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ABSTRACT. Walder recently analyzed the initial instability of water flow in a sheet under a glacier that is 

produced by greater heat production in the flowing water and thus the larger rate of ice melting where a 

perturbation has increased the water sheet thickness. We have looked at the problem from the other presumed 

jinal state. We assume that instabilities have finally caused all the water to flow in channels (R-channels) at the 

bed. We investigated whether these channels can collect enough of the water that is produced by the geothermal 
heat and the heat sliding to remain in existence. When a basal shear stress is present, the distance out to which a 
channel can collect wa ter is not that much greater than the channel radius itself. It is concluded that it is not likely 

for the cha nnel to be able to collect appreciable amounts of water that is produced at the bed. Hence despite the 
indication that a n instability initially might grow in a water sheet, this instability either cannot develop to the point 
when the water flow is primarily in channels or else the water flow a lternates cyclically between a state primarily 

of sheet flow and a sta te of channel flow. It would appear that the channels that do exist under a glacier have their 
primary origin in the melt water from the upper surface that pours down moulins and thus is already chan nelized 

by the time it reaches the bed. 

RESUME. Stabilite de l'ecoulell1ent d'eau en nappe sous un glacier. Walder a recemment analyse l'instabilitc 

initiale de l'ecoulement d'eau en nappe sous un glacier en raison de la plus grande production de chaleur dans I'eau 
courante et donc de la plus forte fusion lorsqu 'une perturbation a accru I'cpaisseur du film liquide. Nous avons 
examine le probleme it partir de I'etatjinal presume. Nous supposons que les instabilites ont finalement provoque 

la concentration de tous les ecoulements liquides dans des chenaux (chenaux-R) dans le lit. Nous avons cherche it 
voir si ces chenaux peuvent recueillir suffisamment de I'eau produite par le flux geothermique et la chaleur de 
glissement pour rester actifs. Lorsqu'il y a un effo rt de cisaillement au fond , la distance sur laquelle un chenal peut 

recueillir de I'eau n'est pas beaucoup plus grande que le rayon du chenal lui -meme. On conclut qu' il n'est pas 

probable qu'un chenal recueille une part appreciab le de I'eau produite au COl1lact dulil. Par consequent, malgre les 

raisons d'une instabilite initiale de la nappe d'eau liquide cette instabilite ou bien ne peut pas se di:velopper lorsque 

l'eau est principalement dans des chenaux ou bien les eau x presentent des stades alternatifs cycliques d'ecoulement 
en nappe et d'ecoulement en chenaux. 11 semblerait que les chenaux qui existent en realite sous un glacier o nt leur 
premiere origine dans les eaux de fontes de surfaces qui sont deja concentrees dans des moulins au cours de leur 

descente vers le fond. 

ZUSAMMENFASSUNG. Stabilitiit des Schichllllasserflusses unter eillem Gletscher. Walder analysierte jiingst 
die anjiillgliche Instabilitii t des Wasserflusses in einer Schicht unter einem Gletscher, die durch die ha here 
Wiirmeproduktion im fliessenden Wasser und die damit verbundene grossere Schmelzrate an Stellen, wo eine 

Storung die Dicke der Wasserschicht verstiirkt, hervorgerufen wird. Wir haben das Problem von der anderen Seite 
her, niim lich dem angenommenen Endzustand, angegangen. Wir nehmen an, dass infolge von Instabi lit iiten 

sc hli esslich alles Wasser in Kaniilen am Untergrund (R-Kaniilen) fliesst. Wir untersuchten, ob diese K anii le genug 

von dem durch geothermische Wiirme erzeugten Wasser a ufnehmen konnen und ob das Gleiten infolge 

