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Abstract

Let G be a connected split reductive group over a finite field Fq and X a smooth
projective geometrically connected curve over Fq. The `-adic cohomology of stacks of
G-shtukas is a generalization of the space of automorphic forms with compact support
over the function field ofX. In this paper, we construct a constant term morphism on the
cohomology of stacks of shtukas which is a generalization of the constant term morphism
for automorphic forms. We also define the cuspidal cohomology which generalizes the
space of cuspidal automorphic forms. Then we show that the cuspidal cohomology has
finite dimension and that it is equal to the (rationally) Hecke-finite cohomology defined
by V. Lafforgue.
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Introduction

Let X be a smooth projective geometrically connected curve over a finite field Fq. We denote by
F its function field, by A the ring of adèles of F and by O the ring of integral adèles.

Let G be a connected split reductive group over Fq. For simplicity, we assume in the
introduction that the center of G is finite.

We consider the space of automorphic forms Cc(G(F )\G(A)/G(O),C). On the one hand,
there is the notion of cuspidal automorphic form. An automorphic form is said to be cuspidal if
its image under the constant term morphism along any proper parabolic subgroup of G is zero.
A theorem of Harder [Har74, Theorem 1.2.1] says that the space of cuspidal automorphic forms
has finite dimension. The proof uses the Harder–Narasimhan truncations and the contractibility
of deep enough strata.

On the other hand, the space of automorphic forms is equipped with an action of the Hecke
algebra Cc(G(O)\G(A)/G(O),Q) by convolution on the right. An automorphic form is said to
be (rationally) Hecke-finite if it belongs to a finite-dimensional subspace that is stable under the
action of the Hecke algebra.

In [Laf18, Proposition 8.23], Vincent Lafforgue proved that the space of cuspidal automorphic
forms and the space of Hecke-finite automorphic forms are equal. In fact, the space of cuspidal
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automorphic forms is stable under the action of the Hecke algebra and is finite-dimensional,
and thus it is included in the space of Hecke-finite automorphic forms. The converse direction
follows from the following fact: any non-zero image of the constant term morphism along a proper
parabolic subgroup P with Levi quotient M is supported on the components indexed by a cone
in the lattice of the cocharacters of the center of M . Hence it generates an infinite-dimensional
vector space under the action of the Hecke algebra of M . Thus a non-cuspidal automorphic form
can not be Hecke-finite for the Hecke algebra of M .

Let ` be a prime number not dividing q. In [Dri78] and [Dri87], Drinfeld introduced the
stacks classifying GLn-shtukas for the representation St � St∗ of GLn × GLn, where St is the
standard representation of GLn and St∗ is its dual, and considered their `-adic cohomology.
These were also used by Laurent Lafforgue in [Laf97]. Later in [Var04], Varshavsky defined the
stacks classifying G-shtukas ChtG,I,W for general G and for an arbitrary representation W of ĜI ,
where Ĝ is the Langlands dual group of G over Q` and I is a finite set (Drinfeld considered the
case G = GLn, I = {1, 2} and W = St� St∗). Varshavsky also defined the degree j cohomology
group with compact support Hj

G,I,W of the `-adic intersection complex of ChtG,I,W (this stack
is smooth in the case of Drinfeld but not in general). In particular, when I = ∅ and W = 1 is
the one-dimensional trivial representation of the trivial group Ĝ∅, the cohomology group H0

G,∅,1

coincides with Cc(G(F )\G(A)/G(O),Q`).
The Hecke algebra Cc(G(O)\G(A)/G(O),Z`) acts on the cohomology group Hj

G,I,W . In
[Laf18], Vincent Lafforgue defined the subspace Hj, Hf

G,I,W of Hj
G,I,W which consists of the

cohomology classes c for which Cc(G(O)\G(A)/G(O),Z`) · c is a finitely generated Z`-submodule
of Hj

G,I,W . When I = ∅ and W = 1, the space H0,Hf
G,∅,1 coincides with the space of Hecke-finite

automorphic forms, and thus coincides with the space of cuspidal automorphic forms. Vincent
Lafforgue used H0, Hf

G,I,W to construct the excursion operators on the space of cuspidal automorphic
forms and obtained a canonical decomposition of this space indexed by the Langlands parameters.

We can also define a subspace Hj, Hf-rat
G,I,W of Hj

G,I,W which consists of the cohomology classes c
for which Cc(G(O)\G(A)/G(O),Q`) · c is a finite-dimensional Q`-vector subspace of Hj

G,I,W . By
definition, we have Hj, Hf

G,I,W ⊂ Hj, Hf-rat
G,I,W . When I = ∅ and W = 1, it is easy to see that they are

equal.
In this paper, we are interested in the constant term morphism of the cohomology of stacks

of shtukas, analogous to the case of automorphic forms. For any parabolic subgroup P of G, let
M be its Levi quotient. As in [Var04], we can define the stack of P -shtukas ChtP,I,W and the
stack of M -shtukas ChtM,I,W . The morphisms G←↩ P �M induce a correspondence

ChtG,I,W ← ChtP,I,W → ChtM,I,W .

From this we construct a constant term morphism

CP, jG : Hj
G,I,W → Hj

M,I,W .

Then we define the cuspidal cohomology Hj, cusp
G,I,W ⊂ Hj

G,I,W as the intersection of the kernels of
the constant term morphisms for all proper parabolic subgroups.

This construction was suggested by Vincent Lafforgue. He also conjectured the following.

– The cuspidal cohomology is of finite dimension.
– The following three Q`-vector subspaces of Hj

G,I,W are equal:

Hj, Hf
G,I,W = Hj, Hf-rat

G,I,W = Hj, cusp
G,I,W .
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In this paper, we prove these conjectures except for the equality with Hj, Hf
G,I,W , which we plan

to treat in a future paper. The main results are as follows.

Theorem 0.0.1 (Theorem 5.0.1). The Q`-vector space Hj, cusp
G,I,W has finite dimension.

Proposition 0.0.2 (Proposition 6.0.1). The two Q`-vector subspaces Hj, cusp
G,I,W and Hj, Hf-rat

G,I,W of
Hj
G,I,W are equal.

As a consequence, Hj, Hf
G,I,W has finite dimension.

In particular, when I = ∅ and W = 1, the constant term morphism CP, 0G coincides with
the usual constant term morphism for automorphic forms. In this case, Theorem 0.0.1 coincides
with Theorem 1.2.1 in [Har74], and Proposition 0.0.2 coincides with [Laf18, Proposition 8.23]
mentioned before.

Let N ⊂ X be a finite subscheme. Theorem 0.0.1 and Proposition 0.0.2 are still true for the
cohomology with level structure on N .

Structure of the paper
In § 1 we construct the parabolic induction diagram and define Harder–Narasimhan truncations
which are compatible with the parabolic induction. In § 2 we recall the cohomology of the stacks
of G-shtukas and define the cohomology of the stacks of M -shtukas. In § 3 we construct the
constant term morphism using the compatibility of the geometric Satake equivalence with the
constant term functors for the Beilinson–Drinfeld affine grassmannians.

The idea of the proofs of Theorem 0.0.1 and Proposition 0.0.2 is analogous to the case
of automorphic forms. The goal of §§ 4 and 5 is to prove Theorem 0.0.1. In § 4 we prove the
contractibility of deep enough horospheres. In § 5 we use this result and an argument by induction
on the semisimple rank to prove the finiteness of cuspidal cohomology. In § 6 we show that
the constant term morphism commutes with the action of the Hecke algebra, and we prove
Proposition 0.0.2.

Notation and conventions
0.0.3 Let G be a connected split reductive group over Fq. Let Gder be the derived group

of G and Gab := G/Gder the abelianization of G. Let ZG be the center of G and Gad the adjoint
group of G (equal to G/ZG).

0.0.4 We fix a discrete subgroup ΞG of ZG(A) such that ΞG ∩ ZG(O)ZG(F ) = {1}, the
quotient ZG(F )\ZG(A)/ZG(O)ΞG is finite and the composition of morphisms ΞG ↪→ ZG(A) ↪→
G(A) � Gab(A) is injective. Note that the volume of G(F )\G(A)/G(O)ΞG is finite. We write
Ξ := ΞG.

0.0.5 We fix a Borel subgroup B ⊂ G. By a parabolic subgroup we will mean a standard
parabolic subgroup (i.e. a parabolic subgroup containing B), unless explicitly stated otherwise.

0.0.6 Let H be a connected split reductive group over Fq with a fixed Borel subgroup.
Let ΛH (respectively Λ̂H) denote the weight (respectively coweight) lattice of H. Let 〈 , 〉 :
Λ̂H × ΛH → Z denote the natural pairing between the two.

Let Λ̂+
H ⊂ Λ̂H denote the monoid of dominant coweights and Λ̂pos

H ⊂ Λ̂H the monoid generated
by positive simple coroots. Let Λ̂QH := Λ̂H ⊗

Z
Q. Let Λ̂pos,Q

H and Λ̂+,Q
H denote the rational cones of

Λ̂pos
H and Λ̂+

H . We use analogous notation for the weight lattice.
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We use the partial order on Λ̂QH defined by µ1 6Hµ2 ⇔ µ2 − µ1 ∈ Λ̂pos,Q
H (i.e. µ2 − µ1 is a

linear combination of simple coroots of H with coefficients in Q>0).
We will apply these notations to H = G, H = Gad or H = some Levi quotient M of G.

0.0.7 We denote by ΓG the set of simple roots of G and by Γ̂G the set of simple coroots.
The standard parabolic subgroups of G are in bijection with the subsets of ΓG in the following
way. To a parabolic subgroup P with Levi quotient M , we associate the subset ΓM in ΓG equal
to the set of simple roots of M .

0.0.8 Let N ⊂ X be a finite subscheme. We denote by ON the ring of functions on N and
write KG,N := Ker(G(O)→ G(ON )).

Let H be an algebraic group over Fq. We denote by HN the Weil restriction ResON/Fq H.

0.0.9 If not specified, all schemes are defined over Fq and all the fiber products are taken
over Fq.

0.0.10 For any scheme S over Fq and x an S-point of X, we denote by Γx ⊂ X × S the
graph of x.

0.0.11 For any scheme S over Fq, we denote by FrobS : S → S the Frobenius morphism
over Fq. For any G-bundle G on X × S, we denote by τG the G-bundle (IdX ×Fq FrobS)∗G.

0.0.12 We use [LMB99, Definitions 3.1 and 4.1] for prestacks, stacks and algebraic stacks.

0.0.13 As in [LMB99, § 18], [LO08] and [LO09], for X an algebraic stack locally of finite
type over Fq, we denote byDb

c(X ,Q`) the bounded derived category of constructible `-adic sheaves
on X . We have the notion of six operators and perverse sheaves.

If f : X1→ X2 is a morphism of finite type of schemes (respectively algebraic stacks) locally
of finite type, we will denote by f!, f∗, f∗, f ! the corresponding functors between Db

c(X1,Q`) and
Db
c(X2,Q`), always understood in the derived sense.

0.0.14 We will work with étale cohomology. So for any stack (respectively scheme)
(for example ChtG,N,I,W and GrG,I,W ), we consider only the reduced substack (respectively
subscheme) associated to it.

1. Parabolic induction diagram of stacks of shtukas

The goal of this section is to introduce the parabolic induction diagram of stacks of shtukas
without a bound on the modifications at paws in §§ 1.1–1.3 and to introduce the Harder–
Narasimhan stratification for the parabolic induction diagram in §§ 1.4–1.7.

In §§ 1.1–1.3 we work in the context of prestacks (see 0.0.12).

1.1 Reminder of stacks of shtukas and Beilinson–Drinfeld affine grassmannians
This subsection is based on [Var04, § 2] and [Laf18, §§ 1 and 2]. All the results are well known.

Definition 1.1.1. We define BunG,N to be the prestack that associates to any affine scheme S
over Fq the groupoid

BunG,N (S) :={(G, ψ), where G is a G-bundle on X × S,
ψ is an isomorphism of G-bundles : G

∣∣
N×S

∼
→ G

∣∣
N×S}.
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1.1.2 BunG,N is a smooth algebraic stack over Fq, locally of finite type.

Definition 1.1.3. We define HeckeG,N,I to be the prestack that associates to any affine scheme
S over Fq the groupoid HeckeG,N,I(S) that classifies the following data:

(i) (xi)i∈I ∈ (XrN)I(S);
(ii) (G, ψ), (G′, ψ′) ∈ BunG,N (S);
(iii) an isomorphism of G-bundles φ : G

∣∣
(X×S)r(

⋃
i∈I Γxi )

∼
→ G′

∣∣
(X×S)r(

⋃
i∈I Γxi )

which preserves

the N -level structure, i.e. ψ′ ◦ φ
∣∣
N×S = ψ.

1.1.4 The prestack HeckeG,N,I is an inductive limit of algebraic stacks over (XrN)I . We

define the morphism of paws HeckeG,N,I → (XrN)I by sending ((xi)i∈I , (G, ψ)
φ−→ (G′, ψ′)) to

(xi)i∈I .

1.1.5 We denote by pr0 (respectively pr1) the projection HeckeG,N,I → BunG,N which

sends ((xi)i∈I , (G, ψ)
φ−→ (G′, ψ′)) to (G, ψ) (respectively to (G′, ψ′)).

Let Frob : BunG,N → BunG,N be the Frobenius morphism over Fq. With the notation in
0.0.11, for any affine scheme S over Fq, the morphism Frob : BunG,N (S)→ BunG,N (S) is given
by (G, ψ)→ (τG, τψ).

Definition 1.1.6. We define the prestack of shtukas ChtG,N,I to be the following fiber product.

ChtG,N,I //

��

HeckeG,N,I

(pr0, pr1)

��
BunG,N

(Id, Frob) // BunG,N ×Fq BunG,N

(1.1)

1.1.7 Concretely, ChtG,N,I is the prestack which associates to any affine scheme S over Fq
the groupoid ChtG,N,I(S) classifying the following data:

(i) (xi)i∈I ∈ (XrN)I(S);
(ii) (G, ψ) ∈ BunG,N (S);
(iii) an isomorphism of G-bundles φ : G

∣∣
(X×S)r(

⋃
i∈I Γxi )

∼
→

τG
∣∣
(X×S)r(

⋃
i∈I Γxi )

which preserves

the N -level structure, i.e. τψ ◦ φ
∣∣
N×S = ψ.

We define the morphism of paws pG : ChtG,N,I → (XrN)I by sending ((xi)i∈I , (G, ψ)
φ−→

(τG, τψ)) to (xi)i∈I .

1.1.8 The prestack ChtG,N,I is an inductive limit of algebraic stacks over (XrN)I .

1.1.9 We will omit the index N if N = ∅.

We will need a local model of ChtG,N,I . For this, we recall the definition of Beilinson–Drinfeld
affine grassmannians.
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1.1.10 For (xi)i∈I ∈ XI(S), d ∈ N, we denote by Γ∑
dxi the closed subscheme of X × S

whose ideal is generated by (
∏
i∈I ti)

d locally for the Zariski topology, where ti is an equation
of the graph Γxi . We define Γ∑

∞xi := lim−→d
Γ∑

dxi to be the formal neighborhood of
⋃
i∈I Γxi in

X × S.
A G-bundle on Γ∑

∞xi is a projective limit of G-bundles on Γ∑
dxi as d→∞.

Definition 1.1.11. We define the Beilinson–Drinfeld affine grassmannian GrG,I to be the ind-
scheme that associates to any affine scheme S over Fq the set GrG,I(S) classifying the following
data:

(i) (xi)i∈I ∈ XI(S);
(ii) G,G′ two G-bundles on Γ∑

∞xi ;

(iii) an isomorphism of G-bundles φ : G
∣∣
Γ∑
∞xir(

⋃
i∈I Γxi )

∼
→ G′

∣∣
Γ∑
∞xir(

⋃
i∈I Γxi )

where the precise
meaning is given in [Laf18, Notation 1.7];

(iv) a trivialization θ : G′ ∼→ G on Γ∑
∞xi .

1.1.12 We have the morphism of paws: GrG,I → XI . The fiber over (xi)i∈I ∈ XI
Fq

is∏
y∈{xi|i∈I}GrG,y, where GrG,y is the usual affine grassmannian, i.e. the fpqc quotient GKy/GOy ,

where Oy is the complete local ring on y and Ky is its field of fractions.

Definition 1.1.13. (a) For any d ∈ N, we define GI,d to be the group scheme over XI

that associates to any affine scheme S over Fq the set consisting of pairs ((xi)i∈I , f), where
(xi)i∈I ∈ XI(S) and f is an automorphism of the trivial G-bundle on Γ∑

dxi .
(b) We define the group scheme GI,∞ := lim

←−
GI,d.

1.1.14 The fiber of GI,∞ over (xi)i∈I ∈ XI
Fq

is
∏
y∈{xi|i∈I}GOy .

1.1.15 The group scheme GI,∞ acts on GrG,I by changing the trivialization θ. We denote
by [GI,∞\GrG,I ] the quotient prestack. For any affine scheme S over Fq, [GI,∞\GrG,I ](S) is the
groupoid classifying the data (i), (ii) and (iii) in Definition 1.1.11.

1.1.16 We have a morphism of prestacks:

εG,N,I,∞ : ChtG,N,I → [GI,∞\GrG,I ]

((xi)i∈I , (G, ψ)
φ−→ (τG, τψ)) 7→ ((xi)i∈I ,G

∣∣
Γ∑
∞xi

φ−→ τG
∣∣
Γ∑
∞xi

).
(1.2)

Remark 1.1.17. The prestack [GI,∞\GrG,I ] is not an inductive limit of algebraic stacks. But we
can still use it for the construction in §§ 1.2 and 1.3. We will construct a variant of morphism
(1.2) for algebraic stacks in 2.4.1.

The following definition will be used in § 4.

Definition 1.1.18. (a) We define BunG,N,I,d to be the prestack that associates to any affine
scheme S over Fq the groupoid classifying the following data:
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(i) (xi)i∈I ∈ (XrN)I(S);
(ii) G: a G-bundle over X × S;
(iii) a level structure on the divisor (N × S) + Γ∑

dxi , i.e. an isomorphism of G-bundles: ψ :

G
∣∣
(N×S)+Γ∑

dxi

∼
→ G

∣∣
(N×S)+Γ∑

dxi

.

(b) We define BunG,N,I,∞ := lim
←−

BunG,N,I,d.

1.1.19 BunG,N,I,d is a smooth algebraic stack over (XrN)I . Its fiber over a point (xi)i∈I ∈
(XrN)I(Fq) is BunG,N+

∑
dxi .

1.1.20 The definitions and constructions in this subsection work for all affine smooth
geometrically connected algebraic groups over Fq (we will use these for parabolic subgroups
of G and their Levi quotients).

1.2 Parabolic induction diagrams
1.2.1 Let P be a parabolic subgroup of G and let M be its Levi quotient. Applying the

definitions and constructions in § 1.1 to P andM , respectively, we define BunP,N , ChtP,N,I , GrP,I ,
PI,∞, εP,N,I,∞ and BunM,N , ChtM,N,I , GrM,I , MI,∞, εM,N,I,∞.

Remark 1.2.2. When N is non-empty, the prestack ChtP,N,I defined above is not the same as the
one defined in [Var04, 2.28]. We will describe the difference in Remark 3.4.4.

1.2.3 The morphisms of groups G←↩ P �M induce morphisms of prestacks over SpecFq:

BunG,N
iBun

←−− BunP,N
πBun

−−−→ BunM,N . (1.3)

Construction 1.2.4. The morphisms of groups G←↩ P � M induce morphisms of prestacks
over (XrN)I .

