x) = 0, 0 ^ I < k ^ ?—1, have <wo p-adic integral solutions,
then

( fi*?^ (log « ) - « (log (5a1) = 0 (mod
I ! (log «!/«,) - a (log Jf1) = 0 (mod 7r«

where Aififi+A^fi-* = 0, A^d^+A^d^-oL = 0 from (12). (It
will be recalled that we changed coordinates at this point; K and L are
rational integral solutions of gk(y, a) = 0 and g,(y, a) = 0 respectively.)
Note that, with the previous notation, Max (\a\, \b\) is the same for all
the forms g((y, a), 0 5S i 5S q— 1, since the only difference in the coefficients
of the different forms are multiples of p-adic units; in fact Max (\A1 log djd^,
|«loga2-1|) = | ^ | .

If \A1\ogd1jd2\ < \TCR\, then [ot log d̂ "1! = \nR\ and so (16) is impossible
as |7T5"n| 5g \nWt'-n\ <; |OT| for all primes p. Now suppose that l ^ log djd^l =

1; then on subtracting the two equations in (16) we have
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fttf) 0*1 ^g W = 0 (mod **+*-)
and hence

/?J<$f(—P\.̂ i = 0 (mod ns~n).

By (6), <5i = 1 (modirc5) and so this implies that ^~l) = 1 (mod ns~n).
But then p{f~l) = 1 (mod nf*-7'), where V is 1 if p = 2 and is 0 if p # 2.

We may assume that G(y) is irreducible over Qv, thus /^ and /Sa are
conjugate over (),. Consequently /?£*~l)) — 1 and /S^*"1' —1 are conjugate
over Qv, thus both p?~l) = 1 (mod rcf-7") and /?{*-•> = 1 (mod n?'~v').

Ii p ^= 2, V = 0 and, as q > k—l > 0, this contradicts our choice of
q in (4). If p — 2, We—Ve — 2e—e = « so that $*~l) == 1 (mod n{) and
therefore /3|*~')2 = 1 (mod jr?'). From our definition of q in (4) as the least
positive integer of the form r2 such that /JJ2 = 1 (mod TT2'), we see that the
only possibility is k—l = r (mod 2r).

It follows that at most one of the q equations of (10) can have two
(or possibly three if p = 3) p-adic integral solutions if p =£ 2 and at most
two if p = 2. Therefore equation (9) can have at most ^ + 1 rational
solutions if p ^ 2, 3 and at most q+2 if p = 2 or 3. If p ^ 2, 3, q+1 <

(2f—1)2»+2 ^ 8, and if p = 3, ?+2 ^ (^— l)£e-1+2 ^ 10. This proves
the theorem.

4. Remarks

In [5] Morgan Ward considered linear recurrences of order three with
companion polynomials of the form (y—a)(y—b)(y—c), where abc^O,
a, b, c rational integers. In non-degenerate cases, it is known that 0 can
occur at most three times in such a recurrence, but Ward conjectured that
the correct answer is two. The above method shows that this is correct
when a = b = c = 1 (mod 4).

In [2] Nagell has considered the diophantine equation f(x, y) = 1,
where f(x, y) is an irreducible, binary, quartic form in Z\x, y\, f(x, 1) = 0
has no real roots and the extension Q(6) (where /(0, 1) = 0) has a quadratic
subfield. He has shown that such an equation has at most six rational
integral solutions. In the remaining case when Q{d) has no quadratic
subfield, the field extension can contain no complex roots of unity. If ax

is a fundamental unit of Q(6) and a2, a3 are two of its conjugates, the problem
can be reduced to one concerning an exponential equation of the form a
ai+^a2+C a3 = 0- Now one can use the above method to show that \f(x,y)\ = 1
has at most thirty rational integral solutions (x, y) with y 5: 0.
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