Erwii rmung a ufrecht erhalten bleibt. Wenn eine Scherspannung am Untergrund vorhanden ist, ist die Entfernu ng. 
bis z u der ein Kanal Wasser sammeln kann, nicht viel grosser als der Radius des Kana ls selbst. Daraus liisst sic h 
schli essen, dass der Kanal vermut li ch keine nennenswerten Wassermengen, die am Untergrund erzeugt II·erdel'. 
aufnehmen kann. Obwohl a lso eine Instabilitiit in einer Wasserschicht zunachst zunehmen mag, kann sich diese 
Instabilitat entweder nicht bis zu jenem Grad entwicke ln, bei dem das Wasser hauptsiichlich in Kaniilen fliesst, 

od er der Wasserfluss wechselt zyklisch zwischen einem Zustand des Schichtflusses und einem solchen des Flusses 
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in Kaniilen. Es scheint wahrscheinlich, dass die Kaniile, die unter einem Gletscher tatsiichlich vorhanden sind, in 
erster Linie von dem Oberfliichenschmelzwasser gebildet werden, das bereits in Mlihlen gefa sst ist. wenn es zum 
Untergrund abfliesst. 

INTRODUCTION 

Walder ( 1982), in a beautifully developed analysis, has investigated the initial stability of 
water flow in a sheet at the base of a glacier against developing a melting instability that favors 
diversion of water flow into channels. He showed that if some section of the water sheet were to 
become slightly thicker, more water would flow through it under the same pressure gradient. In 
turn more heat would be generated in the flowing water which would melt ice at a greater rate 
from the ice roof. The greater melting rate would cause the section to become even thicker. 
Increased downward ice flow by creep deformation presumably would eventually halt this 
process and finally leave an ice channel of radius considerably larger than the original thickness 
of the water film. This possible instability of the flow of water in a sheet at the base of a glacier 
was pointed out, but not analyzed, by Nye (1976). The physical processes involved had earlier 
formed the basis of the theory of Rothlisberger channels (R-channels) at the base and within 
glaciers (Rothlisberger, 1972, 1973; Shreve, 1972; Weertman, 1972). R-channels are water 
channels at the base of a glacier that are incised upwards into the ice itself rather than 
downwards into the bed. The latter are Nye channels (N -channels). 

It has been pointed out (Weertman, 1972) that it may be very difficult for R-channels to be 
supplied with sufficient water to keep them open if the water supply for the channels is developed 
at the base of the g lacier (from geothermal heat and the heat of sliding) rather than from upper 
surface melt water that descends to the base in moulins. The difficulty is that the pressure field 
around an R-channel can be such as to drive water away from the tunnel rather than towards it, 
even though the water pressure within the channel is lower than the average ice overburden 
pressure. This difficulty was pointed out by Walder in his paper but no attempt was made to 
assess its importance. The purpose of this paper is to make this assessment. 

It should be pointed out that the water film that is being considered in this paper presumably 
exists in the zones between the contact regions of very high pressure on the up-stream sides of 
bed bumps or bed undulations and any large cavities that may exist on the down-stream sides of 
bumps and undulations. We emphasize that measurements of uplift and sinking of the upper 
surface of a glacier, such as have been reported recently by Iken and others (1982), do not 
necessarily reflect changes in the average thickness of the water film. A discussion is given in the 
Appendix on how to define an average thickness for the water film. 

THEORY 

Consider first the case in which all the water flowing at the bed originates there by the 
melting produced by the geothermal heat and the heat of sliding. Let Ab be the average thickness 
of ice (converted into water thickness) melted from the bottom per unit time. If this water were to 
flow as a sheet, the amount of water Q per unit transverse distance at a distance L from the head 
of a glacier of constant width is equal to 

( I ) 

We now show that the additional melting due to viscous dissipation in the water film is negligible. 
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If P' is the pressure gradient driving the water flow, the amount of work W done per unit area 
and time at point L is equal to 

(2) 