ChtP,N,I
i
ww

π
''

pP

��

ChtG,N,I

pG ''

ChtM,N,I

pMww
(XrN)I

(1.4)

More concretely, for any affine scheme S over Fq:

i : ChtP,N,I(S)→ ChtG,N,I(S) is given by (P → τP) 7→ (P
P
×G→ τP

P
×G) where the level

structure ψ : P
∣∣
N×S

∼
→ P

∣∣
N×S is sent to ψ

P
×G;

π : ChtP,N,I(S)→ ChtM,N,I(S) is given by (P → τP) 7→ (P
P
×M → τP

P
×M) where the level

structure ψ is sent to ψ
P
×M .

1.2.5 The morphisms of groups G←↩ P �M induce morphisms of ind-schemes over XI :

GrG,I
i0
←− GrP,I

π0

−→ GrM,I . (1.5)
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1.2.6 Let X (respectively Y) be an (ind-)scheme over a base S that is equipped with an
action of a group scheme A (respectively B) over S from the right. Let A→ B be a morphism of
group schemes over S. Let X → Y be a morphism of (ind-)schemes over S which is A-equivariant
(where A acts on Y via A→ B). This morphism induces a morphism of quotient prestacks

[A\X ]→ [B\Y].

1.2.7 Applying 1.2.6 to i0 : GrP,I → GrG,I and PI,∞ ↪→ GI,∞, we obtain a morphism of
prestacks:

i0 : [PI,∞\GrP,I ]→ [GI,∞\GrG,I ].

Applying 1.2.6 to π0 : GrP,I → GrM,I and PI,∞ �MI,∞, we obtain a morphism of prestacks:

π0 : [PI,∞\GrP,I ]→ [MI,∞\GrM,I ].

1.2.8 The following diagram of prestacks is commutative.

ChtG,N,I

εG,N,I,∞

��

ChtP,N,I
ioo

εP,N,I,∞

��

π // ChtM,N,I

εM,N,I,∞

��
[GI,∞\GrG,I ] [PI,∞\GrP,I ]

i0oo π0 // [MI,∞\GrM,I ]

(1.6)

1.3 Quotient by Ξ
1.3.1 Let ZG be the center of G as defined in 0.0.3. We have an action of BunZG on

BunG,N by twisting a G-bundle by a ZG-bundle, i.e. the action of TZ ∈ BunZG is given by
G 7→ (G×TZ)/ZG. Similarly, BunZG acts on [GI,∞\GrG,I ], i.e. the action of TZ ∈ BunZG is given
by

(G φ−→ G′) 7→ ((G × TG
∣∣
Γ∑
∞xi

)/ZG
φ−→ (G′ × TG

∣∣
Γ∑
∞xi

)/ZG).

For TZ ∈ BunZG(Fq), we have a canonical identification TZ ' τTZ . Thus BunZG(Fq) acts on
ChtG,N,I by twisting a G-bundle by a ZG-bundle, i.e. the action of TZ ∈ BunZG(Fq) is given by

(G φ−→ τG) 7→ ((G × TZ)/ZG
φ−→ τ (G × TZ)/ZG).

The group Ξ defined in 0.0.4 acts on BunG,N , ChtG,N,I and [GI,∞\GrG,I ] via Ξ→ ZG(A)→
BunZG(Fq).

1.3.2 Note that the morphism εG,N,I,∞ defined in (1.2) is Ξ-equivariant.
Now applying Definition 1.1.13 to ZG (respectively Gad), we define a group scheme (ZG)I,∞

(respectively Gad
I,∞) over XI . We have Gad

I,∞ = GI,∞/(ZG)I,∞. The group scheme (ZG)I,∞ acts
trivially on GrG,I , so the action of GI,∞ on GrG,I factors through Gad

I,∞. We use this action
to define the quotient prestack [Gad

I,∞\GrG,I ]. The morphism GI,∞ � Gad
I,∞ induces a morphism

[GI,∞\GrG,I ]→ [Gad
I,∞\GrG,I ], which is Ξ-equivariant for the trivial action of Ξ on [Gad

I,∞\GrG,I ].
Hence the composition of morphisms

ChtG,N,I
εG,N,I,∞−−−−−→ [GI,∞\GrG,I ]→ [Gad

I,∞\GrG,I ]

is Ξ-equivariant. Thus it factors through

εΞG,N,I,∞ : ChtG,N,I /Ξ→ [Gad
I,∞\GrG,I ]. (1.7)

We will construct a variant of morphism (1.7) for algebraic stacks in 2.4.1.
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1.3.3 ZG acts on a P -bundle via ZG ↪→ P . Just as in 1.3.1, we have an action of BunZG
on BunP,N by twisting a P -bundle by a ZG-bundle. This leads to an action of Ξ on BunP,N ,
ChtP,N,I and [PI,∞\GrP,I ] via Ξ→ ZG(A)→ BunZG(Fq).

Using the morphism ZG ↪→M , we similarly obtain an action of Ξ on BunM,N , ChtM,N,I and
[MI,∞\GrM,I ].

1.3.4 Applying Definition 1.1.13 to P := P/ZG (respectively M := M/ZG), we define a
group scheme P I,∞ (respectively M I,∞) over XI . We have P I,∞ = PI,∞/(ZG)I,∞ and M I,∞ =

MI,∞/(ZG)I,∞.
The morphism εP,N,I,∞ defined in 1.2.1 is Ξ-equivariant. Since the group scheme (ZG)I,∞

acts trivially on GrP,I , the action of PI,∞ on GrP,I factors through P I,∞. We denote by
[P I,∞\GrP,I ] the resulting quotient prestack. The morphism PI,∞ � P I,∞ induces a morphism
[PI,∞\GrP,I ]→ [P I,∞\GrP,I ], which is Ξ-equivariant for the trivial action of Ξ on [P I,∞\GrP,I ].
Hence the composition of morphisms ChtP,N,I

εP,N,I,∞−−−−−→ [PI,∞\GrP,I ] → [P I,∞\GrP,I ] is
Ξ-equivariant. Thus it factors through

εΞP,N,I,∞ : ChtP,N,I /Ξ→ [P I,∞\GrP,I ]. (1.8)

Similarly, the composition of morphisms ChtM,N,I
εM,N,I,∞−−−−−→ [MI,∞\GrM,I ]→ [M I,∞\GrM,I ]

is Ξ-equivariant for the trivial action of Ξ on [M I,∞\GrM,I ]. Thus it factors through

εΞM,N,I,∞ : ChtM,N,I /Ξ→ [M I,∞\GrM,I ]. (1.9)

1.3.5 The morphisms i and π in (1.6) are Ξ-equivariant. Diagram (1.6) induces a
commutative diagram of prestacks.

ChtG,N,I /Ξ

εΞG,N,I,∞
��

ChtP,N,I /Ξ
ioo

εΞP,N,I,∞
��

π // ChtM,N,I /Ξ

εΞM,N,I,∞
��

[Gad
I,∞\GrG,I ] [P I,∞\GrP,I ]

i0oo π0 // [M I,∞\GrM,I ]

(1.10)

In the remaining part of § 1, we introduce the Harder–Narasimhan stratification (compatible
with the action of Ξ) for the parabolic induction diagram (1.4). In order to do so, we use the
Harder–Narasimhan stratification for the parabolic induction diagram (1.3). From now on we
work in the context of algebraic (ind-)stacks.

In § 1.4, we recall the usual Harder–Narasimhan stratification Bun6
Gµ

G ⊂ BunG and a variant

Bun6
Gad

µ
G ⊂ BunG which is compatible with the action by Ξ.

In § 1.5, we introduce the Harder–Narasimhan stratification Bun6
Gad

µ
M ⊂ BunM , which allows

us to construct in § 1.6 the truncated parabolic induction diagrams (1.26):

Bun6
Gad

µ
G /Ξ← Bun6

Gad
µ

P /Ξ→ Bun6
Gad

µ
M /Ξ.

In § 1.7, we define the Harder–Narasimhan stratification on the stacks of shtukas using
§§ 1.4–1.6.
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1.4 Harder–Narasimhan stratification of BunG

In 1.4.1–1.4.10, we recall the Harder–Narasimhan stratification of BunG defined in [Sch15] and
[DG15, § 7]. (In these papers, the group is reductive over an algebraically closed field. Since our
group G is split over Fq, we use Galois descent to obtain the stratification over Fq.)

In 1.4.11–1.4.17, we recall a variant of the Harder–Narasimhan stratification of BunG which
is compatible with the quotient by Ξ, as in [Var04, § 2] and [Laf18, § 1].

1.4.1 Applying 0.0.6 to group G, we define Λ̂G, Λ̂+
G, Λ̂pos

G , Λ̂QG, Λ̂+,Q
G , Λ̂pos,Q

G and the partial
order ‘6G’ on Λ̂QG.

1.4.2 [Sch15, 2.1.2] Let P be a parabolic subgroup of G and M its Levi quotient. Consider
the sublattice Λ̂[M,M ]sc ⊂ Λ̂G spanned by the simple coroots of M . We define

Λ̂G,P := Λ̂G/Λ̂[M,M ]sc . (1.11)

Let Λ̂QG,P := Λ̂G,P ⊗Z Q. We denote by Λ̂pos
G,P the image of Λ̂pos

G in Λ̂G,P , and by Λ̂pos,Q
G,P the image

of Λ̂pos,Q
G in Λ̂QG,P . We introduce the partial order on Λ̂G,P by

µ1 6
Gµ2 ⇔ µ2 − µ1 ∈ Λ̂pos

G,P .

1.4.3 [Sch15, 2.1.3], [DG15, 7.1.3, 7.1.5] Let ZM be the center of M . Let Λ̂ZM be the
coweight lattice of ZM , i.e. Hom(Gm, ZM ). Note that it equals to Λ̂Z0

M
= Hom(Gm, Z0

M ), where
Z0
M is the neutral connected component of ZM .
We have a natural inclusion Λ̂ZM ⊂ Λ̂G (because ZM is included in the image ofB ↪→ P �M).

The composition Λ̂QZM ↪→ Λ̂QG � Λ̂QG,P is an isomorphism:

Λ̂QZM
∼
→ Λ̂QG,P . (1.12)

We define the slope map to be the composition

φP : Λ̂G,P → Λ̂QG,P
∼= Λ̂QZM ↪→ Λ̂QG. (1.13)

We define prP to be the composition

prP : Λ̂QG � Λ̂QG,P ' Λ̂QZM . (1.14)

By definition, we have Λ̂QG,G = Λ̂QZG , Λ̂G,P = Λ̂M,M and Λ̂G,B = Λ̂G. So φB is just the inclusion
Λ̂G ↪→ Λ̂QG.

Lemma 1.4.4 [Sch15, Proposition 3.1]. The slope map φP preserves the partial orders ‘6G’ on
Λ̂G,P and Λ̂QG in the sense that it maps Λ̂pos

G,P to Λ̂pos,Q
G .
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1.4.5 [Var04, Lemma 2.2], [Sch15, 2.2.1, 2.2.2], [DG15, 7.2.3] The map BunP → BunM
in 1.2.3 induces a bijection on the set of connected components of BunP and BunM . We have
π0(BunP ) ∼= π0(BunM ) ∼= Λ̂G,P . Let degM : BunM → π0(BunM ) ∼= Λ̂G,P and degP : BunP →

BunM → Λ̂G,P .

Definition 1.4.6 [DG15, 7.3.3, 7.3.4]. For any µ ∈ Λ̂+,Q
G , we define Bun6

Gµ
G to be the stack that

associates to any affine scheme S over Fq the groupoid

Bun6
Gµ

G (S) := {G ∈ BunG(S)| for each geometric point s ∈ S, each parabolic
subgroup P and each P -structure P of Gs, we have φP ◦ degP (P) 6Gµ},

where a P -structure of Gs is a P -bundle P on Xs such that P
P
×G ' Gs.

Remark 1.4.7. (a) By [Sch15, Lemma 3.3], the above Definition 1.4.6 is equivalent to

Bun6
Gµ

G (S) := {G ∈ BunG(S)| for each geometric point s ∈ S,
and each B-structure B of Gs, we have degB(B) 6Gµ}

(the argument repeats the proof in [Sch15, Lemma 3.3] by replacing φG(λ̌G) by µ).

(b) By [Sch15, Proposition 3.2 and Remark 3.2.4], the definition of Bun6
Gµ

G in (a) is equivalent
to the Tannakian description:

Bun6
Gµ

G (S) := {G ∈ BunG(S)| for each geometric point s ∈ S,
each B-structure B of Gs and each λ ∈ ΛG, we have degBλ 6 〈µ, λ〉},

where Bλ is the line bundle associated to B and B→ T
λ−→ Gm.

(c) The reason why we use Definition 1.4.6 (rather than its equivalent forms) is that it will
be useful for non-split groups in future works.

Lemma 1.4.8 [DG15, 7.3.4, Proposition 7.3.5]. (a) For any µ ∈ Λ̂+,Q
G , the stack Bun6

Gµ
G is an

open substack of BunG.

(b) For any µ1 6Gµ2, we have an open immersion Bun6
Gµ1

G ↪→ Bun6
Gµ2

G .

(c) We have BunG =
⋃
µ∈Λ̂+,Q

G
Bun6

Gµ
G .

(d) The open substack Bun6
Gµ

G is of finite type.

Definition 1.4.9. For any λ ∈ Λ̂+,Q
G , let Bun

(λ)
G ⊂ BunG be the quasi-compact locally closed

reduced substack defined in [Sch15, Theorem 2.1] and [DG15, Theorem 7.4.3]. It is called a
Harder–Narasimhan stratum of BunG.

1.4.10 [DG15, Corollary 7.4.5] We have

Bun
(λ)
G 6= ∅⇒ λ ∈

⋃
P(G

ι ◦ prP (Λ̂G),

where prP is defined in (1.14) and ι : Λ̂QZM ↪→ Λ̂QG is the inclusion. For any µ ∈ Λ̂+,Q
G , we have

Bun6
Gµ

G =
⋃

λ∈Λ̂+,Q
G , λ6Gµ

Bun
(λ)
G .

The set {λ ∈ Λ̂+,Q
G |λ 6Gµ and Bun

(λ)
G 6= ∅} is finite. This gives another proof of Lemma 1.4.8(d).
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The above open substack Bun6
Gµ

G is not preserved by the action of Ξ on BunG. Now we
introduce open substacks which are preserved by the action of Ξ.

1.4.11 Applying 0.0.6 to group Gad, we define Λ̂Gad , Λ̂+
Gad , Λ̂pos

Gad , Λ̂Q
Gad , Λ̂+,Q

Gad , Λ̂pos,Q
Gad and

the partial order ‘6Gad ’ on Λ̂Gad .
The morphism G� G/ZG = Gad induces a morphism

ΥG : Λ̂QG→ Λ̂Q
Gad . (1.15)

It maps Λ̂pos,Q
G to Λ̂pos,Q

Gad .

Definition 1.4.12. For any µ ∈ Λ̂+,Q
Gad , we define Bun6

Gad
µ

G to be the stack that associates to any
affine scheme S over Fq the groupoid

Bun6
Gad

µ
G (S) := {G ∈ BunG(S)| for each geometric point s ∈ S, each parabolic subgroup P

and each P -structure P on Gs, we have ΥG ◦ φP ◦ degP (P) 6G
ad
µ}.

Remark 1.4.13. For the same reason as in Remark 1.4.7, Definition 1.4.12 is equivalent to [Var04,
Notation 2.1(b)] and [Laf18, (1.3)].

1.4.14 Just as in 1.4.10, for µ ∈ Λ̂+,Q
Gad , we have

Bun6
Gad

µ
G =

⋃
λ∈Λ̂+,Q

G , ΥG(λ)6Gadµ

Bun
(λ)
G .

The set {λ ∈ Λ̂+,Q
G |ΥG(λ) 6G

ad
µ and Bun

(λ)
G 6= ∅} is finite modulo Λ̂ZG .

1.4.15 The action of Ξ on BunG preserves Bun6
Gad

µ
G . We define the quotient Bun6

Gad
µ

G /Ξ.

Lemma 1.4.16. (a) For any µ ∈ Λ̂+,Q
Gad , the stack Bun6

Gad
µ

G is an open substack of BunG.

(b) For any µ1 6G
ad
µ2, we have an open immersion Bun6

Gad
µ1

G ↪→ Bun6
Gad

µ2

G .

(c) The stack BunG is the inductive limit of these open substacks: BunG =
⋃
µ∈Λ̂+,Q

Gad
Bun6

Gad
µ

G .

(d) The stack Bun6
Gad

µ
G /Ξ is of finite type.

Proof. Parts (a), (b) and (c) are induced by Lemma 1.4.8 (see also [Var04, Lemme A.3)]. Part (d)
follows from 1.4.14. 2

Remark 1.4.17. See [Var04, Lemmas 3.1 and 3.7] for another proof of Lemma 1.4.8(d) and
Lemma 1.4.16(d).
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1.5 Harder–Narasimhan stratification of BunM

Let P be a proper parabolic subgroup of G and M its Levi quotient.

1.5.1 Applying 0.0.6 to group M , we define Λ̂M , Λ̂+
M , Λ̂pos

M , Λ̂QM , Λ̂+,Q
M , Λ̂pos,Q

M and the
partial order ‘6M ’ on Λ̂QM .

1.5.2 Sections 1.4.2–1.4.10 work also for M . In particular, let P ′ be a parabolic subgroup
of M ; we have the slope map φP ′ : Λ̂M,P ′ → Λ̂QM and degP ′ : BunP ′ → Λ̂M,P ′ .

Definition 1.5.3. Applying Definition 1.4.9 to M , for any λ ∈ Λ̂+,Q
M , we define a quasi-compact

locally closed substack Bun
(λ)
M ⊂ BunM , called a Harder–Narasimhan stratum of BunM .

Now we introduce Bun6
Gad

µ
M ⊂ BunM which will be used to construct diagram (1.26).

Definition 1.5.4. For any µ ∈ Λ̂+,Q
Gad , we define Bun6

Gad
µ

M to be the stack that associates to any

affine scheme S over Fq the groupoid Bun6
Gad

µ
M (S) :=

{M ∈ BunM (S)| for each geometric point s ∈ S, each parabolic subgroup P ′

of M and each P ′-structure P ′ ofMs, we have ΥG ◦ φP ′ ◦ degP ′(P ′) 6G
ad
µ},

where ΥG : Λ̂QM = Λ̂QG→ Λ̂Q
Gad is defined in (1.15).

Similarly to Lemma 1.4.16, we have

Lemma 1.5.5. (a) For any µ ∈ Λ̂+,Q
Gad , the stack Bun6

Gad
µ

M is an open substack of BunM .

(b) For any µ1 6G
ad
µ2, we have an open immersion Bun6

Gad
µ1

M ↪→ Bun6
Gad

µ2

M .

(c) The stack BunM is the inductive limit of these open substacks: BunM =
⋃
µ∈Λ̂+,Q

Gad
Bun6

Gad
µ

M .

1.5.6 The action of Ξ on BunM preserve Bun6
Gad

µ
M . We define the quotient Bun6

Gad
µ

M /Ξ.
Note that Ξ is a lattice in ZG(F )\ZG(A). However, Ξ is only a discrete subgroup but not a lattice

in ZM (F )\ZM (A) (since P ( G). We will see that Bun6
Gad

µ
M /Ξ is locally of finite type but not

necessarily of finite type.

1.5.7 Note that Λ̂G,P = Λ̂M,M . Consider the composition of morphisms

BunM
degM−−−→ Λ̂M,M → Λ̂QM,M ' Λ̂QZM � Λ̂QZM/ZG , (1.16)

where degM is defined in 1.4.5. We denote by AM the image of Λ̂M,M in Λ̂QZM/ZG . For any

ν ∈ Λ̂QZM/ZG , we denote by BunνM its inverse image in BunM . It is non-empty if and only if
ν ∈ AM .

