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STOCHASTIC COMPACTNESS AND POINT PROCESSES
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Abstract

We show that stochastic compactness of partial sums with no normal limit distribution corresponds to
stochastic compactness of the point processes generated by the observations so that there exist joint
limit distributions for the sample sums and the sample maxima.

1980 Mathematics subject classification (Amer. Math. Soc): primary 60 F 05; secondary 62 G 30.

1. Introduction

Suppose {Xn, n > 1} are independent, identically distributed random variables
with common distribution F. Set Sn = 2?=1 Xt, Mn- V"=x Xt. Call {Sn} stochasti-
cally compact if there exist constants an -» oo, bn E R such that for every
subsequence {«"} there exists a further subsequence {«'} such that a~}Sn- — bn,
converges weakly to a non-degenerate limit random variable. Similarly, {Mn} is
stochastically compact if there exist an -» oo such that for every subsequence {«"}
there is {«'} C {«"} and a^Mn. converges to a proper limit random variable
whose distribution is not concentrated at zero. Conditions for stochastic compact-
ness of sums and maxima have been given by Feller (1966) and de Haan and
Ridder (1979) (especially Section 2.2) respectively. See also Mailer (1981) and
Simons and Stout (1978).

We shall show that the two theories of stochastic compactness have a common
basis, namely stochastic compactness of point processes, if for the sums we
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308 L. de Haan and S. I. Resnick [2 ]

exclude the normal distribution from the set of limit distributions. This exclusion
makes sense because when sums converge to normality the jumps in the summa-
tion process disappear and a limiting point process is trivial and non-informative.

Since asymptotic behavior of sums depends on behavior of both tails of F while
corresponding results for maxima depend only on the right tail, the comparison
between the two theories is clearest when all random variables {Xn} are positive
which we henceforth assume.

We now review some notation and definitions connected with weak conver-
gence and point processes. The theory of weak convergence of probability
measures is standard and we follow Billingsley (1968) except that " => " denotes
weak convergence and we sometimes set weak convergence in the space D[0,00)
of right continuous functions on [0, 00) with finite left limits existing on (0, 00);
see Lindvall (1973), Whitt (1980).

Let £ be a Euclidean space and suppose & is the a-algebra generated by open
sets. All measures on E are assumed to be Radon. Vague convergence of measures
(in to ju, (written /xn -»"/i) means

for all continuous, non-negative functions / with compact support. For x E E,
A G S define the measure ex on E by ex(A) = 1 if x E A; = 0 if x & A. A point
measure on S is a measure of the form 2, ex where xt E E. The set of such point
measures is denoted by Mp{E). The space Mp{E) can be metrized to give the
vague topology. See, for example, Neveu (1976) for details.

Although all our random variables are real and finite, it is convenient to regard
their state space as (0, 00 ] with metric

This interchanges the roles of 0 and 00 and makes neighborhoods of 00 bounded.
The reason for this convention is that if an > 0 and v is a measure on (0, 00 ] then
the statement

nF(an •)%(•),

includes the information

n(\-F(anx))^p(x,co],

at all continuity points x > 0.
We will need point processes on the space [0, 00) X (0, 00] and it is convenient

to metrize this set as follows: For tt G [ 0, 00), x, E (0, 00 ], / = 1,2 define

d((ti,xl),{t2,x2)) = | r , - / 2 | v | x i - 1 - x 2 - ' | .
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2. Stochastic compactness

The connections between stochastic compactness of point processes, sums and
maxima is given in the following theorem. Set F = 1 — F.

THEOREM. The following are equivalent
(1)

liminf log( F(tx)/F(t)) limsup \og(F(tx)/F(t))
- 2 < lim - ^ : < Urn — ^ = < 0.

l l g
(2) There exist constants an -» oo such that {nF(an • )} is vaguely relatively

compact with the following specification: Every sequence {«"} contains a further
subsequence {«'} such that {n'F(an, • )} is vaguely convergent and if v is one of the
vague limits then v({ oo }) = 0 and lim inf^ „ log v(x, oo)/log x > -2.