The average pressure gradient pI to a first -order approximation is equal to pga where p is the 
density of ice, g is the gravitational acceleration, and a is the slope of the upper ice surface. Since 
the basal shear stress r to a first-order approximation is equal to pgha where h is the ice 
thickness, p I ~ r/ h. The work W can melt in unit time an ice layer of thickness A equal to 

(3) 

where H is the heat of fusion of ice. (A more accurate expression for A (private communication 
from J. S. Walder) that takes into account the fact that Q increases with distance down a glacier 
is A = (Ab Pl/ H )(L - h). We assume that L '$> h and use the approximate expression given by 
Equation (3 ).) Since H = 306 MJ/ m 3 and a typical value of pI is of the order of 200 Pal m (for 
r = 100 kPa and h = 500 m) the thickness A that is melted per unit time is a factor 0.006 0 smaller 
than the rate of melting Ab for L = IO km and a factor 0.06 smaller for L = 100 km . Thus A is 
trivial in magnitude compared with Ab' There is no need to correct the value of Ab for the 
additional melting produced by viscous energy dissipation in the moving water. Although the 
amount of viscous heating is small compared with the geothermal heat and the heat of sliding we 
emphasize strongly that this heat, nevertheless, is the origin of the instability of the water film. 

Suppose R -channels develop because of the water-film instability that was studied by 
Walder. Figure I shows a transverse cross-section of a glacier bed with R-channels of diameter d 
that are spaced a distance D apart. Consider that virtually all the water flow is through these 
channels. The velocity ,1.* at which ice is melted from the tunnels walls by the energy dissipated 
in water flow is equal to 

,1.* = A(D/d) = Ab (Lpl / H)(D/d) (4) 

because the work term W of Equation (2) is the same regardless of the water flow pattern. (The 
pressure gradient in a tunnel, in general, differs from the expression pga because of the need of 
the pressure difference /1P given in Equation (5) below to take on particular values in a steady
state situation (Rothlisberger, 1972, 1973). However, if the tunnel is very long compared with the 
thickness of a glacier, p i is approximately equal to or is of the same magnitude as the expression 
pga . For the purposes of the analysis of this paper no significant error is introduced by assuming 
that p i = pga in Equation (4) and by ignoring the correction mentioned earlier that takes into 
account that Q is not a constant.) 

Beca use no ice is melted from the heat evolved in water flow in the regions between the 
tunnel s, the water pressure drop I::!.P between the ice and the interior of the tunnel must be just 
large enough for the closure of the tunnel by creep deformation to match the velocity of melting 
A * when the tunnel diameter remains constant. The velocity v at which the tunnel walls close in 
is equa l to 

- D-

v = Cd(I::!.P)n (5) 

Fig. I . Transverse cross-section of glacier bed with R-channels that are 
parallel to direction of glacier flow. 
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where C is a constant. This is the usual Nye tunnel-closing expression. The power exponent n will 
hereafter be taken as n = 3 and the constant C = 1. 7 X 10- 23 Pa - n S- l. These are the values of 
the constants used in Weertman (1972). Equating Equations (4) and (5) gives 

(6) 

If the shear stress r at the base of a glacier is large compared with /!"'P, Equation (5) is 
replaced with (Weertman, 1972, equation (31» 

v=C'drn - 1/!.,.p (7) 

where C' = I1 n C. A large shear stress effectively linearizes the closure problem with respect to the 
pressure drop /!"'P. More important than the effect on closure velocity , however, is the qualitative 
change that is produced in the pressure field around a tunnel at the ice-rock contact surface 
(Weertman , 1972). 