Definition 1.5.8. We define Bun6
Gad

µ, ν
M to be the intersection of Bun6

Gad
µ

M and BunνM .
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1.5.9 The stack Bun6
Gad

µ, ν
M is open and closed in Bun6

Gad
µ

M and is open in BunνM . We have
a decomposition

Bun6
Gad

µ
M =

⊔
ν∈Λ̂Q

ZM/ZG

Bun6
Gad

µ, ν
M . (1.17)

1.5.10 Just as in 1.4.14, we have

Bun6
Gad

µ
M =

⋃
λ∈Λ̂+,Q

M , ΥG(λ)6Gadµ

Bun
(λ)
M .

1.5.11 Similarly to (1.14), we define

prad
P : Λ̂Q

Gad → Λ̂QZM/ZG . (1.18)

Taking into account that Λ̂G = Λ̂M and Λ̂G,P = Λ̂M,M , for any λ ∈ Λ̂+,Q
M , we deduce that

Bun
(λ)
M ⊂ BunνM if and only if ν = prad

P ◦ΥG(λ).

1.5.12 We deduce from 1.5.10 and 1.5.11 that

Bun6
Gad

µ, ν
M =

⋃
λ∈Λ̂+,Q

M , ΥG(λ)6Gadµ, prad
P ◦ΥG(λ)=ν

Bun
(λ)
M . (1.19)

1.5.13 We denote by Λ̂pos,Q
ZM/ZG

:= prad
P (Λ̂pos,Q

Gad ). We introduce the partial order on Λ̂QZM/ZG
by

µ1 6
Gad

µ2 ⇔ µ2 − µ1 ∈ Λ̂pos,Q
ZM/ZG

.

By definition, for γ̌ ∈ Γ̂M , we have prad
P ◦ΥG(γ̌) = 0. By [Sch15, Proposition 3.1], for γ̌ ∈ Γ̂G− Γ̂M

we have prad
P ◦ΥG(γ̌) > 0 and these prad

P ◦ΥG(γ̌) are linearly independent. Thus for λ1, λ2 ∈ Λ̂Q
Gad

and λ1 6G
ad
λ2, we have prad

P (λ1) 6G
ad

prad
P (λ2). Also, the inclusion Λ̂QZM/ZG ⊂ Λ̂Q

Gad maps Λ̂pos,Q
ZM/ZG

to Λ̂pos,Q
Gad .

Lemma 1.5.14. Let µ ∈ Λ̂+,Q
Gad . Then the stack Bun6

Gad
µ, ν

M is empty unless ν ∈ AM defined in 1.5.7
and ν 6Gad

prad
P (µ).

Proof. The first condition follows from 1.5.7. To prove the second condition, note that for the
set {λ ∈ Λ̂+,Q

M | ΥG(λ) 6Gad
µ, prad

P ◦ΥG(λ) = ν} to be non-empty, by 1.5.13 we must have
ν 6G

ad
prad
P (µ). 2

1.5.15 Let M = M/ZG as in 1.3.4. For λ, µ ∈ Λ̂Q
Gad , we define λ 6Mµ if and only if µ− λ

is a linear combination of simple coroots of M with coefficients in Q>0 modulo Λ̂QZG .

1.5.16 Let λ, µ ∈ Λ̂Q
Gad and λ 6Gad

µ. We write λ = µ−
∑

γ̌∈Γ̂G
cγ̌ΥG(γ̌) for some cγ̌ ∈ Q>0.

We deduce from 1.5.13 that prad
P (λ) = prad

P (µ) if and only if cγ̌ = 0 for all γ̌ ∈ Γ̂G − Γ̂M . Hence

λ 6G
ad
µ and prad

P (λ) = prad
P (µ) ⇔ λ 6Mµ. (1.20)

1093

https://doi.org/10.1112/S0010437X20007058 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007058


C. Xue

1.5.17 Let µ ∈ Λ̂+,Q
Gad and ν 6G

ad
prad
P (µ). For every γ̌ ∈ Γ̂G − Γ̂M , let cγ ∈ Q>0 be the

unique coefficient such that

prad
P (µ)−

∑
γ̌∈Γ̂G−Γ̂M

cγ prad
P ◦ΥG(γ̌) = ν.

We define µν := µ−
∑

γ̌∈Γ̂G−Γ̂M
cγΥG(γ̌). As in 1.5.16, we deduce that

λ 6G
ad
µ and prad

P (λ) = ν ⇔ λ 6Mµν . (1.21)

1.5.18 The action of Ξ on BunM preserves Bun6
Gad

µ, ν
M . We define the quotient

Bun6
Gad

µ, ν
M /Ξ.

Lemma 1.5.19. The stack Bun6
Gad

µ, ν
M /Ξ is of finite type.

Proof. By (1.21), we have

{λ ∈ Λ̂+,Q
M | ΥG(λ) 6G

ad
µ, prad

P ◦ΥG(λ) = ν} = {λ ∈ Λ̂+,Q
M | ΥG(λ) 6Mµν}.

We deduce from 1.4.10 (applied to M) that the set {λ ∈ Λ̂+,Q
M | ΥG(λ) 6G

ad
µ, prad

P ◦ΥG(λ) = ν,

Bun
(λ)
M 6= ∅} is finite modulo Λ̂ZG . By Definition 1.5.3, Bun

(λ)
M is of finite type. From 1.5.12 we

deduce the lemma. 2

1.5.20 By Lemma 1.5.14, the decomposition (1.17) is in fact indexed by a translated cone
in Λ̂QZM/ZG :

Λ̂µZM/ZG := {ν ∈ Λ̂QZM/ZG , ν 6
Gad

prad
P (µ)}. (1.22)

We deduce that

Bun6
Gad

µ
M =

⊔
ν∈Λ̂µ

ZM/ZG

Bun6
Gad

µ, ν
M (1.23)

and

Bun6
Gad

µ
M /Ξ =

⊔
ν∈Λ̂µ

ZM/ZG

Bun6
Gad

µ, ν
M /Ξ. (1.24)

1.6 Harder–Narasimhan stratification of parabolic induction

Recall that we have morphisms (1.3): BunG
iBun

←−− BunP
πBun

−−−→ BunM .

Definition 1.6.1. Let µ ∈ Λ̂+,Q
Gad . We define Bun6

Gad
µ

P to be the inverse image of Bun6
Gad

µ
G in

BunP .

Lemma 1.6.2. The image of Bun6
Gad

µ
P in BunM is included in Bun6

Gad
µ

M .
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Proof. Let P ∈ Bun6
Gad

µ
P and letM be its image in BunM . We will check thatM∈ Bun6

Gad
µ

M .
For any parabolic subgroup P ′ of M , let M ′ be its Levi quotient. Let P ′ be a P ′-structure ofM

andM′ := P ′
P ′

×M ′. By Definition 1.5.4, we need to prove that ΥG ◦ φP ′ ◦ degP ′(P ′) 6G
ad
µ.

Let P ′′ := P ×
M
P ′. It is a parabolic subgroup of G with Levi quotient M ′. We have the

following.
P ′′

""}}
P
!!��

P ′
""||

G M M ′

By [DG16, Lemma 2.5.8], we can define a P ′′-bundle P ′′ := P ×
M
P ′. We have degP ′ P ′ =

degM ′M′ = degP ′′ P ′′. Taking into account that Λ̂QG = Λ̂QM , we deduce that ΥG ◦ φP ′ ◦
degP ′(P ′) = ΥG ◦φP ′′ ◦ degP ′′(P ′′) 6G

ad
µ, where the last inequality follows from the definition

of Bun6
Gad

µ
P . 2

1.6.3 By Lemma 1.6.2, morphisms (1.3) induce morphisms:

Bun6
Gad

µ
G ← Bun6

Gad
µ

P → Bun6
Gad

µ
M . (1.25)

The group Ξ acts on all these stacks. All the morphisms are Ξ-equivariant. Thus morphisms
(1.25) induce morphisms:

Bun6
Gad

µ
G /Ξ← Bun6

Gad
µ

P /Ξ→ Bun6
Gad

µ
M /Ξ. (1.26)

1.6.4 For any ν ∈ Λ̂QZM/ZG , we define BunνP to be the inverse image of BunνM in BunP . We

define Bun6
Gad

µ, ν
P := Bun6

Gad
µ

P ∩BunνP . Morphisms (1.26) induce morphisms:

Bun6
Gad

µ
G /Ξ← Bun6

Gad
µ, ν

P /Ξ→ Bun6
Gad

µ, ν
M /Ξ. (1.27)

1.7 Harder–Narasimhan stratification of stack of shtukas
Notation 1.7.1. In the remaining part of the paper, we will only use the truncations indexed by
‘6Gad ’ (rather than ‘6G’). To simplify the notation, from now on, ‘6’ means ‘6Gad ’.

Definition 1.7.2. Let µ ∈ Λ̂+,Q
Gad (respectively λ ∈ Λ̂+,Q

G ). We define Cht6µG,N,I (respectively

Cht
(λ)
G,N,I) to be the inverse image of Bun6µG (respectively Bun

(λ)
G ) by the morphism

ChtG,N,I → BunG, ((xi)i∈I , (G, ψ)
φ−→ (τG, τψ)) 7→ G.

Similarly, we define Cht6µM,N,I (respectively Cht6µ, νM,N,I , Cht
(λ)
M,N,I) using the morphism ChtM,N,I →

BunM and Cht6µP,N,I (respectively Cht6µ, νP,N,I) using the morphism ChtP,N,I → BunP .
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1.7.3 The following diagram is commutative

ChtG,N,I

��

ChtP,N,I
ioo

��

π // ChtM,N,I

��
BunG BunP

iBun
oo πBun

// BunM

(1.28)

where the first line is defined in (1.4). We deduce that Cht6µP,N,I is the inverse image of Cht6µG,N,I
in ChtP,N,I .

Lemma 1.7.4. The image of Cht6µP,N,I in ChtM,N,I is included in Cht6µM,N,I .

Proof. This follows from Lemma 1.6.2 and the commutativity of (1.28). 2

1.7.5 Just as in 1.6.3 and 1.6.4, morphisms (1.4) induce morphisms:

Cht6µG,N,I /Ξ← Cht6µP,N,I /Ξ→ Cht6µM,N,I /Ξ, (1.29)

Cht6µG,N,I /Ξ← Cht6µ, νP,N,I /Ξ→ Cht6µ, νM,N,I /Ξ. (1.30)

We deduce from (1.24) a decomposition:

Cht6µM,N,I /Ξ =
⊔

ν∈Λ̂µ
ZM/ZG

Cht6µ, νM,N,I /Ξ. (1.31)

2. Cohomology of stacks of shtukas

In §§ 2.1–2.5 we recall the definition of the cohomology of stacks of G-shtukas with values in
perverse sheaves coming from [GI,∞\GrG,I ] via εG,N,I,∞, i.e. coming from GI,∞-equivariant
perverse sheaves over GrG,I . These sections are based on [Laf18, §§ 1, 2 and 4].

In § 2.6 we define the cohomology of stacks of M -shtukas.

Notation 2.0.1. Our results are of geometric nature, i.e. we will not consider the action of
Gal(Fq/Fq). From now on, we pass to the base change over Fq. We keep the same notations
X, BunG,N , ChtG,N,I , GrG,I , etc., but now everything is over Fq and the fiber products are taken
over Fq.

2.1 Reminder of a generalization of the geometric Satake equivalence
2.1.1 The geometric Satake equivalence for the affine grassmannian is established in [MV07]

over the ground field C. By [MV07, § 14], [Gai07, § 1.6] and [Zhu17], the constructions in [MV07]
carries over to the case of an arbitrary algebraically closed ground field of characteristic prime
to `.

2.1.2 Let Ĝ be the Langlands dual group of G over Q` defined by the geometric Satake
equivalence for the affine grassmannian, as in [MV07, Theorem 7.3] and [Gai07, Theorem 2.2].

2.1.3 [MV07, § 2], [Gai01, 1.1.1 and § 6] The Beilinson–Drinfeld affine grassmannian GrG,I
is an ind-scheme. Every finite-dimensional closed subscheme of GrG,I is contained in some finite-
dimensional closed subscheme of GrG,I stable under the action of GI,∞.

We denote by PervGI,∞(GrG,I ,Q`) the category of GI,∞-equivariant perverse sheaves with
Q`-coefficients on GrG,I (for the perverse normalization relative to XI).
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2.1.4 As in [Gai07, 2.5], we denote by P Ĝ,I the category of perverse sheaves with Q`-
coefficients onXI (for the perverse normalization relative to XI) endowed with an extra structure
given in [Gai07].

Theorem 2.1.5 [Gai07, Theorem 2.6]. There is a canonical equivalence of categories

PervGI,∞(GrG,I ,Q`)
∼
→ P Ĝ,I ,

compatible with the tensor structures defined in [Gai07].

2.1.6 We denote by RepQ`(Ĝ
I) the category of finite-dimensional Q`-linear representations

of ĜI . We have a fully faithful functor RepQ`(Ĝ
I)→ P Ĝ,I : W 7→ W ⊗ Q`XI . The composition

of this functor and the inverse functor P Ĝ,I ∼
→ PervGI,∞(GrG,I ,Q`) in Theorem 2.1.5 gives the

following.

Corollary 2.1.7. We have a canonical natural fully faithful Q`-linear fiber functor:

SatG,I : RepQ`(Ĝ
I)→ PervGI,∞(GrG,I ,Q`).

Definition 2.1.8. For any W ∈ RepQ`(Ĝ
I), we define SG,I,W := SatG,I(W ). We define GrG,I,W

to be the support of SG,I,W .

2.1.9 When W = W1 ⊕W2, by the functoriality of SatG,I , we have SG,I,W = SG,I,W1 ⊕
SG,I,W2 . Then GrG,I,W = GrG,I,W1 ∪GrG,I,W2 .

2.1.10 By [Laf18, Théroème 1.17], the above definition of GrG,I,W is equivalent to [Laf18,
Définition 1.12 and the definition after (1.14)] (which describes GrG,I,W as a generalization of
the Zariski closure of the Schubert cell in affine grassmannian). It is well known that GrG,I,W is
a closed subscheme of GrG,I and that it is projective (see [MV07, §§ 2–3], [Zhu17, Proposition
2.1.5]). The ind-scheme GrG,I is an inductive limit of GrG,I,W . ‘

Remark 2.1.11. By [Laf18, Théroème 1.17], when W is irreducible, the perverse sheaf SG,I,W is
(not canonically) isomorphic to the intersection complex (with coefficient in Q` and the perverse
normalization relative to XI) of GrG,I,W .

2.2 Satake perverse sheaves on quotient stacks
The stacks [GI,∞\GrG,I ] or [GI,∞\GrG,I,W ] are not algebraic because the group scheme GI,∞ is
of infinite dimension. For technical reasons, we will need algebraic stacks.

Proposition 2.2.1 [Gai01, 1.1.1]. For d ∈ Z>0 large enough depending on W , the action of
Ker(GI,∞ → GI,d) on GrG,I,W is trivial. Thus the action of GI,∞ on GrG,I,W factors through
GI,d.

2.2.2 For d as in Proposition 2.2.1, we define the quotient stack [GI,d\GrG,I,W ]. Since the
group scheme GI,d is of finite dimension, the stack [GI,d\GrG,I,W ] is algebraic.
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2.2.3 Let SG,I,W be the GI,∞-equivariant perverse sheaf on GrG,I,W defined in
Definition 2.1.8. By Proposition 2.2.1, the action of GI,∞ on SG,I,W factors through GI,d. Since
the kernel of GI,∞ � GI,d is connected, by [BBDG82, Proposition 4.2.5], we deduce that SG,I,W
is also GI,d-equivariant.

Let ξG,I,d : GrG,I,W → [GI,d\GrG,I,W ] be the canonical morphism. It is smooth of dimension
dimGI,d. By [BBDG82, Corollaire 4.2.6.2] and the discussion after it, there exists a perverse sheaf
(up to shift [dimGI,d]) (for the perverse normalization relative to XI) SdG,I,W on [GI,d\GrG,I,W ]

such that SG,I,W = ξ∗G,I,dSdG,I,W .

2.2.4 Let d 6 d′ be two integers large enough as in Proposition 2.2.1. Then the morphisms
GI,∞ � GI,d′ � GI,d induce a commutative diagram.

GrG,I,W

uu
ξG,I,d′

��

ξG,I,d

))
[GI,∞\GrG,I,W ] // [GI,d′\GrG,I,W ]

prd
d′ // [GI,d\GrG,I,W ]

(2.1)

We have (ξG,I,d′)
∗Sd′G,I,W = SG,I,W = (ξG,I,d)

∗SdG,I,W = (ξG,I,d′)
∗(prdd′)

∗SdG,I,W . By [BBDG82,
Proposition 4.2.5], the functor (ξG,I,d′)

∗ (up to shift) is fully faithful. We deduce that Sd′G,I,W =

(prdd′)
∗SdG,I,W .

2.2.5 By Proposition 2.2.1, the action of Gad
I,∞ on GrG,I,W factors through Gad

I,d. We define
the quotient stack [Gad

I,d\GrG,I,W ].
As in the discussion after [Laf18, Définition 2.14], since (ZG)I,∞ acts trivially on GrG,I,W , the

GI,∞-equivariant perverse sheaf SG,I,W on GrG,I,W is also Gad
I,∞-equivariant and Gad

I,d-equivariant.
Indeed, by 2.1.9 it is enough to prove this forW irreducible. By Remark 2.1.11, in this case SG,I,W
is isomorphic to the intersection complex of GrG,I,W , hence is Gad

I,∞-equivariant.
Just as in 2.2.3, let ξad

G,I,d : GrG,I,W → [Gad
I,d\GrG,I,W ] be the canonical morphism. There

exists a perverse sheaf (up to shift [dimGad
I,d]) (for the perverse normalization relative to XI)

Sad, d
G,I,W on [Gad

I,d\GrG,I,W ] such that SG,I,W = (ξad
G,I,d)

∗Sad, d
G,I,W .

2.3 Representability of stacks of shtukas
Definition 2.3.1. We define ChtG,N,I,W to be the inverse image of [GI,∞\GrG,I,W ] in ChtG,N,I
by εG,N,I,∞.

2.3.2 ChtG,N,I is an inductive limit of closed subtacks ChtG,N,I,W .

2.3.3 Let µ ∈ Λ̂+,Q
Gad . We define Cht6µG,N,I,W := ChtG,N,I,W ∩Cht6µG,N,I , where Cht6µG,N,I is

defined in Definition 1.7.2. We define the quotient ChtG,N,I,W /Ξ and Cht6µG,N,I,W /Ξ.

Proposition 2.3.4 [Var04, Proposition 2.16]. The stack ChtG,N,I,W is a Deligne–Mumford stack
locally of finite type. The stack Cht6µG,N,I,W /Ξ is a Deligne–Mumford stack of finite type.

2.3.5 The stack ChtG,N,I,W /Ξ = lim−→µ∈Λ̂+,Q
Gad

Cht6µG,N,I,W /Ξ is locally of finite type.
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2.4 Satake perverse sheaf on stacks of shtukas
2.4.1 For any d ∈ Z>0 large enough as in Proposition 2.2.1, we define εG,N,I,d to be the

composition of morphisms

εG,N,I,d : ChtG,N,I,W
εG,N,I,∞−−−−−→ [GI,∞\GrG,I,W ]→ [GI,d\GrG,I,W ]. (2.2)

This is morphism (2.3) in [Laf18].
Just as in 1.3.2, we define a morphism

εΞG,N,I,d : ChtG,N,I,W /Ξ→ [Gad
I,d\GrG,I,W ]. (2.3)

This is morphism (2.10) in [Laf18].

2.4.2 We denote by dimXI GI,d the relative dimension of GI,d over XI and by |I| the
cardinal of I. We have dimXI GI,d = d · |I| · dimG.

Proposition 2.4.3 [Laf18, Proposition 2.8]. The morphisms εG,N,I,d (respectively εΞG,N,I,d) is
smooth of dimension dimXI GI,d (respectively dimXI Gad

I,d).