(3) There exist constants an -» oo such that the sequence of point processes

is relatively compact in the vague topology on M([0, oo) X (0, oo]) with the
following specification: Every sequence {«"} contains a subsequence {n1} such that
{Nn,} converges to a Poisson process on [0, oo) X (0, oo] with mean measure
dt X dv and v({oo}) = 0 and Urn inf^a, log v(x, oo)/log x > -2.

(4) There exist an -» oo, bn £ R such that

is relatively compact in D[0, oo) X D[0, oo) and every subsequential limit of
{a~lS[n.] — (-)bn} is a non-terminating Levy process with no Brownian Motion
component.

(5) {Sn} is stochastically compact and F is not in the domain of partial attraction
of the normal distribution.

(6) {Mn} is stochastically compact and any subsequential limit distribution G
satisfies liminf^a, log G(x)/\og x > -2.

REMARKS, (i) The limits exist in (1) because of subadditivity (Goldie 1977,
Matuszewska 1962, Hille 1948).

(ii) The constants an can always be taken to be F( l — n'1) where iMs (for
example) the right continuous inverse of F.

(iii) Of course it is always true that a sequence of probability measures on a
product space is relatively compact iff the two marginal sequences of measures
are each relatively compact (Billingsley, 1968, page 41). The proof of the theorem
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shows that in (4) a stronger statement is possible: One marginal sequence
converges along a subsequence if and only if the other marginal sequence
converges along the same subsequence. In fact, if (1) holds then

n'F(an, •)%(•)

if and only if convergence along subsequence n' holds in (3), (4), (5), (6).

PROOF. We begin by showing (1) is equivalent to the following statement:
(7) There exist an -* oo such that

logliminfiiF(allx) log limsup«F(anx)
-2 < lim ^ < lim £±|2 < o.

x-,00 lOgX ^ a , l

Given (1) we set an = F(l - «"1) so that F{an{\ + e)) < /T1 < F(an(l - e)).
Then

log lim sup nF ( anx ) log Um sup
Um !L^ «s Um

log*

, r F(
loghmsup^

x^n logX

and a similar argument holds for lim inf so that (7) ensues. (Note, this argument
allows the continuity requirement to be dropped in de Haan and Ridder, 1979.)
Conversely, if (7) is true then there is an x, such that Uminfn^oonF(anx1) >
x,"2+8 > 0 for some 8 E (0,2) and so there exists c > 0 such that for n large
nF(anxx) > c. For t > 0 define n{t) = inf{«: an+x > t) so that an(t) < / < an(t)+x

and the following inequaUty is clear:

F{txx • xxx
x) n{t)F{an(t)x) n(t) + 1

Therefore
log ]imsupF(tx)/F(t) log limsupnF(anx)

Um ^ < lim ^f2 < 0,
^^oo l o g * *^oo lOgX

and now (1) is evident.
Next we verify the equivalence of (1) and (2). Supposing (1) true we get from

(7) that for sufficiently large x, Umsupn^0O/iF(anx) < x~p for some p E (0,2).
For small x the lim inf inequality in (1) gives after a change of variable
hmsup,^00F(tx)/F(t)^x-2+s for 8E(0 ,2 ) and as above this leads to
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lim supn^a, nF(anx) < ex 2+s for small x. The selection theorem then applies to
give {nF(an • )} vaguely relatively compact. Furthermore, if v is a vague limit we
have for some subsequence {«'} that n'F(an-x) -> v{x, oo] at continuity points x.
So we have on the one hand

p({oo}) = lim v{x,co\ = lim lim n'F{an.x) < lim lim sup nF (a nx) = 0,
X->00

and on the other

Um inf log v(x, oo)/logx = Uminf log( Um n'F(an,x))/logx
„ ~ x->oo ' n'-»oo

» Uminf log( UminfnF (a nx)\/log x > -2.
A:->OO * n->oo '