If r is negligibly small compared with /!"'P, Equation (5) is valid and the pressure gradient at 
the ice- rock contact is given by (Weertman, 1972, equation (28» 

(8) 

where Pg is the gradient in the direction normal to the R-channel axis and r is the distance from 
the center of the channel (r > d). The sign of Pg in Equation (8) when 11 > 2 is such that water is 
driven towards the channel. If r is large compared with /!"'P Equation (7) is valid and Pg is given 
by 

Pg = /!"'P(d/ 2r? . (9) 

The pressure gradient now drives water produced at the rock- ice interface away from the 
channel. If r is small compared with /!"'P but is not negligible there is a critical distance R from 
the tunnel center out to which any water produced at the ice-rock interface is driven toward the 
tunnel and any water produced at a larger distance than R is driven away from the tunnel. The 
distance 2R is given by (Weertman, 1972, equation (33» 

(10) 

Therefore, an R -tunnel can only collect water out to the distance R given by Equation (10). 
If the distance 2R at a given pressure drop /!"'P given by Equation (10) is equal to or larger 

than the distance D given by Equation (6), clearly an R-channel has no difficulty in collecting all 
the water produced by the geothermal heat and the heat of sliding. However, if 2R < D the tunnel 
cannot collect all of the water. Consequently there is a maximum separation D of the 
R-channels beyond which it is not possible for them to exist in a steady-state condition. The 
value of d in Equations (6) and (l0) was found by noting that the amount of water flowing in a 
channel is equal to 

(11 ) 

The tunnel diameter is related to Q for laminar water flow by the well known equation 

(12) 

where.u is the viscosity of water (f.J = 1.8 mPa s). Combining Eq uations (6), (I I), and ( 12) gives 

(13) 
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Combining Equations (10), (11), and (12) gives 

2R = (I 28J.iAb DL/ rrp')1/4(/iP/ r)n/2 (14) 

where D is given by Equation (13). The value of D is found by combining Equations (6) and (10) 
and is equal to 

(15) 

The value of D is independent of the values of d and /iP. For Ab = 1 cm/ year, L = 50 km; 
P' = 200 Pal m, C = I. 7 X 10- 23 Pa - n S - l, n = 3, H = 306 MJ/ m3 , and r= 100 kPa, the value of 
D is 0.6 mm. This value of R-tunnel separation is so extremely small that it is very good proof 
that sheet water flow is stable against a final collapse into steady-state water flow by R-channels. 

A graphical display of the results of Equations (6), (10), (13), and (14) will , perhaps, make 
the conclusions reached from them clearer. In Figure 2 a plot of the terms D and 2R versus 
pressure difference /1P is given. To the left of the intersection of the curves of D versus /1P and 
2R versus /1P, D is smaller than 2R . Thus for values of /iP to the left of the intersection the 
tunnel spacing is sufficiently small that the R-channels are capable of absorbing all the water that 
is produced at the bed. To the right of the intersection D is larger than 2R. The channel spacing 
is not small enough to insure that all the water produced at the bed can be captured by the 
channels. In Figure 2 it is seen that at the intersection of 2R and the D lines for Ab = I cm/ year, 
the pressure drop t':lP is actually smaller than r, a result that implies that no water at all is 
entering the R-tunnels and the value of D obtained from the equations is actually too large! Even 
under surge conditions when Ab is likely to be increased to values of the order of I to 2 m/ year 
the value of D is only increased to about 5 to 10 cm. 

I n Figure 3 the terms D and 2R are plotted as a function of d. It is seen that for the case of 
t':lP = 100 kPa when D = 2R that d = 0.56 mm and that D and 2R are also equal to 0.56 mm. For 
t':lP = I MPa the intersection occurs at d = 0.018 mm with d and 2R again equal to 0.56 mm . In 
the region to the right of the intersections in Figures 2 and 3 channels cannot tap enough water 
to stay open. Channels in this left-hand region will grow in size, reduce their number, and 
increase their spacing until the spacing is that of the intersection point. Only at the intersection 
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Fig. 2. Double logarithmic plot a/tunnel separation distance D or twice 
water-collection distance R versus pressure drop JP in R-channels. 
The /ollowing values a/ the lerms were used 10 oblain the plots: 
A.b = 1 cm/year and 1 m/year, L = 50 km, P' = 200 Pal m, 
f.J = 1.B mPa s, and T = 100 kPa . The tunnel diameter was found using 
Equation (I2) with Q = A.bLD. 
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can a steady-state situation exist. However, it is seen in Figures 2 and 3 that the channel spacing 
is so small as to make meaningless the concept of channelized water flow. 