2.4.4 For all d ∈ Z>0 large enough as in Proposition 2.2.1, we have morphisms over
(XrN)I .

ChtG,N,I,W
εG,N,I,d

))

GrG,I,W
ξG,I,d

uu
[GI,d\GrG,I,W ]

We deduce from Proposition 2.4.3 that dim ChtG,N,I,W = dim GrG,I,W . We refer to [Laf18,
Proposition 2.11] for the fact that ChtG,N,I,W is locally isomorphic to GrG,I,W for the étale
topology. We will not use this result in this paper.

Definition 2.4.5. Let d ∈ Z>0 large enough as in Proposition 2.2.1. We define FG,N,I,W :=
(εG,N,I,d)

∗SdG,I,W .

Remark 2.4.6. As in 2.2.4, let d, d′ ∈ Z>0 both large enough with d 6 d′. Then we have
εG,N,I,d = prdd′ ◦ εG,N,I,d′ . Thus (εG,N,I,d)

∗SdG,I,W = (εG,N,I,d′)
∗(prdd′)

∗SdG,I,W = (εG,N,I,d′)
∗Sd′G,I,W .

Hence FG,N,I,W is independent of d.

Definition 2.4.7. We define FΞ
G,N,I,W := (εΞG,N,I,d)

∗Sad, d
G,I,W .

Just as in Remark 2.4.6, FΞ
G,N,I,W is independent of d.

Lemma 2.4.8. The complex FG,N,I,W (respectively FΞ
G,N,I,W ) is a perverse sheaf (for the

perverse normalization relative to (XrN)I) on ChtG,N,I (respectively ChtG,N,I /Ξ) supported
on ChtG,N,I,W (respectively ChtG,N,I,W /Ξ) (in the context of 0.0.13). When W is irreducible,
FG,N,I,W (respectively FΞ

G,N,I,W ) is (not canonically) isomorphic to the intersection complex (with
coefficient in Q` and the perverse normalization relative to (XrN)I) of ChtG,N,I,W (respectively
ChtG,N,I,W /Ξ).

Proof. The lemma follows from Corollary 2.1.7, Remark 2.1.11 and Proposition 2.4.3. 2
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2.5 Cohomology of stacks of G-shtukas
Recall that we have the morphism of paws pG : ChtG,I,N /Ξ→ (XrN)I .

Definition 2.5.1 [Laf18, Definitions 4.1 and 4.7]. For any µ ∈ Λ̂+,Q
Gad , we define

H6µG,N,I,W := R(pG)!(FΞ
G,N,I,W

∣∣
Cht6µG,N,I,W /Ξ

) ∈ Db
c((XrN)I ,Q`).

For any j ∈ Z, we define degree j cohomology sheaf (for the ordinary t-structure)

Hj, 6µG,N,I,W := Rj(pG)!(FΞ
G,N,I,W

∣∣
Cht6µG,N,I,W /Ξ

).

This is a Q`-constructible sheaf on (XrN)I .

The complex H6µG,N,I,W and the sheaf Hj, 6µG,N,I,W depend on Ξ. We do not write Ξ in the index
to simplify the notations.

2.5.2 Let µ1, µ2 ∈ Λ̂+,Q
Gad and µ1 6 µ2. We have an open immersion:

Cht6µ1

G,N,I,W /Ξ ↪→ Cht6µ2

G,N,I,W /Ξ. (2.4)

For any j, morphism (2.4) induces a morphism of sheaves:

Hj,6µ1

G,N,I,W → H
j,6µ2

G,N,I,W .

Definition 2.5.3. We define
HjG,N,I,W := lim−→

µ

Hj, 6µG,N,I,W

as an inductive limit in the category of constructible sheaves on (XrN)I .

2.5.4 Let ηI be a geometric point over the generic point ηI of XI .

Definition 2.5.5. We define

Hj,6µ
G,N,I,W := Hj,6µG,N,I,W

∣∣∣
ηI
, Hj

G,N,I,W := HjG,N,I,W
∣∣∣
ηI
. (2.5)

By definition Hj,6µ
G,N,I,W is a Q`-vector space of finite dimension. We have Hj

G,N,I,W =

lim−→µ
Hj, 6µ
G,N,I,W .

2.6 Cohomology of stacks of M -shtukas
Let P be a proper parabolic subgroup of G and let M be its Levi quotient.

2.6.1 Let M̂ be the Langlands dual group of M over Q` defined by the geometric Satake
equivalence. The compatibility between the geometric Satake equivalence and the constant term
functor along P (that we will recall in Theorem 3.2.6 below) induces a canonical inclusion M̂ ↪→ Ĝ

(compatible with pinning).
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2.6.2 We view W ∈ RepQ`(Ĝ
I) as a representation of M̂ I via M̂ I ↪→ ĜI . As in §§ 2.1–2.4,

we define GrM,I,W and ChtM,N,I,W . For d ∈ Z>0 large enough such that the action of MI,∞ on
GrM,I,W factors through MI,d, we define

εM,N,I,d : ChtM,N,I,W → [MI,d\GrM,I,W ],

εΞM,N,I,d : ChtM,N,I,W /Ξ→ [M I,d\GrM,I,W ].

We define perverse sheaf SM,I,W on GrM,I,W , perverse sheaves (up to shift) SdM,I,W on
[MI,d\GrM,I,W ] and Sad,d

M,I,W on [M I,d\GrM,I,W ]. We define

FM,N,I,W := ε∗M,N,I,dSdM,I,W and FΞ
M,N,I,W := (εΞM,N,I,d)

∗Sad,d
M,I,W .

2.6.3 Applying [Var04, Proposition 2.16] to M , we deduce that ChtM,I,N,W is a Deligne–
Mumford stack locally of finite type and that for λ ∈ Λ̂+,Q

M , the Deligne–Mumford stack
Cht

(λ)
M,I,N,W (defined in Definition 1.7.2) is of finite type.
Let µ ∈ Λ̂+,Q

Gad . We define Cht6µM,N,I,W := ChtM,N,I,W ∩Cht6µM,N,I , where Cht6µM,N,I is defined
in Definition 1.7.2. We define the quotient ChtM,N,I,W /Ξ and Cht6µM,N,I,W /Ξ. As in 1.5.6, Ξ is
a lattice in ZG(F )\ZG(A) but only a discrete subgroup in ZM (F )\ZM (A). The decomposition
(1.31) induces a decomposition

Cht6µM,N,I,W /Ξ =
⊔

ν∈Λ̂µ
ZM/ZG

Cht6µ, νM,N,I,W /Ξ, (2.6)

where each Cht6µ, νM,I,N,W /Ξ is of finite type (just as in Lemma 1.5.19).
Recall that we have the morphism of paws pM : ChtM,I,N /Ξ→ (XrN)I .

Definition 2.6.4. For any µ ∈ Λ̂+,Q
Gad and ν ∈ Λ̂QZM/ZG , we define

H6µ, νM,N,I,W := R(pM )!(FΞ
M,I,N,W

∣∣
Cht6µ, νM,N,I,W /Ξ

) ∈ Db
c((XrN)I ,Q`).

For any j ∈ Z, we define degree j cohomology sheaf

Hj, 6µ, νM,N,I,W := Rj(pM )!(FΞ
M,I,N,W

∣∣
Cht6µ, νM,N,I,W /Ξ

).

2.6.5 If ν /∈ Λ̂µZM/ZG , by Lemma 1.5.14, Cht6µ, νM,I,N,W /Ξ = ∅. In this case H6µ, νM,N,I,W = 0.

Definition 2.6.6. Let ηI be the geometric generic point of XI fixed in 2.5.4. We define

Hj,6µ, ν
M,N,I,W := Hj,6µ, νM,N,I,W

∣∣∣
ηI
. (2.7)

This is a finite-dimensional Q`-vector space. We define

Hj,6µ
M,N,I,W :=

∏
ν∈Λ̂µ

ZM/ZG

Hj,6µ, ν
M,N,I,W . (2.8)
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2.6.7 Let µ1, µ2 ∈ Λ̂+,Q
Gad and µ1 6 µ2. We have an open immersion:

Cht6µ1

M,N,I,W /Ξ ↪→ Cht6µ2

M,N,I,W /Ξ. (2.9)

For any j, morphism (2.9) induces a morphism of vector spaces:

Hj,6µ1

M,N,I,W → Hj,6µ2

M,N,I,W .

Definition 2.6.8. We define
Hj
M,N,I,W := lim−→

µ

Hj, 6µ
M,N,I,W

as an inductive limit in the category of Q`-vector spaces.

Definition 2.6.9. For any ν ∈ Λ̂QZM/ZG , we define Hj, ν
M,N,I,W := lim−→µ

Hj,6µ, ν
M,N,I,W as an inductive

limit in the category of Q`-vector spaces.

3. Constant term morphisms and cuspidal cohomology

Let P be a parabolic subgroup of G and M its Levi quotient. Let W ∈ RepQ`(Ĝ
I). The goal of

this section is to construct a constant term morphism from Hj
G,N,I,W to Hj

M,N,I,W (in fact, to a
variant H ′ jM,N,I,W of Hj

M,N,I,W defined in § 3.4 below). There are two steps.
First, we will construct a commutative diagram

ChtP,N,I,W /Ξ
i

uu
π
**

pP

��

ChtG,N,I,W /Ξ

pG ))

ChtM,N,I,W /Ξ

pMuu
(XrN)I

(3.1)

where the morphism π is of finite type. Therefore the complex π!i
∗FΞ

G,N,I,W on ChtM,N,I,W /Ξ is
well defined in Db

c(ChtM,N,I,W /Ξ,Q`) (in the context of 0.0.13). We will construct a canonical
morphism of complexes on ChtM,N,I,W /Ξ:

π!i
∗FΞ

G,N,I,W → FΞ
M,N,I,W . (3.2)

Second, the cohomological correspondence given by (3.1) and (3.2) will give a morphism from
Hj
G,N,I,W to Hj

M,N,I,W .

3.1 Some geometry of the parabolic induction diagram

Recall that we have morphisms over XI in (1.5): GrG,I
i0
←− GrP,I

π0

−→ GrM,I .

Proposition 3.1.1. We have (i0)−1(GrG,I,W ) ⊂ (π0)−1(GrM,I,W ), where the inverse images are
in the sense of reduced subschemes in GrP,I .

Proof. It is enough to prove the inclusion for each fiber over XI . By 1.1.12, we reduce the case
of the Beilinson–Drinfeld affine grassmannian with paws indexed by I to the case of the usual
affine grassmannian GrG = GK/GO.
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When P = B, the statement follows from [MV07, Theorem 3.2]. More concretely, for ω a
dominant coweight of G, we denote by GrG,ω the Zariski closure of the Schubert cell defined by
ω in GrG. For ν a coweight of T , we denote by GrT,ν the component of GrT (which is discrete)
associated to ν. We denote by Cω the set of coweights of G which areW -conjugated to a dominant
coweight 6 ω (where the order is taken in the coweight lattice of G). By [MV07, Theorem 3.2]
the subscheme (i0)−1(GrG,ω)∩ (π0)−1(GrT,ν) in GrB is non-empty if and only if ν ∈ Cω. Hence

π0((i0)−1(GrG,ω)) =
⊔
ν∈Cω

GrT,ν . (3.3)

For general P with Levi quotient M , we denote by B′ the Borel subgroup of M . We use the
following diagram, where the square is Cartesian.

GrB πB
B′

$$
iBP
zz

GrP πPM
$$

iPG
zz

GrB′ πB
′

T

$$
iB
′

M

zz
GrG GrM GrT

Since the square is Cartesian, we have

(πB
′

T )(iB
′

M )−1(πPM )(iPG)−1GrG,ω = (πB
′

T ◦ πBB′)(iPG ◦ iBP )−1GrG,ω
(3.3)
=

⊔
ν∈Cω

GrT,ν . (3.4)

For any dominant coweight λ of M , we denote by GrM,λ the Zariski closure of the Schubert
cell defined by λ in GrM . Applying [MV07, Theorem 3.2] to GrM ← GrB′ → GrT , we have

(πB
′

T )(iB
′

M )−1GrM,λ =
⊔
ν∈Cλ

GrT,ν . (3.5)

The subscheme (iPG)−1GrG,ω in GrP is stable under the action of PO. The subscheme
(πPM )(iPG)−1GrG,ω in GrM is stable under the action of MO, so is a union of strata in GrM .
We deduce from (3.4) and (3.5) that GrM,λ can be in (πPM )(iPG)−1GrG,ω only if λ ∈ Cω. Thus

(πPM )(iPG)−1GrG,ω ⊂
⋃

λ∈Cω∩Λ̂+
M

GrM,λ. 2

3.1.2 We define GrP,I,W := (i0)−1(GrG,I,W ). As a consequence of Proposition 3.1.1,
morphisms (1.5) induce morphisms over XI :

GrG,I,W
i0
←− GrP,I,W

π0

−→ GrM,I,W . (3.6)

3.1.3 We deduce from the commutative diagram (1.6) that

i−1(ChtG,N,I,W ) ⊂ π−1(ChtM,N,I,W ),

where the inverse images are in the sense of reduced substacks in ChtP,N,I . We define
ChtP,N,I,W := i−1(ChtG,N,I,W ). Morphisms in (1.4) induce morphisms over (XrN)I :

ChtG,N,I,W
i
←− ChtP,N,I,W

π−→ ChtP,N,I,W . (3.7)
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3.1.4 Let d ∈ Z>0 large enough depending onW as in Proposition 2.2.1 applied to GrG,I,W
and to GrM,I,W . To simplify the notations, we write εG,d for εG,N,I,d defined in 2.4.1 and εM,d for
εM,N,I,d defined in 2.6.2. Similarly we define εP,d to be the composition

ChtP,N,I,W → [PI,∞\GrP,I,W ]→ [PI,d\GrP,I,W ].

We deduce from the commutative diagram (1.6), morphisms (3.6) and (3.7) a commutative
diagram of algebraic stacks.

ChtG,N,I,W

εG,d

��

ChtP,N,I,W
ioo

εP,d

��

π // ChtM,N,I,W

εM,d

��
[GI,d\GrG,I,W ] [PI,d\GrP,I,W ]

i0doo
π0
d // [MI,d\GrM,I,W ]

(3.8)

3.1.5 The right square in (3.8) is not Cartesian. We have a commutative diagram, where
the square is Cartesian.

ChtP,N,I,W

εP,d

  

πd
''

π

++
C̃htM,N,I,W

ε̃M,d
��

π̃0
d

// ChtM,N,I,W

εM,d

��
[PI,d\GrP,I,W ]

π0
d

// [MI,d\GrM,I,W ]

(3.9)

Remark 3.1.6. Note that C̃htM,N,I,W depends on the choice of d. We do not write d in index to
shorten the notation.

Definition 3.1.7. Let U be the unipotent radical of P . We have P/U = M . Applying
Definition 1.1.13 to U , we define the group scheme UI,d over XI .

Lemma 3.1.8. The morphism πd is smooth of relative dimension dimXI UI,d.

The following proof was suggested to the author by a referee.

Proof. Proposition 2.4.3 works also for P and M . Hence the morphism εP,d is smooth of relative
dimension dimXI PI,d and the morphism εM,d (hence ε̃M,d) is smooth of relative dimension
dimXI MI,d. Thus to prove that πd is smooth, it is enough to show that it induces a surjective
map between relative tangent spaces.

For any closed point xP = ((xi),P → τP) of ChtP,N,I,W , let xM := πd(xP ). We have the
canonical morphism

TεP,d(xP )→ Tε̃M,d(xM ), (3.10)

where TεP,d(xP ) (respectively Tε̃M,d(xM )) is the tangent space of ChtP,N,I,W (respectively
C̃htM,N,I,W ) at xP (respectively xM ) relative to [PI,d\GrP,I,W ].
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Let y = εP,d(xP ). By the proof of [Laf18, Proposition 2.8], we have a Cartesian square

ε−1
P,d(y) //

��

BunP,N+d
∑
xi

(bP1 , b
P
2 )

��
BunP,N

(Id,Id)// BunP,N ×BunP,N

(3.11)

where bP1 is a smooth morphism (which is the forgetful morphism of the level structure on d
∑
xi)

and bP2 has zero differential (because it is the composition of the Frobenius morphism with some
other morphism). We have TεP,d(xP ) = Tbp1(xP ) (see for example [Laf97, I. 2. Proposition 1]). It

is well known that BunP,N+d
∑
xi

bP1−→ BunP,N is a Pd∑xi-torsor, where Pd
∑
xi is defined in 0.0.8.

We deduce that Tbp1(xP ) = Lie(Pd
∑
xi).

Similarly, we have a Cartesian square (taking into account that ε̃M,d
−1(y) = ε−1

M,d(π
0
d(y)))

ε̃M,d
−1(y) //

��

BunM,N+d
∑
xi

(bM1 , bM2 )

��
BunM,N

(Id,Id) // BunM,N ×BunM,N

(3.12)

where bM1 is a smooth morphism (which is the forgetful morphism of the level structure on d
∑
xi)

and bM2 has zero differential. We deduce that Tε̃M,d(xM ) = TbM1
(xM ) = Lie(Md

∑
xi), whereMd

∑
xi

is defined in 0.0.8.
Morphism (3.10) is the canonical morphism Lie(Pd

∑
xi)→ Lie(Md

∑
xi) induced by P �M .

Hence it is surjective. We deduce also that the relative tangent space of πd is Lie(Ud
∑
xi). 2

3.2 Compatibility of the geometric Satake equivalence and parabolic induction
The goal of this section is to recall (3.17) and deduce (3.20), which is the key ingredient for the
next section.

3.2.1 We apply Definition 1.1.11 to Gm and denote by GrGm,I the associated reduced
ind-scheme. We denote by ρG (respectively ρM ) the half sum of positive roots of G
(respectively M). Since 2(ρG − ρM ) is a character of M , the morphism 2(ρG − ρM ) : M → Gm
induces a morphism GrM,I → GrGm,I by sending a M -bundle M to the Gm-bundle M

M
× Gm.

We have a morphism deg : GrGm,I → Z by taking the degree of a Gm-bundle. We have the
composition of morphisms

GrM,I → GrGm,I
deg−−→ Z. (3.13)

We define GrnM,I as the inverse image of n ∈ Z. It is open and closed in GrM,I . We define
GrnP,I := (π0)−1GrnM,I . Morphism (1.5) induces a morphism

GrG,I
i0n
←− GrnP,I

π0
n−→ GrnM,I . (3.14)

3.2.2 Recall that we have defined Λ̂G,P in 1.4.2. As in [Sch15, 2.1.2], we define ΛG,P := {λ ∈
ΛG|〈α̌, λ〉 = 0 for all α̌ ∈ Γ̂M}. The pairing 〈 , 〉 in 1.4.1 induces a pairing 〈 , 〉 : Λ̂G,P×ΛG,P → Z.
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3.2.3 We denote by RepQ`(M̂
I) the category of finite-dimensional Q`-linear representations

of M̂ I . Let W ∈ RepQ`(M̂
I). Then Z

M̂
acts on W via Z

M̂
↪→ M̂ I diagonally. We have the

decomposition as Z
M̂

representation: W =
⊕

θ∈ΛZ
M̂

W θ.

Since θ ∈ ΛZ
M̂

= Λ̂G,P and 2(ρG − ρM ) ∈ ΛG,P , we can consider 〈θ, 2(ρG − ρM )〉. Let
Wn =

⊕
〈θ,2(ρG−ρM )〉=nW

θ. We have W =
⊕

n∈ZWn.
Let RepQ`(M̂

I)θ be the category of finite-dimensional Q`-linear representations of M̂ I such
that Z

M̂
acts by θ. We have RepQ`(M̂

I) =
⊕

θ∈ΛZ
M̂

RepQ`(M̂
I)θ. Let

RepQ`(M̂
I)n =

⊕
θ∈ΛZ

M̂
, 〈θ,2(ρG−ρM )〉=n

RepQ`(M̂
I)θ.