Conversely, suppose (2) is true. Towards the goal of doing a proof by contradic-
tion note the following string of equivalences:

log Umsup«F(anx)

Um ^ < 0
x^oo log*

«=» Um Umsup«F(anx) = 0 (see de Haan and Ridder, 1979)

«=> Um nF(anx) = 0 uniformly in n

<=» for any integer valued function n ( x )

Um n(x)F(an(x)x) = 0.
AT->00

So if the right-most inequaUty in (7) fails there exists an integer valued function
?(JC) and c > 0 such that

limsupn(x)F(an(x)x) = c > 0.

Fhen we can find {xk} such that n{xk) -> oo and n{xk)F{an^Xk)xk) 5* \c. From
relative compactness there exists a subsequence {«'} C {n(xk)} and a measure p

= 0and

Fhen for any x which is not an atom of v we have

= Um «
n -»oo

Kmwfn(xk)F(an(x)xk)
A : » o o

Since x can be arbitrarily large we get r({oo}) > {c which is a contradiction,
rhus (2) imphes the Um sup inequaUty of (7). The Um inf inequaUty in (7) follows
Tom the foUowing lemma suppUed by Dr. A. A. Balkema. The proof is omitted.
See Mailer (1980) where similar methods are employed.
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LEMMA. Suppose f is non-decreasing. If

X

then there is a sequence tn -» oo and a function <p(x) > ex such that

/('„ + *)-/('»)-»*(*) («-oo)
at all x which are continuity points of (p.

We now consider the equivalence of (2) and (3) making use of the fact that a
sequence of point processes converges weakly if and only if corresponding
Laplace functionals converge (Neveu, 1976).

The details are sketched as follows: Let / : [0, oo) X (0, oo] -»[0, oo) be a
continuous function with compact support and set

\n(ds,dx)= 2ekn-i(ds)P[a;% G dx],
k

so that for some subsequence {«'}

Xn,(ds,dx)^dsXv(dx) on [0, oo) X(0, oo]

if and only if n'F{an. •) ->v(-) as n' -» oo. Therefore

= / / 0-e-OA,- / / (I-'"*"
[0,oo)X(0,oo] [0,oo)X(0,oo]

along {«'} if and only if n'F(an. -)-*v. Finally

£exp{- / / f(s,x)Nn(ds,dx)\
I [0,oo)X(0,oo] J

(0,00]

exPJ2log(l - /(I - e~^"-l^)P[a;%

exp | -2/ ( l - e-Hkn'l^)p[a-xXx 6 dx]\

expj- ff (1 - e-/(
J^>) as v(dx)\,

I [0,oo)X(0,oo] J
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along {«'} if and only if n'F(an, • ) ->v v. Since

expj- ff (1 -e-f(s'x)dsv(dx))\
I [0,oo)X(0,oo] J

is the Laplace functional of a Poisson process with mean measure ds X dv we
have established the equivalence of (1), (2) and (3).

Next we show (3) implies (4). See Durrett and Resnick (1978), Resnick and
Greenwood (1979). Suppose {«'} is a sequence of integers such that n'F{an. • )
-*v v so that along this subsequence Nn. converges to a limit Poisson process N
with mean measure dt X dv. We represent N as 2k E(,tJky We first check that v is
a Levy measure; that is, J(0y00](x2 A l)v(dx) < oo. From (1) there exists x0 and
S e (0,2) such that liminf ,_00F(tx)/F(t) > x~2+s for x > x0. Changing varia-
bles y = x"1 and taking reciprocals gives limsup,^xF(ty)/F(t) <y~2+s, y < xj1

and so v{y, oo) <y'2+s,y < x^. Therefore

f
•/(O

f y - l + s dy < oo,

and this confirms that v is a Levy measure.
Now we use A .̂ => Â  and the continuous mapping theorem (Billingsley, 1968)

to get (n' -» oo)
In')