Consider another example that demonstrates why the R-tunnels cannot collect enough water 
to maintain themselves. Suppose there were an R-channel that could collect all the water 
produced on either side of it out to a distance of R = 5 m. From Equations (11) and (12) the 
channel diameter D = 1.6 cm with Ab = I cm/ year, L = 50 km, and pi = 200 Pal m. But if this 
value for d is placed in Eq uations (6) and (10), it is found that R = 7.7 cm, so a discrepancy of 
two orders of magnitude exists between the two values of R. 

DISCUSSION 

There is no question that the instability analysed by Walder should develop in the flow of a 
water sheet under a glacier. There is also no question that were it to develop to the point that all 
the water is flowing in R-channels then these must disappear because they cannot be nourished 
with sufficient water. Consequently the sheet flow would reappear. What then does happen? An 
idealized sheet of constant thickness might develop small undulations with a wavelength much 
greater than the average sheet thickness. Unlike the situation we have analyzed, water could then 
flow from the thinner regions into the thicker regions. The sheet flow still remains essentially a 
sheet situation. Another situation that can be imagined is not the quasi-static steady state one but 
a cyclic case. A sheet flow collapses quickly into tunnel flow with the amount of water in the 
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tunnels being that present during the time of collapse. When this water drains out of the channels 
the channels themselves collapse and the water sheet is reestablished. This cyclic change need 
not take place simultaneously over the whole bed. Local areas that are in random phase with 
other local areas might cyclically switch from one form to the other. 

However, whether water flow occurs in a cyclic mode or in a modified sheet flow it is likely 
that sheet flow must remain important in ridding a glacier of the water that has its origin at the 
base of a glacier. Melt water that originates at the upper ice surface of a glacier can, of course, 
remain channelized when it descends to the bed. Only during times of excess upper-surface melt
water production, during short time periods before channels have enlarged sufficiently to carry 
this more abundant supply, would such water enter a film. 

ACKNOWLEDGEMENTS 

This research was sponsored in part by funding from the Climate Dynamics Section of the 
National Science Foundation under Grants ATM-78/ 3961 and ATM-81 / 1138. The figures were 
drafted by Cheril Cheverton. We wish to thank Mr J. S. Walder for his very helpful comments 
on improving the draft version of our paper. We thank Dr H. Rothlisberger and 
Or A. Iken for an interesting correspondence and discussion about the average value of the 
water film thickness . 

MS. received 13 April 1983 

ApPENDIX. BEST SPATIAL AVERAGE VALUE OF WATER FILM THICKNESS? 

The water film thickness at the bed of a glacier is not a constant. It varies spatially (in 
addition to any temporal variations). On the down-stream side of bed bumps, water-film cavities 
can exist whose vertical dimension can be quite large. (Observations on the Unteraargletscher 
(Iken and others, 1983) reveal that parts of this glacier undergo uplift up to 0.6 m at the 
beginning of the melt season. Presumably such uplift is produced by an enlargement of the 
volume of water in cavities.) On the up-stream side of bumps in the bed, the water film thickness 
is almost zero. Here the bed pressure is greatest. Water never flows into these high-pressure 
regions. Regelation-produced water is squeezed out of them. 