We have
RepQ`(M̂

I) =
⊕
n∈Z

RepQ`(M̂
I)n.

We define (ResĜ
I

M̂I
)n to be the composition of morphisms RepQ`(Ĝ

I)
ResĜ

I

M̂I−−−−→ RepQ`(M̂
I) �

RepQ`(M̂
I)n.

3.2.4 In morphism (3.13), GrM,I,W θ is sent to 〈θ, 2(ρG − ρM )〉. We deduce that GrnM,I ∩
GrM,I,W = GrM,I,Wn .

3.2.5 In Corollary 2.1.7, we defined a fully faithful functor

SatG,I : RepQ`(Ĝ
I)→ PervGI,∞(GrG,I ,Q`)

which sends W to SG,I,W . We denote by PervGI,∞(GrG,I ,Q`)MV the subcategory of essential
image of this functor. Similarly, we define

SatM,I : RepQ`(M̂
I)→ PervMI,∞(GrM,I ,Q`)MV.

Let SatM,I,n be the restriction of SatM,I to RepQ`(M̂
I)n.

Theorem 3.2.6 ([BD99, 5.3.29], [BG02, Theorem 4.3.4], [MV07, Theorem 3.6] (for M = T ),
[BR18, Proposition 15.2]).

(a) For any n ∈ Z, the complex

(π0
n)!(i

0
n)∗SG,I,W ⊗

(
Q`[1](1

2)
)⊗n

is in PervMI,∞(GrnM,I ,Q`)MV.
(b) We denote by ((π0

n)!(i
0
n)∗)∼ the shifted functor (π0

n)!(i
0
n)∗ ⊗ (Q`[1](1

2))⊗n. Then there is a
canonical isomorphism of fiber functors

SatM,I,n ◦ (ResĜ
I

M̂I )n = ((π0
n)!(i

0
n)∗)∼ ◦ SatG,I . (3.15)

In other words, the following diagram of categories canonically commutes.

PervGI,∞(GrG,I ,Q`)MV ((π0
n)!(i

0
n)∗)∼ // PervMI,∞(GrnM,I ,Q`)MV

RepQ`(Ĝ
I)

SatG,I

OO

(ResĜ
I

M̂I )n
// RepQ`(M̂

I)n

SatM,I,n

OO
(3.16)
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Remark 3.2.7. The references cited above in Theorem 3.2.6 are for the case of affine
grassmannians (i.e. I is a singleton). The general case (i.e. I is arbitrary) can be deduced
from the case of affine grassmannians using the fact that the constant term functor commutes
with fusion (i.e. convolution). The proof for I = {1, 2} is already included in the proof of [BR18,
Proposition 15.2]. For general I the proof is similar.

Corollary 3.2.8. There is a canonical isomorphism

SM,I,Wn ' (π0
n)!(i

0
n)∗SG,I,W [n](n/2). (3.17)

Proof. Applying (3.15) toW and taking into account that SM,I,Wn = SatM,I,n(Wn) and SG,I,W =

SatG,I(W ), we deduce (3.17). 2

3.2.9 For any n, denote by GrnP,I,W = GrnP,I ∩GrP,I,W . We have a commutative diagram,
where the first line is induced by (3.6).

GrG,I,W

ξG,d
��

GrnP,I,W
i0noo

ξP,d
��

π0
n // GrM,I,Wn

ξM,d
��

[GI,d\GrG,I,W ] [PI,d\GrnP,I,W ]
i0d,noo

π0
d,n // [MI,d\GrM,I,Wn ]

The morphism

GrnP,I,W → [PI,d\GrnP,I,W ] ×
[MI,d\GrM,I,Wn ]

GrM,I,Wn = [UI,d\GrnP,I,W ]

is a UI,d-torsor. Since the group scheme UI,d is unipotent over XI , we deduce that

(π0
n)!(ξP,d)

∗ ' (ξM,d)
∗(π0

d,n)![−2m](−m), (3.18)

where m = dim ξP,d − dim ξM,d = dimXI UI,d.
Corollary 3.2.8 implies

SdM,I,Wn

∼
→ (π0

d,n)!(i
0
d,n)∗SdG,I,W [n− 2m](n/2−m). (3.19)

3.2.10 Let (ωi)i∈I ∈ (Λ̂+
M )I . Let V ωi be the irreducible representation of M̂ of highest

weight ωi. Note that Λ̂G,P = Λ̂M,M (defined in 1.4.2). By definition, it coincides with π1(M)

defined in [Var04, Lemma 2.2]. We denote by [
∑

i∈I ωi] the image of
∑

i∈I ωi by the projection
Λ̂M � Λ̂M,M .

Lemma 3.2.11 [Var04, Proposition 2.16(d)]. The stack ChtM,N,I,�i∈IV ωi is non-empty if and only
if [
∑

i∈I ωi] is zero.
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3.2.12 Let W and W θ as in 3.2.3. Then W has a unique decomposition of the form

W =
⊕

(ωi)i∈I∈(Λ̂+
M )I

(�i∈IV
ωi)⊗Q` M(ωi)i∈I ,

where M(ωi)i∈I are finite-dimensional Q`-vector spaces, all but a finite number of them are zero.
We have

W θ =
⊕

(ωi)i∈I∈(Λ̂+
M )I , [

∑
i∈I ωi]=θ

(�i∈IV
ωi)⊗Q` M(ωi)i∈I .

Lemma 3.2.11 implies that ChtM,N,I,W θ is non-empty if and only if θ is zero. For such θ, we have
〈θ, 2(ρG − ρM )〉 = 0. We deduce that ChtM,N,I,W =

⋃
n∈Z ChtM,N,I,Wn = ChtM,N,I,W0 . So the

image of
εM,d : ChtM,N,I,W → [MI,d\GrM,I,W ]

is in [MI,d\GrM,I,W0 ].

3.2.13 With the notations of diagram (3.8), we have

(εM,d)
∗SdM,I,W = (εM,d)

∗SdM,I,W0

∼
→ (εM,d)

∗(π0
d,0)!(i

0
d,0)∗SdG,I,W [−2m](−m)

= (εM,d)
∗(π0

d)!(i
0
d)
∗SdG,I,W [−2m](−m). (3.20)

The first and third equality follows from 3.2.12. The second isomorphism follows from (3.19)
applied to n = 0.

3.3 Construction of the morphism (3.2)
3.3.1 Consider diagrams (3.8) and (3.9). Let m = dimXI UI,d as in 3.2.9. By Lemma 3.1.8,

m = dimπd. We construct a canonical map of functors from Db
c([PI,d\GrP,I,W ],Q`) to

Db
c(ChtM,N,I,W ,Q`),

π!(εP,d)
∗
→ (εM,d)

∗(π0
d)![−2m](−m), (3.21)

as the composition

π!(εP,d)
∗ ' (π̃0

d)!(πd)!(πd)
∗(ε̃M,d)

∗

→ (π̃0
d)!(ε̃M,d)

∗[−2m](−m)
∼
← (εM,d)

∗(π0
d)![−2m](−m). (3.22)

The second morphism in (3.22) is induced by the isomorphism (πd)
∗[2m](m) ' (πd)

! (because
πd is smooth) and the counit map Co : (πd)!(πd)

!
→ Id. (The composition (πd)!(πd)

∗[2m](m)
∼
→

(πd)!(πd)
!
→ Id is the trace map in [SGA4, XVIII 2].)

The third morphism is the proper base change ([SGA4, XVII 5], [LO08, § 12]).

3.3.2 Now we construct a morphism of complexes in Db
c(ChtM,N,I,W ,Q`):

π!i
∗FG,N,I,W = π!i

∗(εG,d)
∗SdG,I,W

(a)' π!(εP,d)
∗(i0d)

∗SdG,I,W
(b)
→ (εM,d)

∗(π0
d)!(i

0
d)
∗SdG,I,W [−2m](−m)

(c) ∼
← (εM,d)

∗SdM,I,W = FM,N,I,W , (3.23)

where (a) is induced by the commutativity of diagram (3.8), (b) is induced by morphism (3.21),
and (c) is (3.20).
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3.3.3 All the constructions in 3.1–3.3 are compatible with the quotient by Ξ. In particular,
just as in 3.1.4, diagram (1.10) induces a commutative diagram.

ChtG,N,I,W /Ξ

εΞG,N,I,d
��

ChtP,N,I,W /Ξ
ioo

εΞP,N,I,d
��

π // ChtM,N,I,W /Ξ

εΞM,N,I,d
��

[Gad
I,d\GrG,I,W ] [P I,d\GrP,I,W ]

i0doo
π0
d // [M I,d\GrM,I,W ]

(3.24)

Construction 3.3.4. Just as in 3.3.2 (using (3.24) instead of (3.8)), we construct a canonical
morphism of complexes in Db

c(ChtM,N,I,W /Ξ,Q`):

π!i
∗FΞ

G,N,I,W → FΞ
M,N,I,W . (3.25)

3.4 More on cohomology groups
When the level structureN is non-empty, to construct the constant term morphism of cohomology
groups, we need a variant of Hj

M,N,I,W .

3.4.1 LetON be the ring of functions onN as in 0.0.8. The finite groupG(ON ) (respectively
P (ON ) and M(ON )) acts on ChtG,N,I,W (respectively ChtP,N,I,W and ChtM,N,I,W ) by changing
the level structure on N : g ∈ G(ON ) sends a level structure ψG to g−1 ◦ ψG.

By [Var04, Proposition 2.16(b)], ChtG,N,I,W (respectively ChtP,N,I,W and ChtM,N,I,W ) is a
finite étale Galois cover of ChtG,I,W

∣∣
(XrN)I

(respectively ChtP,I,W
∣∣
(XrN)I

and ChtM,I,W

∣∣
(XrN)I

)
with Galois group G(ON ) (respectively P (ON ) and M(ON )).

Definition 3.4.2. We define

Cht′P,N,I,W := ChtP,N,I,W
P (ON )
× G(ON ), Cht′M,N,I,W := ChtM,N,I,W

P (ON )
× G(ON ),

where P (ON ) acts onG(ON ) by left action (by left multiplication) and P (ON ) acts on ChtM,N,I,W

via the quotient P (ON )�M(ON ).

3.4.3 Morphisms (3.7) induce morphisms

ChtG,N,I,W
i′
←− Cht′P,N,I,W

π′−→ Cht′M,N,I,W . (3.26)

Indeed, the morphism i′ is giving by

((P, ψP )→ (τP, τψP ), g ∈ G(ON )) 7→ ((G, g−1 ◦ ψG)→ (τG, g−1 ◦ τψG)),

where G = P
P
×G and ψG = ψP

P
×G. The morphism π′ is induced by π, which is P (ON )-equivariant

(because P (ON ) acts on ChtP,N,I,W and ChtM,N,I,W by changing the level structure on N).

Remark 3.4.4. The morphism Cht′P,N,I,W → ChtP,I,W ×
ChtG,I,W

ChtG,N,I,W is aG(ON )-equivariant

morphism of G(ON )-torsors over ChtP,I,W , and thus it is an isomorphism. In [Var04, 2.28], the
stack Cht′P,N,I,W is denoted by FBunP,D,n,ω̄. The reason why we will need Cht′P,N,I,W instead of
ChtP,N,I,W is justified in Example 3.5.15 and Theorem 4.2.1.

Definition 3.4.5. We define

Cht′6µP,N,I,W := Cht6µP,N,I,W
P (ON )
× G(ON ),

Cht′6µM,N,I,W := Cht6µM,N,I,W

P (ON )
× G(ON ), Cht′6µ, νM,N,I,W := Cht6µ, νM,N,I,W

P (ON )
× G(ON ).
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3.4.6 We have a commutative diagram of algebraic stacks.

ChtP,N,I,W
i

uu

π //

��

ChtM,N,I,W

��
ChtG,N,I,W

��

Cht′P,N,I,W
i′oo

��

π′ // Cht′M,N,I,W

��
BunG BunPoo // BunM

(3.27)

We deduce that Cht′6µP,N,I,W is also the inverse image of Bun6µP by Cht′P,N,I,W → BunP and
Cht′6µM,N,I,W (respectively Cht′6µ, νM,N,I,W ) is also the inverse image of Bun6µM (respectively Bun6µ, νM )
by Cht′M,N,I,W → BunM .

Definition 3.4.7. Just as in § 2.6, we construct a morphism εΞ
′

M,d : Cht′M,N,I,W /Ξ →

[M I,d\GrM,I,W ] and we define F ′ Ξ
M,N,I,W to be the inverse image of Sad,d

M,I,W . We defineH′6µ, νM,N,I,W :=

R(pM )!(F
′ Ξ
M,I,N,W

∣∣∣
Cht′6µ, νM,N,I,W /Ξ

), H′ j, 6µ, νM,N,I,W := Hj(H′6µ, νM,N,I,W ) and H ′ j,6µ, νM,N,I,W := H′ j, 6µ, νM,N,I,W

∣∣∣
ηI
.

3.4.8 Just as in 2.6.5, if ν /∈ Λ̂µZM/ZG (defined in 1.5.20), then Cht′6µ, νM,N,I,W is empty and

H ′ j,6µ, νM,N,I,W = 0.

Definition 3.4.9. Just as in Definitions 2.6.6 and 2.6.8, we define

H ′ j,6µM,N,I,W :=
∏

ν∈Λ̂µ
ZM/ZG

H ′ j,6µ, νM,N,I,W ; H ′
j

M,N,I,W := lim−→
µ

H ′
j, 6µ

M,N,I,W .

Definition 3.4.10. For any ν ∈ Λ̂QZM/ZG , we define H ′ j, νM,N,I,W := lim−→µ
H ′ j,6µ, νM,N,I,W .

3.5 Constant term morphism for cohomology groups
3.5.1 Morphisms (3.24) induce morphisms over (XrN)I .

ChtG,N,I,W /Ξ

εΞG,N,I,d
��

Cht′P,N,I,W /Ξ
i′oo

ε′ΞP,N,I,d
��

π′ // Cht′M,N,I,W /Ξ

ε′ΞM,N,I,d
��

[Gad
I,d\GrG,I,W ] [P I,d\GrP,I,W ]

i0doo
π0
d // [M I,d\GrM,I,W ]

(3.28)

3.5.2 For any µ ∈ Λ̂+,Q
Gad and any ν ∈ Λ̂QZM/ZG , the first line of morphisms (3.28) induces

morphisms over (XrN)I :

Cht6µG,N,I,W /Ξ
i′
←− Cht′6µ, νP,N,I,W /Ξ

π′−→ Cht′6µ, νM,N,I,W /Ξ. (3.29)

The proof of [Var04, Proposition 5.7] in fact proves the following.
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Proposition 3.5.3 [Var04, Proposition 5.7]. For any µ ∈ Λ̂+,Q
Gad and any ν ∈ Λ̂µZM/ZG (defined

in 1.5.20), there exists an open dense subscheme Ω6µ,ν of (XrN)I such that the restriction of
the morphism i′ on Cht′6µ, νP,N,I,W /Ξ

∣∣∣
Ω6µ,ν

is proper. In particular, the restriction of the morphism

i′ on Cht′6µ, νP,N,I,W /Ξ
∣∣∣
ηI

is proper.

Remark 3.5.4. In [Var04, Proposition 5.7], the level is denoted by D, the paws are indexed by
n, the index d is related to our ν, the index k is related to our W , and the index [g] is in
G(ON )/P (ON ). The open subscheme Ω6µ,ν is of the form

Ω(m) = {(xi)i∈I ∈ (XrN)I , xi 6= τrxj for all i, j and r = 1, 2, . . . ,m},

where τrx is the image of x by Frobr : X → X and m is some positive integer.
In the proof of [Var04, Proposition 5.7], Bun6µG is denoted by V and Ω(m) is denoted by U .

Varshavsky shows that for fixed µ and ν, there exists a level D large enough and an integer m
large enough (both depending on µ and ν), such that over Bun6µG ×Ω(m) ⊂ BunG× (XrN)I ,
the morphism However,

Cht′6µ, νP,D,I,W

∣∣∣
Ω(m)
→ Cht6µG,D,I,W

∣∣∣
Ω(m)

is a closed embedding. In particular, it is proper. Then we descend to level N .
Note that i′ is schematic (i.e. representable). This is implied by the well-known fact that

BunP → BunG is schematic (a P -structure of a G-bundle G over X × S is a section of the
fibration G/P → X × S).

3.5.5 Now consider the following commutative diagram.

Cht′6µ, νP,N,I,W /Ξ
∣∣∣
Ω6µ, ν

i′

tt
π′

**
pP

��

Cht6µG,N,I,W /Ξ
∣∣∣
Ω6µ, ν

pG **

Cht′6µ, νM,N,I,W /Ξ
∣∣∣
Ω6µ, ν

pMtt
Ω6µ, ν

(3.30)

To simplify the notations, we denote by F Ξ
G,N,Ω6µ, ν ,W

the restriction of F Ξ
G,I,N,W to

Cht6µG,N,I,W /Ξ
∣∣∣
Ω6µ, ν

and by F ′ Ξ, ν
M,N,Ω6µ, ν ,W

the restriction of F ′ ΞM,I,N,W to Cht′ 6µ, νM,N,I,W /Ξ
∣∣∣
Ω6µ, ν

.
The commutative diagram (3.28) is compatible with the Harder–Narasimhan stratification.

Just as in Construction 3.3.4, we construct a canonical morphism of complexes

(π′)!(i
′)∗F Ξ

G,N,Ω6µ, ν ,W → F
′ Ξ, ν
M,N,Ω6µ, ν ,W

(3.31)

in Db
c(Cht′6µ, νM,N,I,W /Ξ

∣∣∣
Ω6µ, ν

,Q`).

3.5.6 Thanks to Proposition 3.5.3, we can apply [SGA5, III 3] to diagram (3.30) and the
cohomological correspondence (3.31).

Concretely, first we have morphisms of functors from Db
c(Cht6µG,N,I,W /Ξ

∣∣∣
Ω6µ, ν

,Q`) to

Db
c(Ω

6µ, ν ,Q`) (all functors are considered as derived functors):

(pG)!
(a)
→ (pG)!(i

′)∗(i
′)∗

(b)
' (pG)!(i

′)!(i
′)∗

(c)
' (pM )!(π

′)!(i
′)∗, (3.32)
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where (a) is the adjunction morphism, (b) is induced by i′!
∼
→ i′∗ which is because that i′ is

schematic and proper (Proposition 3.5.3), and (c) is induced by the commutativity of diagram
(3.30).

Second we combine (3.32) with (3.31). We obtain a composition of morphisms of complexes
in Db

c(Ω
6µ, ν ,Q`).

(pG)!F Ξ
G,N,Ω6µ, ν ,W

(3.32)
−−−→ (pM )!(π

′)!(i
′)∗F Ξ

G,N,Ω6µ, ν ,W

(3.31)
−−−→ (pM )!F ′ Ξ, νM,N,Ω6µ, ν ,W

. (3.33)

By Definition 2.5.1 and Definition 3.4.7, (3.33) is also written as

CP,6µ, νG : H6µG,N,I,W
∣∣∣
Ω6µ, ν

→ H′ 6µ, νM,N,I,W

∣∣∣
Ω6µ, ν

. (3.34)

3.5.7 From now on, we restrict everything to the geometric generic point ηI of XI fixed

in 2.5.4. Recall that we have defined Hj,6µ
G,N,I,W = Hj, 6µG,N,I,W

∣∣∣
ηI

in Definition 2.5.5 and H ′ j,6µ, νM,N,I,W =

H′ j,6µ, νM,N,I,W

∣∣∣
ηI

in Definition 3.4.7.

For any j ∈ Z, morphism (3.34) induces a morphism of cohomology groups

CP, j,6µ, νG : Hj, 6µ
G,N,I,W → H ′

j, 6µ, ν
M,N,I,W . (3.35)

By 3.4.8, for ν /∈ Λ̂µZM/ZG , the morphism CP, j,6µ, νG is the zero morphism.