1 = 1

on Z)[0, oo) for e, 1 assumed continuity points of v{x, oo). Because v is a Levy
measure, as ej.0 Ze(f) converges a.s. and locally uniformly in Mo a Levy process
Z with Levy measure v (Ito, 1969). Set

[n't]

Then Zn. => Z in Z)[0, oo) will follow from the above facts and Billingsley, 1968,
Theorem 4.2, p. 25 provided we show for any TJ > 0

km limsup/1 sup \Zn,{t) - Zn, t{t)\ > TJ = 0.
£ i ° n-»oo LO«Er«sl ' J

This probability is

sup
[n't]
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and applying Kolmogorov's inequality we get the upper bound

[8]

where as usual V{x) = EX?\[X^x]. However

(8) lim timsupa;2«F(ean) < lim limsup ( 2unF(anu) du.
<^° n^oc <U0 n^x •'0

By an argument similar to the one which proved v is a Levy measure we get for
small enough u that lim sup, ,^ nF{anu) *£ cu~2+s and so (8) is bounded above by

lim (const) ( V 1 + s du = 0,
ElO •'0

as required.
We thus obtain

and Z is a Levy process with no Brownian Motion component. To get the
asserted joint convergence in (4) apply the functional T: D[0, oo) -> D[0, oo) X
D[ 0,oo) defined by

(t), sup (x(s) — x(i

to (9) and use the continuous mapping theorem (Billingsley, 1968).
The implication (4) -»(5) is easy to check because one can use the evaluatior

map (x, y) -» x(l) (from D[0, oo) X D[0, oo) -> R) to get {Sn} is stochastically
compact and Theorem 3 of Mailer (1980) to check F is not in the domain ol
partial attraction of the normal (since it is not in the domain of partial attractior
of an infinitely divisible distribution with nonzero normal component).

The implication (5) -»(1) follows from the work of Simons and Stout (1978, p
298) and Mailer (1981, (1.5)-(1.8)).

Next (3) implies (6) because from (3) we apply the functional £: Mp([ 0, oo) ><
(0,oo]) -> R defined by

lNn = : kn~x = Mn/an,

and (6) follows. From (6) we get

P[a-jMn, < x] - G(x),

as n' -* oo if and only if F" (an,x) -* G(x). This is equivalent to n'F(an. •) -> v( •
where v{x, oo) = -log G(x), and (2) is evident. The proof is complete.
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REMARKS . (iv) From the proof it follows that if the sequence of maxima is
stochastically compact then ]iminfn^O0F"(anx) > exp{-clx'l>}, some extreme-
value distribution, for x > 1 and Umsupn_0 0F"(anx) < exp{-c2x"p} for x *£ 1,
if we choose an = F(\ — \/n). Compare with the bounds obtained in Anderson
(1970).

(v) The Definition 2.1.2 in de Haan and Ridder (1979) of stochastic compact-
ness precludes any limit distribution from having mass at zero. However, in order
to get the set of equivalent statements for stochastic compactness of sample
maxima in de Haan and Ridder (1979, Theorem 2.2.1) it is sufficient to require
that any limit distribution be proper and is not concentrated at zero. The latter
condition implies that for any subsequence n' along which convergence takes
place, l i m ^ o o / i ' l l — F(an,x)} > 0 for some x > 0. Line - 1 , page 292 of de
Haan and Ridder (1979) shows we should check l iminfn^o on(l — F{anx)) > 0
for some x > 0. Suppose this is not true; then for any r, xr, er there exists nr such
that nr{\ - F(anxr)} < er. Take x r l0 , er J.0 then for all x > 0 nr{l - F(anxr)}
*£ nr{\ - F(anxr)} < er. Hence limr-00«f{l - F(anx)} = 0 for all x >0, a
contradiction.
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