Neither of the two usual types of physical. average of non-uniform properties describes well 
the water film thickness. The Voigt average Wv of the water film thickness w(x, y ) is defined by 

(A-I) 

where A is bed area and x and y are spatial coordinates that are parallel to the mean bed surface. 
The Reuss average Wr is defined by 

Wr-
I =A - I J w- I dx dy. (A-2) 

The Voigt average overemphasizes the areas with water cavities. (The uplift data just mentioned 
are a Voigt average of bed separation changes.) The Reuss average overemphasizes the high
pressure regions on the up-stream side of bumps. 
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We suggest that the equation 

W;' = fJA - ' J [2w/(w + ~)l dxdy (A-3) 

is a reasonable one to use to define the average value w. of the water film thickness. In Equation 
(A- 3) fJ is the smallest constant that can be chosen and still have a solution of the equation. (For 
a film of constant thickness fJ = I.) Neither minor areas of unusually large or unusually small 
water-layer thickness can dominate the average defined by Equation (A-3). For example, 
suppose IV = I mm over 90% of the bed area, W = 10 m over 5% of the area, and W = I nm over 
the remaining 5% area. Obviously, a reasonable average value of the water film thickness should 
be close to I mm since this is the value of the water film thickness over most of the area of the 
bed. But the Voigt average is Wy = 0.50 I m and the Reuss average is w, = 1.99.um in this 
example. Neither of these averages is close to I mm. However, the average given by Equation 
(A- 3) is IV. = 0.999995 mm with fJ = 10/ 9. Hence Equation (A-3) gives a reasonable value of 
11'. if fJ is chosen to have the smallest value possible. It is clear that uplift data, such as those 
obtained by [ken and others (1983) for Unteraargletscher, are not necessarily a good measure of 
the change in the water-layer thickness at the bed of a glacier although they are a good measure 
of changes in the Voigt average. 

To obtain a minimum fJ, equation (A-3) is difTerentiated with respect to w. and dfJ/dw. is set 
equal to zero yielding the following equation for w. 

(A-4) 

Equation (A-4) may have multiple solutions because there may be more than one value of fJ 
for which dfJ/dlv. = O. For example, Equation (A-4) gives w. = Wo and IV. = 0 for the case when 
the water-layer thickness is essentially equal to 0 over a fraction / of the bed is equal to Wo over 
the remaining fraction (I - f). The valueoffJ = I//for w. - wo andfJ= I/O- /) for w. = 0. Thus 
by our definition of w. iff ~ I, w. = Wo and fJ ::::: I ; if (I - f) ~ I, w. = 0 and fJ ::::: I, as expected. 

We emphasize that there are cases when a single value for w. for the average thickness of the 
water film thickness by any definition does not make good physical sense. In the example just 
considered if f is neither close to I nor to 0 in value and thus is of order of magnitude of 0.5 no 
single value of w. describes well the water-layer thickness. The Reuss average gives w, = 0; the 
Voigt average gives Wy = fwo. Neither of these values gives a reasonable account of the thickness 
of the water film at the bed. A value of w, = 0 disguises the fact that w = Wo over a major fraction 
of the bed. A value of IVy = fwo conceals the fact that w = 0 over a major fraction of the bed and 
gives a water thickness which is about 50% in error over the fraction of the bed where the water 
film thickness is finite. Our definition, depending on whether f > 0.5 or f < 0.5 gives either w. = 
11 '0 or 11'. = O. These results are just as unsatisfactory. However, when Equation (A- 4) does give 
multiple solutions for IV. the value of l /fJ that corresponds to each value of w. is a measure of the 
fraction of the bed for which the water-film thickness is of the order of the solution w •. Thus one 
need only specify that when Equations (A-3) and (A-4) produce multiple solutions for w. and 
the smallest value (and possibly the next-but-one smallest value) that a single value of w. is 
invalid (if w. corresponding to these two smallest (or three smallest) values of fJ are not 
themselves approximately equal to each other). The best estimate to use for the water-film 

https://doi.org/10.3189/S002214300003029X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300003029X


382 JOURNAL OF GLACIOLOGY 

thickness in this situation is the largest value of w. given by the smallest two or three values of p. 
Over a major fraction of the bed, the water-film thickness will approximate to this solution. 
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