3.5.8 We define a morphism:

CP, j,6µG =
∏

ν∈Λ̂µ
ZM/ZG

CP, j,6µ, νG : Hj, 6µ
G,N,I,W → H ′

j, 6µ
M,N,I,W (3.36)

where H ′ j, 6µM,N,I,W is defined in Definition 3.4.9.

3.5.9 Let µ1, µ2 ∈ Λ̂+,Q
Gad with µ1 6 µ2. By Lemma A.0.8, the commutative diagram of stacks

Cht6µ2

G,N,I,W /Ξ Cht′6µ2

P,N,I,W /Ξ
i′oo π′ // Cht′6µ2

M,N,I,W /Ξ

Cht6µ1

G,N,I,W /Ξ
?�

OO

Cht′6µ1

P,N,I,W /Ξ
i′oo π′ //

?�

OO

Cht′6µ1

M,N,I,W /Ξ
?�

OO

(3.37)

induces a commutative diagram of cohomology groups.

Hj, 6µ1

G,N,I,W
//

C
P, j,6µ1
G
��

Hj, 6µ2

G,N,I,W

C
P, j,6µ2
G
��

H ′ j, 6µ1

M,N,I,W
// H ′ j, 6µ2

M,N,I,W

(3.38)

We have defined Hj
G,N,I,W = lim−→µ

Hj, 6µ
G,N,I,W in Definition 2.5.5 and H ′ jM,N,I,W = lim−→µ

H ′ j, 6µM,N,I,W

in Definition 3.4.9. The commutative diagram (3.38) induces a morphism between inductive
limits.
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Definition 3.5.10. For all parabolic subgroups P , for all degrees j ∈ Z, we define the constant
term morphism of cohomology groups:

CP, jG,N : Hj
G,N,I,W → H ′

j
M,N,I,W . (3.39)

Remark 3.5.11. The morphisms H ′ j, 6µ, νM,N,I,W → lim−→µ′
H ′ j, 6µ

′, ν
M,N,I,W for each ν ∈ Λ̂QZM/ZG induce a

morphism
lim−→
µ

∏
ν∈Λ̂Q

ZM/ZG

H ′
j, 6µ, ν

M,N,I,W →

∏
ν∈Λ̂Q

ZM/ZG

lim−→
µ′
H ′

j, 6µ′, ν
M,N,I,W . (3.40)

With the notations in Definitions 3.4.9 and 3.4.10, morphism (3.40) is the natural map

H ′ jM,N,I,W →

∏
ν∈Λ̂Q

ZM/ZG

H ′
j, ν

M,N,I,W . (3.41)

For each ν ∈ Λ̂QZM/ZG , taking inductive limit over µ of (3.35), we define CP, j, νG,N : Hj
G,N,I,W →

H ′ j, νM,N,I,W . We form a morphism∏
ν∈Λ̂Q

ZM/ZG

CP, j, νG,N : Hj
G,N,I,W →

∏
ν∈Λ̂Q

ZM/ZG

H ′
j, ν

M,N,I,W . (3.42)

It is equal to the composition of (3.39) and (3.41).
In Lemma 5.3.4 below, we will prove that, for µ large enough,

H ′ j,6µM,N,I,W →

∏
ν∈Λ̂Q

ZM/ZG

H ′
j, ν

M,N,I,W

is injective. This implies that (3.41) is injective. Thus the kernel of (3.42) is the same as the
kernel of (3.39).

Remark 3.5.12. Now consider all parabolic subgroups (not only the standard ones). If P1 and P2

are conjugated, then the conjugation induces an isomorphism M1 ' M2. This induces for any j
an isomorphism H ′ jM1,N,I,W

' H ′ jM2,N,I,W
. The following diagram commutes

Hj
G,N,I,W

C
P1, j
G,N //

C
P2, j
G,N

))

H ′ jM1,N,I,W

' ��
H ′ jM2,N,I,W

and thus we have KerCP1, j
G,N = KerCP2, j

G,N in Hj
G,N,I,W .

However, we do not know how to compare the constant term morphism along different
parabolic subgroups which have a common Levi subgroup. It is perhaps possible to do that,
but quite difficult because it would be a generalization of the functional equation for Eisenstein
series.

Definition 3.5.13. For any degree j ∈ Z, we define the cuspidal cohomology group:

Hj, cusp
G,N,I,W :=

⋂
P G

KerCP, jG,N . (3.43)

This is a Q`-vector subspace of Hj
G,N,I,W .
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Remark 3.5.14. For
P1

##}}
P2

!!��
P1,2

##{{
G M2 M1

we have CP1,2, j
M2,N

◦ CP2, j
G,N = CP1, j

G,N . Thus we have an equivalent definition:

Hj, cusp
G,N,I,W =

⋂
P maximal parabolic

KerCP, jG,N .

Example 3.5.15 (Shtukas without paws). When I = ∅ and W = 1, we have ChtG,N,∅,1 =
G(F )\G(A)/KG,N . (Note that G is split. See [Laf18, (0.5) and Remarque 8.21] for more details.)
Moreover, let KP,N := KG,N ∩P (O), KU,N := KG,N ∩U(O) and KM,N := KP,N/KU,N . We write
set
= for equalities of sets which are not equalities of groupoids. We have

Cht′P,N,∅,1 = (P (F )\P (A)/KP,N )
P (ON )
× G(ON ) = P (F )\(P (A)

P (O)
× G(O))/KG,N

= P (F )\G(A)/KG,N ,

Cht′M,N,∅,1 = (M(F )\M(A)/KM,N )
P (ON )
× G(ON )

= M(F )\(M(A)
P (O)/KU,N
× G(O)/KG,N )

set
= M(F )\(M(A)

P (O)
× G(O))/KG,N

= M(F )U(A)\(P (A)
P (O)
× G(O))/KG,N = M(F )U(A)\G(A)/KG,N .

In this case, GrP,∅,1 = GrM,∅,1 = SpecFq. We can choose d = 0 in (3.9). Thus C̃ht
′
M,N,∅,1 =

Cht′M,N,∅,1. The constant term morphism CP, jG,N in Definition 3.5.10 coincides (up to constants
depending on ν ∈ Λ̂QZM/ZG component by component) with the classical constant term morphism:

Cc(G(F )\G(A)/KG,NΞ,Q`)→ C(U(A)M(F )\G(A)/KG,NΞ,Q`)

f 7→ fP : g 7→
∫
U(F )\U(A)

f(ug) du.
(3.44)

Therefore H0, cusp
G,N,∅,1 = Ccusp

c (G(F )\G(A)/KG,NΞ,Q`).

Remark 3.5.16. When I = ∅, W = 1 and N = ∅ (without level), for any µ ∈ Λ̂+,Q
Gad , H

′ 0,6µ
M,N,I,W

is included in the subspace of C(U(A)M(F )\G(A)/G(O)Ξ,Q`) of functions supported on the
components of U(A)M(F )\G(A)/G(O)Ξ indexed by a translated cone Λ̂µZM/ZG in Λ̂QZM/ZG . The

image of the constant term morphism is included in H ′ 0M,N,I,W = lim−→µ
H ′ 0,6µM,N,I,W . This space is

already defined independently by Wang in [Wan18, § 5.1] and is denoted by CP,− in [Wan18].

4. Contractibility of deep enough horospheres

In this section, let P be a parabolic subgroup of G and M its Levi quotient. The goal is to prove
Proposition 4.6.4, which will be a consequence of Theorems 4.2.1 and 4.2.4.
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4.1 More on Harder–Narasimhan stratification
To state Theorems 4.2.1 and 4.2.4, we need to introduce some locally closed substacks of
ChtG,N,I,W .

Definition 4.1.1. Let µ ∈ Λ̂+,Q
Gad . We define a set

SM (µ) := {λ ∈ Λ̂+,Q
Gad | λ 6Mµ}

= {λ ∈ Λ̂+,Q
Gad | λ 6 µ}∩ {λ ∈ Λ̂+,Q

Gad | prad
P (λ) = prad

P (µ)},

where the second equality follows from 1.5.16 (taking into account Notation 1.7.1). The set SM (µ)
is bounded.

Remark 4.1.2. The set SM (µ) is the same as the one (modulo Λ̂QZG) used in [DG15, §§ 8 and 9].

Definition 4.1.3. We define

Bun=µ
G :=

⋃
λ∈Λ̂+,Q

G , ΥG(λ)=µ

Bun
(λ)
G , Bun=µ

M :=
⋃

λ∈Λ̂+,Q
M , ΥG(λ)=µ

Bun
(λ)
M ,

where Bun
(λ)
G (respectively Bun

(λ)
M ) is defined in Definition 1.4.9 (respectively Definition 1.5.3).

Definition 4.1.4. We define

Bun
SM (µ)
G :=

⋃
λ∈SM (µ)

Bun=λ
G ; Bun

SM (µ)
M :=

⋃
λ∈SM (µ)

Bun=λ
M .

4.1.5 If λ ∈ SM (µ), λ′ ∈ Λ̂+,Q
Gad and λ 6 λ′ 6 µ, then prad

P (λ) = prad
P (λ′) = prad

P (µ). This
implies that λ′ ∈ SM (µ). Using [DG15, Corollary 7.4.11], we deduce the following.

Lemma 4.1.6. The substack Bun
SM (µ)
G is closed in Bun6µG .

4.1.7 We deduce from the definition of SM (µ) and 1.5.12 that

Bun
SM (µ)
M = Bun

6µ, prad
P (µ)

M . (4.1)

Recall that Bun6µM is open in BunM (see Lemma 1.5.5) and Bun
prad
P (µ)

M is open and closed in
BunM (see 1.5.7).

Lemma 4.1.8 [DG15, Corollary 7.4.11, Lemma 8.2.6]. The substack Bun
SM (µ)
M is open and closed

in Bun6µM , and is open in Bun
prad
P (µ)

M and in BunM .

We define Bun
SM (µ)
P := Bun6µP ∩ π−1(Bun

SM (µ)
M ). By Lemma 4.1.8, it is open and closed in

Bun6µP , and is open in BunP . So it is reduced.

Lemma 4.1.9. Morphisms (1.25) induce morphisms

Bun
SM (µ)
G ← Bun

SM (µ)
P → Bun

SM (µ)
M . (4.2)
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Proof. We need to verify that the image of Bun
SM (µ)
P → Bun6µG is in the closed substack Bun

SM (µ)
G .

Since Bun
SM (µ)
P is reduced, it is enough to consider geometric points. Let P ∈ Bun

SM (µ)
P be

a geometric point. Let M be its image in Bun
SM (µ)
M . By definition of Bun

SM (µ)
M , there exists

λ ∈ SM (µ) such thatM∈ Bun=λ
M .

Let G be the image of P in Bun6µG . By 1.4.14, there exists λ′ 6 µ such that G ∈ Bun=λ′
G .

Taking into account that Bun=λ′
G ⊂ Bun6λ

′

G , by Lemma 1.6.2, we deduce thatM∈ Bun6λ
′

M . Hence
λ 6 λ′. By 4.1.5, this implies that λ′ ∈ SM (µ). Thus G ∈ Bun

SM (µ)
G . 2

Definition 4.1.10. We define Cht=µ
G,N,I,W (respectively Cht

SM (µ)
G,N,I,W ) as the inverse image of

Bun=µ
G (respectively Bun

SM (µ)
G ) by the morphism

ChtG,N,I,W → BunG, ((xi)i∈I , (G, ψ)
φ−→ (τG, τψ)) 7→ G.

Similarly, we define Cht
SM (µ)
P,N,I,W , Cht=µ

M,N,I,W and Cht
SM (µ)
M,N,I,W .

4.1.11 We deduce from Lemma 4.1.6 that Cht
SM (µ)
G,N,I,W is closed in Cht6µG,N,I,W . We deduce

from Lemma 4.1.8 that Cht
SM (µ)
M,N,I,W is open and closed in Cht6µM,N,I,W , and is open in Cht

prad
P (µ)

M,N,I,W

and in ChtM,N,I,W .

4.1.12 The commutativity of diagram (1.28) and Lemma 4.1.9 imply that Cht
SM (µ)
P,N,I,W =

Cht6µP,N,I,W ∩ π−1(Cht
SM (µ)
M,N,I,W ). Morphisms (1.29) induce morphisms:

Cht
SM (µ)
G,N,I,W

iSM (µ)

←−−−− Cht
SM (µ)
P,N,I,W

πSM (µ)

−−−−→ Cht
SM (µ)
M,N,I,W .

4.1.13 As in Definition 3.4.2, we define

Cht
′SM (µ)
P,N,I,W := Cht

SM (µ)
P,N,I,W

P (ON )
× G(ON ), Cht

′SM (µ)
M,N,I,W := Cht

SM (µ)
M,N,I,W

P (ON )
× G(ON ).

Morphisms (3.26) induce morphisms

Cht
SM (µ)
G,N,I,W

i′SM (µ)

←−−−−− Cht
′SM (µ)
P,N,I,W

π′SM (µ)

−−−−−→ Cht
′SM (µ)
M,N,I,W . (4.3)

4.2 Geometric statements
First consider the morphism i′SM (µ).

Theorem 4.2.1 ([Var04, Theorem 2.25 and Proposition 5.7], [DG15, Proposition 9.2.2]). There
exists a constant C ′(G,X,N,W ), such that if µ ∈ Λ̂+,Q

Gad and 〈µ, α〉 > C ′(G,X,N,W ) for all
α ∈ ΓG − ΓM , then the morphism i′SM (µ) is a schematic finite universal homeomorphism.

Proof. (1) Schematic and finite follows from [Var04, Proposition 5.7] (recalled in Proposition 3.5.3
and Remark 3.5.4).

(2) Surjectivity is implied by [Var04, Theorem 2.25].
(3) Universally injectivity is implied by the fact that Bun

SM (µ)
P → Bun

SM (µ)
G is an isomorphism

for µ satisfying the assumption of Theorem 4.2.1 (see [DG15, Proposition 9.2.2]) and the
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well-known fact that GrP,I,W → GrG,I,W is bijective. (More concretely, it is enough to prove that
for any algebraically closed field k containing Fq, the map Cht

SM (µ)
P,I,W (k)→ Cht

SM (µ)
G,I,W (k) is injective.

Let ((xi),G
φG−→ τG) ∈ Cht

SM (µ)
G,I,W (k). By (3), there exists ((xi),P

φP−→ τP) ∈ Cht
SM (µ)
P,I,W (k) such that

P
P
×G' G and φP

P
×G' φG. Since Bun

SM (µ)
P (k)→ Bun

SM (µ)
G (k) is injective, P is unique. Choosing

a trivialization of P over Γ∑
∞xi , we deduce from the injectivity of GrP,I,W (k) → GrG,I,W (k)

that φP is unique.) 2

4.2.2 Now we consider the morphism π′SM (µ). For all d large enough, similar to diagram
(3.9), we have a commutative diagram

Cht
′SM (µ)
P,N,I,W

""

π
′SM (µ)

d ((
π′SM (µ)

,,
C̃ht

′SM (µ)

M,N,I,W

��

// Cht
′SM (µ)
M,N,I,W

��
[PI,d\GrP,I,W ] // [MI,d\GrM,I,W ]

(4.4)

where C̃ht
′SM (µ)

M,N,I,W is the fiber product, which depends on d. By 4.1.11, Cht
′SM (µ)
M,N,I,W is open in

Cht′M,N,I,W and Cht
′SM (µ)
P,N,I,W is open in Cht′P,N,I,W . By Lemma 3.1.8, the morphism π

′SM (µ)
d is

smooth of relative dimension dimXI UI,d.

We now introduce a notion of unipotent group scheme (which should rather be called
‘elementary unipotent group scheme’).

Definition 4.2.3. (a) Let H be a group scheme of finite dimension over a scheme S. We say
that H is a unipotent group scheme if H admits a filtration H = H(0) ⊃ H(1) ⊃ · · · ⊃ H(m) ⊃
H(m+1) = 0 such that for every j, the quotient H(j)/H(j+1) is an additive group scheme (i.e.
isomorphic to Gna,S for some n locally for the étale topology) over S.

(b) A morphism of algebraic stacks f : X → Y is called unipotent if for any scheme S and any
morphism S → Y, the fiber product S ×

Y
X is locally for the smooth topology on S isomorphic

to a quotient stack [H1/H2], where H1 and H2 are unipotent group schemes over S and H2 acts
on H1 as a group scheme over S acting on a scheme over S.

Theorem 4.2.4. There exists a constant C(G,X,N, I, d), such that if µ ∈ Λ̂+,Q
Gad and 〈µ, α〉 >

C(G,X,N, I, d) for all α ∈ ΓG − ΓM , then the morphism π
′SM (µ)
d is unipotent in the sense of

Definition 4.2.3.

The proof will be given in §§ 4.3–4.5.

Remark 4.2.5. Theorem 4.2.4 will be used to prove Proposition 4.6.4, where only the statement
for the geometric fibers of π′SM (µ)

d is needed. Since the proof is the same for a geometric fiber or
a fiber over a general base, we prove it over a general base.
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4.3 Proof of Theorem 4.2.4: step 1
4.3.1 We have a similar diagram as (4.4) without index ′. The morphism

π
SM (µ)
d : Cht

SM (µ)
P,N,I,W → C̃ht

SM (µ)

M,N,I,W

is P (ON )-equivariant and the morphism π
′SM (µ)
d is induced by πSM (µ)

d

P (ON )
× G(ON ). So to prove

Theorem 4.2.4, it is enough to prove the statement for πSM (µ)
d instead of π′SM (µ)

d .
The problem is local for the smooth topology. So it is enough to prove the statement for the

base change by GrP,I,W → [PI,d\GrP,I,W ]:

π
×, SM (µ)
d : Cht

SM (µ)
P,N,I,W ×

[PI,d\GrP,I,W ]
GrP,I,W → C̃ht

SM (µ)

M,N,I,W ×
[PI,d\GrP,I,W ]

GrP,I,W .

4.3.2 Note that C̃ht
SM (µ)

M,N,I,W ×
[PI,d\GrP,I,W ]

GrP,I,W ' Cht
SM (µ)
M,N,I,W ×

[MI,d\GrM,I,W ]
GrP,I,W . We

have the following commutative diagram, where the front and back Cartesian squares are defined
in the proof of [Laf18, Proposition 2.8] (replace G by P and M , respectively). We have already
used these Cartesian squares in (3.11) and (3.12).

Cht
SM (µ)
P,N,I,W ×GrP,I,W

[PI,d\GrP,I,W ]

//

��

π
×, SM (µ)

d

''

Bun
SM (µ)
P,N,I,d×GrP,I,W

(XrN)I

(bP1 , b
P
2 )

��

(πBun, Id)

''

C̃ht
SM (µ)

M,N,I,W ×GrP,I,W
[PI,d\GrP,I,W ]

//

��

Bun
SM (µ)
M,N,I,d×GrP,I,W

(XrN)I

(bM1 ,bM2 )

��

Bun
SM (µ)
P,N

(Id,Id) //

πBun

((

Bun
SM (µ)
P,N ×BunP,N

(πBun,πBun)

((

Bun
SM (µ)
M,N

(Id,Id) // Bun
SM (µ)
M,N ×BunM,N

4.3.3 Now let S be an affine scheme over Fq and let

((xi), (M, ψ)
φ−→ (τM, τψ), s) : S → C̃ht

SM (µ)

M,N,I,W ×
[PI,d\GrP,I,W ]

GrP,I,W

be an S-point. Consider

S → C̃ht
SM (µ)

M,N,I,W ×
[PI,d\GrP,I,W ]

GrP,I,W → Bun
SM (µ)
M,N,I,d×GrP,I,W

(XrN)I

and
S → C̃ht

SM (µ)

M,N,I,W ×
[PI,d\GrP,I,W ]

GrP,I,W → Bun
SM (µ)
M,N .
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We define Z , YN,d and YN to be the following fiber products.

Applying Lemma B.0.1 to the diagram in 4.3.2, we deduce a Cartesian square

Z //

��

YN,d

(b1, b2)

��
YN

(Id,Id) // YN ×
S

YN

(4.5)

where b1 (respectively b2) is induced by bP1 (respectively bP2 ).

Remark 4.3.4. By the proof of [Laf18, Proposition 2.8], bP1 (respectively bM1 ) is the forgetful
morphism of the level structure on I (thus smooth) and bP2 (respectively bM2 ) is the composition
of the Frobenius morphism with some other morphism. We deduce that b1 is smooth and b2 has
zero differential. Moreover, the morphism BunP,N → BunM,N is smooth, and thus YN is smooth
over S. Similarly YN,d is smooth over S. We deduce that Z is smooth over S. Note that the
same argument without SM (µ) would give another proof of Lemma 3.1.8.

4.4 Proof of Theorem 4.2.4: step 2
The goal of this subsection is to describe YN and YN,d.

(1) First we describe the fiber of Bun
SM (µ)
P → Bun

SM (µ)
M in Proposition 4.4.4.

4.4.1 We fix a maximal torus T ⊂ B. This allows us to view the Levi quotient M of a
standard parabolic subgroup P as a subgroup M ⊂ P (the unique splitting that contains T ).
Then P = M oU , whereM acts on U via the embeddingM ⊂ P and P acts on U by the adjoint
action.

4.4.2 Let S→ Bun
SM (µ)
M be a morphism andM the corresponding M -bundle over X ×S.

We define the fiber space UM := (U ×M)/M . It is easy to check that it is a group scheme over
X × S (see [Xue17, C.2] for more details).

Definition 4.4.3. Let S be an affine scheme over Fq. Let A be a sheaf of groups on X × S. We
denote by prS : X × S → S the second projection.

(a) We define R0(prS)∗A as the sheaf of groups on S:

(S′→ S) 7→ HomX×S(X × S′, A′),

where A′ is the inverse image of A by X × S′→ X × S.
(b) [Gir71, V.2.1] We define R1(prS)∗A as the sheaf of sets on S associated to the presheaf:

(S′→ S) 7→ H1(X × S′, A′).

Indeed R1(prS)∗A is a sheaf of pointed sets with a canonical section which corresponds to the
trivial A-torsor.
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Proposition 4.4.4. There exists a constant C(G,X) ∈ Q>0, such that if 〈µ, α〉 > C(G,X)
for all α ∈ ΓG − ΓM , then R0(prS)∗UM is a unipotent group scheme over S and the fiber of
Bun

SM (µ)
P → Bun

SM (µ)
M over S is the classifying stack [S/R0(prS)∗UM].

Proof. We denote by Y the fiber of Bun
SM (µ)
P → Bun

SM (µ)
M over S. For any scheme S′→ S, the

groupoid Y (S′) classifies the UM
∣∣
X×S′-bundle over X × S′ (see [Xue17, Lemme C.3.2] for more

details).
By Lemma 4.4.5(b) below, all UM-bundles are trivial. Taking into account that

R0(prS)∗UM(S′) is the group of automorphisms of the trivial UM
∣∣
X×S′-bundle on X × S′

and Lemma 4.4.5(a), we deduce the proposition. 2

Lemma 4.4.5. There exists a constant C(G,X) ∈ Q>0, such that if 〈µ, α〉 > C(G,X) for all
α ∈ ΓG − ΓM , then we have the following.

(a) The sheaf of groups R0(prS)∗UM is a unipotent group scheme.
(b) The sheaf of pointed sets R1(prS)∗UM is trivial.

Remark 4.4.6. If U is commutative, then UM is an additive group scheme over X × S (in the
sense of Definition 4.2.3). Part (a) of Lemma 4.4.5 is automatic and part (b) follows directly from
[DG15, Proposition 10.4.5].

The difficulty is that in general, U is not commutative. To prove Lemma 4.4.5, we will need
to use a filtration of U where the graded are commutative groups.

4.4.7 We have a canonical filtration of U (see the proof of [DG15, Proposition 11.1.4(c)]
for more details):

U = U (0) ⊃ U (1) ⊃ · · · ⊃ U (m) ⊃ U (m+1) = 0, (4.6)

where U (j) is the subgroup generated by the root subgroups corresponding to the positive roots
α of G, such that ∑

β∈ΓG−ΓM

coeffβ(α) > j + 1.

(Here coeffβ(α) denotes the coefficient of α in simple root β.) For each j, the subgroup U (j+1) of
U (j) is normal and the quotient is equipped with an isomorphism ϑ(j) : Gnja

∼
→ U (j)/U (j+1) for

some nj ∈ N.

4.4.8 The filtration (4.6) induces for every j ∈ {1, . . . ,m+ 1} an exact sequence of groups:

0→ U (j−1)/U (j)
→ U/U (j)

→ U/U (j−1)
→ 0. (4.7)

For every j, the subgroup U (j) of P is normal. Then P acts on U (j) by the adjoint action and
M acts on U (j) via M ↪→ P . We deduce that M acts on U (j)/U (j+1) and U/U (j).

We define the fiber spaces (U (j)/U (j+1))M := (M× U (j)/U (j+1))/M , it is an additive group
scheme over X × S. We define the fiber space (U/U (j))M := (M× U/U (j))/M , it is a group
scheme over X × S (see [Xue17, C.2] for more details).

Proposition 4.4.9. There exists a constant C(G,X) such that for µ ∈ Λ̂+,Q
Gad , if 〈µ, α〉 >

C(G,X) for all α ∈ ΓG − ΓM , then for any M ∈ Bun
SM (µ)
M (S) and any j, the sheaf

R1(prS)∗((U
(j)/U (j+1))M) is trivial.
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Proof. This is [DG15, Proposition 10.4.5(a)]. We take C(G,X) := maxi{c′i}, where c′i are the
constants in [DG15, Proposition 10.4.5(a)]. 2

Lemma 4.4.10. Let 0→ A→ B→ C → 0 be an exact sequence of sheaves of groups on X × S.

(a) If the sheaf of pointed sets R1(prS)∗A is trivial, then we have an exact sequence of sheaves
of groups:

0→ R0(prS)∗A→ R0(prS)∗B→ R0(prS)∗C → 0.

(b) If moreover the sheaf of pointed sets R1(prS)∗C is also trivial, then the sheaf of pointed sets
R1(prS)∗B is trivial.

Proof. By [Gir71, V Proposition 2.3], the exact sequence 0→ A→ B→ C→ 0 induces an exact
sequence of sheaves of pointed sets on S:

0→ R0(prS)∗A→ R0(prS)∗B→ R0(prS)∗C → R1(prS)∗A→ R1(prS)∗B→ R1(prS)∗C.

We deduce the lemma. 2

Proof of Lemma 4.4.5. For each j, the exact sequence (4.7) induces an exact sequence of group
schemes over X × S:

0→ (U (j−1)/U (j))M→ (U/U (j))M→ (U/U (j−1))M→ 0. (4.8)

We apply Lemma 4.4.10 to (4.8) successively for j = 1, j = 2, . . . , until j = m + 1. Taking
into account the fact that R1(prS)∗((U

(j)/U (j+1))M) is trivial (by Proposition 4.4.9) and
R0(prS)∗(U

(j)/U (j+1))M is additive in the sense of Definition 4.2.3 (because U (j)/U (j+1) ∼
→ Gnja ),

we deduce Lemma 4.4.5. 2

(2) Now we add level structure on N × S + Γ∑
dxi to the argument in (1), i.e. we describe

the fiber of Bun
SM (µ)
P,N,I,d→ Bun

SM (µ)
M,N,I,d in Proposition 4.4.13.

4.4.11 Let V be a group scheme on X × S. For any divisor iD : D ↪→ X × S, we denote
by V

∣∣
D

the fiber product D ×
X×S

V . We denote by V and V
∣∣
D

the associated sheaves of groups.

We define the sheaf of groups KerV,D on X × S as the kernel of the morphism V → (iD)∗(V
∣∣
D

).

If V is smooth, the morphism V → (iD)∗(V
∣∣
D

) is surjective.

4.4.12 Let S be an affine scheme over Fq. Let ((xi)i∈I ,M, ψM ) be an S-point of Bun
SM (µ)
M,N,I,d.

Let D := N ×S+Γ∑
dxi . Applying 4.4.11 to the group scheme UM on X×S, we obtain an exact

sequence of sheaves of groups:

0→ KerUM,D → UM→ (iD)∗UM
∣∣
D
→ 0. (4.9)

Proposition 4.4.13. There exists a constant C(G,X,N, I, d) ∈ Q>0, such that if 〈µ, α〉 > C(G,
X,N, I, d) for all α ∈ ΓG − ΓM , then R0(prS)∗KerUM,D is a unipotent group scheme over S and
the fiber of Bun

SM (µ)
P,N,I,d→ Bun

SM (µ)
M,N,I,d over S is the classifying stack [S/R0(prS)∗KerUM,D].

Proof. We recall that YN,d denotes the fiber of Bun
SM (µ)
P,N,I,d→ Bun

SM (µ)
M,N,I,d over S. For any scheme

S′→ S, the groupoid YN,d(S
′) classifies the data of (F , β), where F is a UM-bundle on X × S′

and β is an isomorphism of UM-bundles F
∣∣
D

∼
→ UM

∣∣
D
. By (4.9), this groupoid is equivalent to

the groupoid of KerUM,D-bundles on X × S′.
Similarly to the case without level, Proposition 4.4.13 follows from Lemma 4.4.14 below. 2
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Lemma 4.4.14. There exists a constant C(G,X,N, I, d) ∈ Q>0, such that if 〈µ, α〉 > C(G,X,N,
I, d) for all α ∈ ΓG − ΓM , then we have the following.

(a) The sheaf of groups R0(prS)∗KerUM,D is a unipotent group scheme.
(b) The sheaf of pointed sets R1(prS)∗KerUM,D is trivial.

Proof. The proof is the same as Lemma 4.4.5, except that we replace (U (j−1)/U (j))M by
Ker(U(j−1)/U(j))M,D, and that we use Lemma 4.4.15 below instead of Proposition 4.4.9. 2

Lemma 4.4.15. There exists a constant C(G,X,N, I, d) ∈ Q>0 such that for µ ∈ Λ̂+,Q
Gad , if

〈µ, α〉 > C(G,X,N, I, d), for all α ∈ ΓG − ΓM , then for any ((xi),M, ψ) ∈ Bun
SM (µ)
M,N,I,d(S) and

any j, the sheaf R1(prS)∗((U
(j)/U (j+1))M(−N × S − Γ∑

dxi)) is trivial.

Proof. Let C(G,X,N, I, d) := C(G,X) + degN + |I| · d, where C(G,X) is the constant in
Proposition 4.4.9. We repeat the argument in [DG15, Proposition 10.4.5], except that in [DG15,
Remark 10.3.5] we replace the reductive group G̃ by G̃ × Gm and the G̃-bundle F

G̃
by the

G̃×Gm-bundle FG̃ ×O(−N × S − Γ∑
dxi). 2

4.5 Proof of Theorem 4.2.4: step 3
4.5.1 Let S be a scheme over Fq. Let HS and H ′S be two group schemes over S. Let

f : H ′S → HS be a morphism of group schemes over S. We denote by [S/H ′S ] the classifying stack
of H ′S on S. Similarly for [S/HS ]. Then f induces a morphism of stacks: f : [S/H ′S ]→ [S/HS ].

Lemma 4.5.2. Let f, g : H ′S → HS be two morphisms of connected group schemes. Let [HS/H
′
S ]

be the quotient stack where H ′S acts on HS by h′ ·h = f(h′)hg(h′)−1. Then the following diagram
is Cartesian

[HS/H
′
S ] //

��

[S/H ′S ]

(f,g)

��
[S/HS ]

(id,id) // [S/HS ]×
S

[S/HS ]

(4.10)

where the morphism [HS/H
′
S ]→ [S/HS ] is induced by HS → S and H ′S

g−→ HS .

Proof. The fiber product is [HS ×S HS/H
′
S ×S HS ], where H ′S acts on HS ×S HS by (f, g)

(from the left) and HS acts on HS ×S HS by diagonal action (from the right). The morphism
α : [HS×SHS/H

′
S×SHS ]→ [S/HS ] (respectively β : [HS×SHS/H

′
S×SHS ]→ [S/H ′S ]) is given

by HS ×S HS → S and the second projection H ′S ×S HS → HS (respectively the first projection
H ′S ×S HS → H ′S).

The morphism of group schemes over S

HS ×S HS → HS ×S HS , (x, y) 7→ (xy−1, y) (4.11)

is an isomorphism. Moreover, it is H ′S ×S HS-equivariant for the action of H ′S ×S HS on the
left-hand side as above and the action of H ′S ×S HS on the right-hand side given by (h′, h)
(z, t) = (f(h′)zg(h′)−1, g(h′)th−1). The isomorphism (4.11) induces an isomorphism of quotient
stacks

[HS ×S HS/H
′
S ×S HS ]

∼
→

(4.11)
[HS ×S HS/H

′
S ×S HS ] ' [HS/H

′
S ], (4.12)

where H ′S acts on HS by h′ · x = f(h′)xg(h′)−1. The morphism [HS/H
′
S ] → [S/HS ] is the

composition of the inverse of (4.12) and α. 2
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Lemma 4.5.3. Let S be an affine scheme. Let H1 and H2 be two unipotent group schemes over
S. Let ϕ : [S/H1]→ [S/H2] be a morphism of stacks. Then there exists f : H1→ H2 a morphism
of group schemes over S such that ϕ = f .

Proof. Since S is affine and H2 is unipotent, all H2-torsors on S are trivial. The morphism ϕ is
given by a H2-torsor H on S which is H1-equivariant. We trivialize H as a H2-torsor. Then the
action of H1 on H gives the morphism f . 2

End of the proof of Theorem 4.2.4. Let µ satisfy the hypothesis in Proposition 4.4.13; then
YN,d = [S/HN,d] (respectively YN = [S/HN ]), where HN,d := R0(prS)∗KerUM,N×S+Γ∑

dxi

(respectively HN := R0(prS)∗KerUM,N×S) is a unipotent group scheme over S.
By Lemma 4.5.3, the two morphisms b1 and b2 in diagram (4.5) are induced by two morphisms

of group schemes f1, f2 : HN,d → HN . By Lemma 4.5.2, Z is isomorphic to [HN/HN,d], where
HN,d acts on HN by h′ · h = f1(h′)hf2(h′)−1. 2

4.6 Cohomological statements
Definition 4.6.1. Let dW be the smallest integer in Proposition 2.2.1 such that the action of
GI,∞ on GrG,I,W factors through GI,dW . We have defined the constants C ′(G,X,N,W ) and
C(G,X,N, I, dW ) in Theorems 4.2.1 and 4.2.4 respectively. We take

C̃(G,X,N,W ) := Max{C ′(G,X,N,W ), C(G,X,N, I, dW )}.

Definition 4.6.2. Let µ ∈ Λ̂+,Q
Gad . For any j ∈ Z, we define degree j cohomology sheaves

Hj, SM (µ)
G,N,I,W = Rj(pG)!(FΞ

G,N,I,W

∣∣
Cht

SM (µ)

G,N,I,W /Ξ
),

H′ j, SM (µ)
M,N,I,W = Rj(p′M )!(F

′ Ξ
M,N,I,W

∣∣∣
Cht
′SM (µ)

M,N,I,W /Ξ
).

4.6.3 If 〈µ, α〉 > C̃(G,X,N,W ) for all α ∈ ΓG−ΓM , then by Theorem 4.2.1, the morphism
i′SM (µ) : Cht

′SM (µ)
P,N,I,W → Cht

SM (µ)
G,N,I,W is proper and schematic. Applying the construction in § 3 to

the truncation SM (µ), we obtain a constant term morphism (in Db
c((XrN)I ,Q`)):

CP, j, SM (µ)
G,N : Hj, SM (µ)

G,N,I,W → H
′ j, SM (µ)
M,N,I,W . (4.13)

Here is the main result of § 4.

Proposition 4.6.4. Let P be a parabolic subgroup of G andM its Levi quotient. For µ ∈ Λ̂+,Q
Gad ,

if 〈µ, α〉> C̃(G,X,N,W ) for all α ∈ ΓG−ΓM , then for any j, morphism (4.13) is an isomorphism.

Proof. By (3.33), CP, j, SM (µ)
G,N is the composition of two morphisms:

Rj(pG)!(FΞ
G,N,I,W

∣∣
Cht

SM (µ)

G,N,I,W

)
(1)
−→ Rj(p′M )!(π

′SM (µ))!(i
′SM (µ))∗(FΞ

G,N,I,W

∣∣
Cht

SM (µ)

G,N,I,W

)

(2)
−→ Rj(p′M )!(F ′ΞM,N,I,W

∣∣
Cht
′SM (µ)

M,N,I,W

).

The morphism (1) is induced by the composition of functors

Rj(pG)!→ Rj(pG)!(i
′SM (µ))∗(i

′SM (µ))∗ ' Rj(pG)!(i
′SM (µ))!(i

′SM (µ))∗

∼
→ Rj(p′M )!(π

′SM (µ))!(i
′SM (µ))∗
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defined in (3.32). By Theorem 4.2.1 and Lemma 4.6.5 below applied to i′SM (µ), the morphism
(1) is an isomorphism.

The morphism (2) is induced by the morphism

(π′SM (µ))!(i
′SM (µ))∗FΞ

G,N,I,W → F ′ΞM,N,I,W

defined in (3.23), which is a composition of the counit map

Co : (π
′SM (µ)
d )!(π

′SM (µ)
d )!

→ Id

and some isomorphisms. By Theorem 4.2.4 and Lemma 4.6.6 below applied to π
′SM (µ)
d , the

morphism (2) is an isomorphism. 2

Lemma 4.6.5. Let f : X → Y be a schematic finite universal homeomorphism of algebraic
stacks; then the unit map Id→ f∗f

∗ is an isomorphism.

Lemma 4.6.6. Let f : X → Y be an unipotent morphism of algebraic stacks (see
Definition 4.2.3); then the counit map f!f

!
→ Id is an isomorphism.

Proof. The proof consists of four steps.
(i) Using proper base change and the fact that f is smooth, we reduce to the case when

Y = Spec k is a point, and thus X = U1/U2 is a quotient of unipotent group schemes U1 and
U2 over k.

Indeed, to prove the lemma, it is enough to prove that for any geometric point iy : y → Y ,
the morphism (iy)

∗f!f
!
→ (iy)

∗ is an isomorphism. Form the following Cartesian square.

f−1(y)

f̃

��

ĩy //X

f

��
y

iy // Y

(4.14)

Since f is smooth, we have f ! ' f∗[2n](n) and (f̃)! ' (f̃)∗[2n](n), where n is the dimension of f .
We deduce that

(iy)
∗f!f

! ' (f̃)!(̃iy)
∗f ! ' (f̃)!(̃iy)

∗(f)∗[2n](n) ' (f̃)!(f̃)∗(iy)
∗[2n](n) ' (f̃)!(f̃)!(iy)

∗, (4.15)

where the first isomorphism is the proper base change [LO08, § 12]. Thus it is enough to prove
that (f̃)!(f̃)!(iy)

∗
→ (iy)

∗ is an isomorphism.
(ii) We denote by BU2 the classifying stack of U2 over k. Let f1 : U1/U2 → BU2 and f2 :

BU2 → Spec k be the canonical morphisms. Then f = f2 ◦ f1. We have a commutative diagram
of functors.

f!f
! = (f2)!(f1)!(f1)!(f2)! //

��

Id

(f2)!(f2)!

66

(4.16)

Thus it is enough to prove that the counit maps (f1)!(f1)!
→ Id and (f2)!(f2)!

→ Id are
isomorphisms.
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(iii) Note that f1 is a U1-torsor over BU2. By Definition 4.2.3, we reduce to the case of
A1-torsor. Using (i) again, we reduce to the case when f1 is the map A1

→ Spec k, where it is
clear that (f1)!(f1)!

→ Id is an isomorphism.
(iv) Let g2 : Spec k → BU2 be the canonical morphism. Then f2 ◦ g2 ' Id. We have a

commutative diagram of functors.

(f2)!(g2)!(g2)!(f2)! ' //

��

Id

(f2)!(f2)!

88

(4.17)

We deduce that to prove that (f2)!(f2)!
→ Id is an isomorphism, it is enough to prove that

(g2)!(g2)!
→ Id is an isomorphism. Note that g2 is a U2-torsor over BU2. Just like in (iii), we

prove that (g2)!(g2)!
→ Id is an isomorphism. 2

Remark 4.6.7. In fact, to prove that the morphism (2) in Proposition 4.6.4 is an isomorphism, it
is enough to write π′SM (µ)

d as the tower

Cht
SM (µ)
P

πd,m−−−→ · · ·→ C̃htP/U(j+1)

πd,j−−→ C̃htP/U(j) → · · ·
πd,0−−→ C̃htM

and prove that for each j, the morphism Co : (πd,j)!(πd,j)
!
→ Id is an isomorphism. For this, we

only need the statement of Theorem 4.2.4 for each πd,j (and replace unipotent group scheme by
additive group scheme). The proof of such a statement still uses the three steps, but in step 2
Remark 4.4.6 we only need to consider the case of commutative groups.

5. Finiteness of the cuspidal cohomology

The goal of this section is to prove the following.

Theorem 5.0.1. The Q`-vector space Hj, cusp
G,N,I,W (defined in Definition 3.5.13) has finite

dimension.

Theorem 5.0.1 will be a direct consequence of the following proposition.

Proposition 5.0.2. Let G,X,N, I,W as before. There exists µ0 ∈ Λ̂+,Q
Gad (depending on G, X,

N , W and j) such that
Hj, cusp
G,N,I,W ⊂ Im(Hj, 6µ0

G,N,I,W → Hj
G,N,I,W ).

The proof of this proposition is essentially based on Proposition 4.6.4 and an induction
argument on the semisimple rank of the group G. We will present our strategy in § 5.1 and give
the proof in §§ 5.2–5.4.

Notation 5.0.3. In the remaining part of this section, to simplify the notations, we will omit the
indices N, I,W .
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5.1 Strategy of the proof
5.1.1 We denote by R̂Gad the coroot lattice of Gad. We have R̂Gad ⊂ Λ̂Gad . Let R̂+

Gad :=

Λ̂+
Gad ∩ R̂Gad . For any r ∈ N, we have (1/r)R̂+

Gad ⊂ Λ̂+,Q
Gad and

lim−→
µ∈Λ̂+,Q

Gad

Hj,6µ
G = lim−→

µ∈(1/r)R̂+

Gad

Hj,6µ
G .

Let ι : Λ̂QZM/ZG ⊂ Λ̂Q
Gad be the inclusion. We fix r such that

⋃
P(G ι◦prad

P (Λ̂+
Gad) ⊂ (1/r)R̂+

Gad ,

where prad
P : Λ̂Q

Gad → Λ̂QZM/ZG is defined in (1.18).

5.1.2 For any α ∈ ΓG, we denote by α̌ ∈ Γ̂G the corresponding coroot, and vice versa. Let
Pα be the maximal parabolic subgroup with Levi quotient Mα such that ΓG − ΓMα = {α}.

In this section, for µ ∈ Λ̂+,Q
Gad , we will write µ − (1/r)α̌ instead of µ − (1/r)ΥG(α̌), where

ΥG : Λ̂QG→ Λ̂Q
Gad is defined in 1.15.

5.1.3 We have defined the inductive limits Hj
G in Definition 2.5.5 and H ′ jMα

in
Definition 3.4.9. For any λ ∈ (1/r)R̂+

Gad , let Iλ : Hj,6λ
G → Hj

G be the morphism to the inductive

limit. Let Hj,6λ
G → H ′ jMα

be the composition of morphisms Hj,6λ
G

Iλ−→ Hj
G

CPα, jG−−−−→ H ′ jMα
, where

the second morphism is defined in Definition 3.5.10.

5.1.4 Since for every c ∈Hj
G, there exists λ ∈ R̂

+
Gad large enough such that c ∈ Im(Hj, 6λ

G →

Hj
G), Proposition 5.0.2 will be a direct consequence of part (b) in the following proposition.

Proposition 5.1.5. Let G be a connected split reductive group. There exists a constant
C0
G ∈ Q>0 (depending on G,X,N,W, j), such that the following properties hold.

(a) Let µ ∈ (1/r)R̂+
Gad such that 〈µ, γ〉 > C0

G for all γ ∈ ΓG. Then for any α ∈ ΓG such that
µ− (1/r)α̌ ∈ (1/r)R̂+

Gad (which is automatic if C0
G > 2/r), the morphism

Ker(H
j,6µ−(1/r)α̌
G → H ′ jMα

)→ Ker(Hj,6µ
G → H ′ jMα

)

is surjective.
(b) There exists µ0 ∈ (1/r)R̂+

Gad (depending on C0
G), such that for any λ ∈ (1/r)R̂+

Gad satisfying
λ > µ0 and 〈λ, γ〉 > C0

G for all γ ∈ ΓG, the morphism

Ker

(
Hj,6µ0

G →

∏
P(G

H ′ jM

)
→ Ker

(
Hj,6λ
G →

∏
P(G

H ′ jM

)
is surjective.

(c) There exists a constant CG > C0
G, such that for any λ ∈ (1/r)R̂+

Gad satisfying 〈λ, γ〉 > CG

for all γ ∈ ΓG, the morphism Iλ : Hj,6λ
G → Hj

G is injective.

5.1.6 The proof of Proposition 5.1.5 uses an induction argument on the semisimple rank
of the group G: first we prove the statements (a), (b) and (c) for every Levi subgroup of G of
rank 0. Second we prove the key step: for n > 1, if (c) is true for all Levi subgroups of rank n−1,
then (a) is true for all Levi subgroups of rank n. Then we deduce easily (a) ⇒ (b) and (b) ⇒ (c)
for all Levi subgroups of rank n.
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5.1.7 As in 4.4.1, we fix a maximal torus T ⊂ B and view the Levi quotient M of a
(standard) parabolic P as a subgroup M ⊂ P .

Recall that we have fixed Ξ = ΞG ⊂ ZG(A) in 0.0.4. Applying 0.0.4 to each Levi subgroup M
of G, we fix ΞM ⊂ ZM (A). Moreover, we choose ΞM for different Levi subgroups in a compatible
way: if M2 is a Levi subgroup of M1, then we have ΞG ⊂ ΞM1 ⊂ ΞM2 ⊂ T (A).

5.2 Beginning of the induction: semisimple rank 0
5.2.1 The only Levi subgroup of semisimple rank 0 is the maximal torus T . Then T ad is

trivial and Λ̂+
T ad = Λ̂T ad has only one element: 0.

The algebraic stack ChtT /ΞT is of finite type. There is only one term in the inductive limit
Hj
T , which is of finite dimension.
There is no constant term morphism for T . So we have Hj, cusp

T = Hj
T .

Lemma 5.2.2. Take C0
T = CT = 0 and µ0 = 0. Proposition 5.1.5 is true for T .

5.3 From semisimple rank n − 1 to n
Lemma 5.3.1. Let G be a connected split reductive group of semisimple rank n. Suppose that
Proposition 5.1.5(c) is true for every Levi quotient M of G of semisimple rank n − 1, with a
constant CM . We take

C0
G := Max{{CM |M Levi quotient of semisimple rank n− 1 of G}, C̃(G,X,N,W )},

where C̃(G,X,N,W ) is the constant defined in Definition 4.6.1. Then for this constant C0
G

Proposition 5.1.5(a) is true for G.

We need some preparations before the proof of Lemma 5.3.1.

5.3.2 Let µ ∈ (1/r)R̂+
Gad such that 〈µ, γ〉 > C0

G for all γ ∈ ΓG. Let α ∈ ΓG such that
µ− (1/r)α̌ ∈ (1/r)R̂+

Gad . Let P := Pα and M := Mα as in 5.1.2. Note that ΓG − ΓM = {α}.

Lemma 5.3.3. Let S1 = {λ ∈ (1/r)R̂+
Gad |λ 6 µ− (1/r)α̌} and S2 = {λ ∈ (1/r)R̂+

Gad |λ 6 µ}. Then

S2 − S1 = SM (µ) ∩
(

1

r
R̂+
Gad

)
, (5.1)

where SM (µ) is defined in Definition 4.1.1.

Proof. For any λ ∈ S2, we have µ− λ =
∑

γ̌∈Γ̂G
(cγ/r)γ̌ for some cγ ∈ Z>0. Thus(

µ− 1

r
α̌

)
− λ =

(
cα
r
− 1

r

)
α̌+

∑
γ̌∈Γ̂G, γ̌ 6=α̌

cγ
r
γ̌, cγ ∈ Z>0. (5.2)

If moreover λ /∈ S1, then in (5.2), there should be at least one coefficient strictly negative. So we
must have cα − 1 < 0. Since cα ∈ Z>0, we must have cα = 0. We deduce that

µ− λ =
∑

γ̌∈Γ̂G, γ̌ 6=α̌

cγ
r
γ̌ =

∑
γ̌∈Γ̂M

cγ
r
γ̌, cγ ∈ Z>0.

By Definition 4.1.1, we have λ ∈ SM (µ). 2
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Lemma 5.3.4. Let µ and M as in 5.3.2. Suppose that Proposition 5.1.5(c) is true for M . Then
for any j ∈ Z, the morphism H ′ j,6µM → H ′ jM is injective.

The point of the proof of this lemma is to replace the quotient by ΞM in (5.3) by the quotient
by ΞG in (5.5).

Proof. By Proposition 5.1.5(c) for M , for any λ ∈ (1/r)R̂+
Mad satisfying 〈λ, γ〉 > CM for all

γ ∈ ΓM , the morphism

Hj
c (Cht6

Mad
λ

M,ηI
/ΞM ,FM )→ Hj

c (Cht
M,ηI

/ΞM ,FM ) (5.3)

is injective, where everything is defined as in § 2.5 by replacing G by M .
We can assume that ΞM in 5.1.7 is small enough (containing ΞG). Then for any ν ∈ AM

(defined in 1.5.7), the composition of morphisms

ChtνM /ΞG→ ChtM /ΞG→ ChtM /ΞM (5.4)

is an open and closed immersion.
(For the following discussion, see [Xue17, Illustration 7.4.4] for an example for G = GL3.) Let

ν 6 prad
P (µ). We use a special case of 1.5.17. By 1.5.13, we have prad

P ◦ΥG(α̌) > 0. Let cα ∈ Q>0

such that prad
P (µ)− cα prad

P ◦ΥG(α̌) = ν. Let µν := µ− cαα̌. For any λ ∈ (1/r)R̂Gad , the condition

λ 6 µ and prad
P (λ) = ν is equivalent to λ 6Mµν . We deduce that Cht6µ, νM = Cht6

Mµν
M .

Let Ψ : M �Mad. If µ1 6 µ2, then µ1,ν 6Mµ2,ν and Ψ(µ1,ν) 6M
ad

Ψ(µ2,ν). For all γ ∈ ΓM ,
since 〈α̌, γ〉 6 0, we have 〈µν , γ〉 > 〈µ, γ〉. By hypothesis 〈µ, γ〉 > C0

G > CM , so 〈µν , γ〉 > CM .
Then the injectivity of (5.3) with λ = Ψ(µν) implies that the morphism

Hj
c (Cht6µ, ν

M,ηI
/ΞG,FM )→ Hj

c (Chtν
M,ηI

/ΞG,FM ) (5.5)

is injective. Note that we have defined Hj,6µ, ν
M = Hj

c (Cht6µ, ν
M,ηI

/ΞG,FM ) in Definition 2.6.6 and

Hj, ν
M = Hj

c (Chtν
M,ηI

/ΞG,FM ) in Definition 2.6.9.

Moreover, since Cht′M = ChtM
P (ON )
× G(ON ) is a disjoint union of copies of ChtM , we deduce

that the morphismH ′ j,6µ, νM →H ′ j, νM is also injective, whereH ′ j,6µ, νM is defined in Definition 3.4.7
and H ′ j, νM is defined in Definition 3.4.10.

Note that by Lemma 1.5.14, for ν /∈ AM or ν � prad
P (µ), the cohomology group H ′ j, 6µ, νM = 0.

By Remark 3.5.11, we have a commutative diagram,

lim−→µ
H ′ j,6µM

f //
∏

ν∈Λ̂Q
ZM/ZG

H ′ j, νM

H ′ j,6µM =
∏

ν∈Λ̂µ
ZM/ZG

H ′ j,6µ, νM

g

OO

h

77

where f is (3.41) and h is induced component by component by H ′ j,6µ, νM → H ′ j, νM . By the above
discussion, h is injective. We deduce that the morphism g is injective. 2
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Proof of Lemma 5.3.1. The proof consists of four steps.
(1) Let S1 and S2 as in Lemma 5.3.3. We define ChtS2

G and ChtS1
G as in A.0.2 (taking

into account A.0.1). We deduce from Lemma 5.3.3 that ChtS2
G −ChtS1

G = Cht
SM (µ)
G and

Cht′S2
M −Cht′S1

M = Cht
′SM (µ)
M .

We deduce from 1.4.10 that

Bun=λ
G 6= ∅⇒ ΥG(λ) ∈

⋃
P(G

ι ◦ prad
P (Λ̂+

Gad) ⊂ 1

r
R̂+
Gad ,

where the last inclusion follows from the choice of r in 5.1.1. We deduce that Cht=λ
G = ∅ if

λ /∈ (1/r)R̂+
Gad . Thus ChtS2

G = Cht6µG , ChtS1
G = Cht

6µ−(1/r)α̌
G , Cht′S2

M = Cht′6µM and Cht′S1
M =

Cht
′6µ−(1/r)α̌
M .
Applying Lemma A.0.8 to S1 and S2, we obtain a commutative diagram of cohomology

groups, where the upper and lower lines are part of the long exact sequences in (A.2).

H
j,6µ−(1/r)α̌
G

//

C
P, j,6µ−(1/r)α̌
G
��

Hj,6µ
G

//

CP, j,6µG
��

H
j, SM (µ)
G

C
P, j, SM (µ)

G
��

H
′ j,6µ−(1/r)α̌
M

// H ′ j,6µM
// H
′ j, SM (µ)
M

(5.6)

Note that if Cht
SM (µ)
G = ∅, then the proof is finished.

(2) By the hypothesis of Lemma 5.3.1, 〈µ, α〉 > C0
G > C̃(G,X,N,W ). By Proposition 4.6.4,

for any j, the morphism C
P, j, SM (µ)
G : H

j, SM (µ)
G → H

′ j, SM (µ)
M is an isomorphism.

(3) We deduce from (3.38) a commutative diagram.

Hj,6µ
G

IG //

CP, j,6µG
��

Hj
G

CP, jG
��

H ′ j,6µM

IM // H ′ jM

(5.7)

By Lemma 5.3.4, the morphism IM in (5.7) is injective.
(4) Let a ∈ Ker(Hj,6µ

G → H ′ jM ). By the commutativity of (5.7), IM ◦ CP, j,6µG (a) = CP, jG ◦
IG(a) = 0. By step (3), IM is injective. So CP, j,6µG (a) = 0.

By the commutativity of (5.6) and the isomorphism in step (2), we deduce that the image of
a in Hj, SM (µ)

G is zero. So there exists a′ ∈ Hj,6µ−(1/r)α̌
G whose image in Hj,6µ

G is a. 2

Remark 5.3.5. In fact, we have

H ′ j,6µM =

( ∏
ν<prad

P (µ)

H ′ j,6µ, νM

)
⊕H ′ j,6µ, prad

P (µ)
M = H

′ j,6µ−(1/r)α̌
M ⊕H ′ j, SM (µ)

M .

Thus the bottom line of (5.6) was canonically split.

Lemma 5.3.6. If the property (a) of Proposition 5.1.5 is true for G, then the property (b) of
Proposition 5.1.5 is true for G.
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Proof. Let ∇(C0
G) be the set of µ ∈ (1/r)R̂+

Gad such that 〈µ, γ〉 > C0
G for all γ ∈ ΓG. Let Ω(C0

G)

be the set of µ ∈ ∇(C0
G) such that µ−(1/r)α̌ /∈ ∇(C0

G) for all α̌ ∈ Γ̂G. The set Ω(C0
G) is bounded,

and thus is finite. Let µ0 ∈ (1/r)R̂+
Gad such that µ0 > µ for all µ ∈ Ω(C0

G).
For any λ ∈ ∇(C0

G), there exists a (zigzag) chain λ = λ(0) > λ(1) > · · · > λ(m−1) > λ(m) in
(1/r)R̂+

Gad for some m ∈ Z>0 such that:

(i) for any j, we have λ(j) ∈ ∇(C0
G);

(ii) for any j, we have λ(j) − λ(j+1) = (1/r)α̌ for some simple coroot α̌ ∈ Γ̂G;
(iii) λ(m) ∈ Ω(C0

G).

(Indeed, λ(0) satisfies (i). Suppose that we have already constructed a chain until λ(j) which
satisfies (i) and (ii). If λ(j) satisfies (iii), we are done. If not, then there exists some α̌ ∈ Γ̂G such
that λ(j) − (1/r)α̌ ∈ ∇(C0

G). We define λ(j+1) := λ(j) − (1/r)α̌ and continue the process.)
Applying successively the property (a) of Proposition 5.1.5 to λ(0), λ(1), . . . , until λ(m), we

deduce that the morphism

Ker

(
Hj,6λ(m)

G →

∏
P(G

H ′ jM

)
→ Ker

(
Hj,6λ
G →

∏
P(G

H ′ jM

)

is surjective. Assume in addition that λ > µ0; then the morphism Hj,6λ(m)

G → Hj,6λ
G factors

through Hj,6µ0

G . We deduce the lemma. 2

5.4 Injectivity
Lemma 5.4.1. If the property (b) of Proposition 5.1.5 is true for G, then the property (c) of
Proposition 5.1.5 is true for G.

We need some preparations before the proof of Lemma 5.4.1.

5.4.2 For µ ∈ (1/r)R̂+
Gad , let Iµ : Hj,6µ

G → Hj
G be the morphism to the inductive limit as

in 5.1.3. For λ ∈ (1/r)R̂+
Gad such that λ > µ, we denote by Iλµ : Hj,6µ

G → Hj,6λ
G the morphism

defined in 2.5.2. We have Ker(Iλµ) ⊂ Ker(Iµ) ⊂ Hj,6µ
G .

For λ2 > λ1 > µ, we have Ker(Iλ1
µ ) ⊂ Ker(Iλ2

µ ).

Lemma 5.4.3. Let µ ∈ (1/r)R̂+
Gad . There exists µ] ∈ R̂+

Gad such that µ] > µ and Ker(Iµ
]

µ ) =
Ker(Iµ).

Proof. We have the filtered system {Ker(Iλµ) | λ ∈ (1/r)R̂+
Gad , λ > µ} in Ker(Iµ) and Ker(Iµ) =

lim−→λ
Ker(Iλµ). Since Ker(Iµ) is of finite dimension, the result is clear. 2

Construction 5.4.4. Let µ0 be the one in the property (b) of Proposition 5.1.5. Choose µ]0 ∈
(1/r)R̂+

Gad which satisfies Lemma 5.4.3 for µ0. Let CG = max{C0
G,maxγ∈ΓG{〈µ

]
0, γ〉}}.

Proof of Lemma 5.4.1. Let λ ∈ (1/r)R̂+
Gad such that 〈λ, γ〉 > CG for all γ ∈ ΓG. By

Construction 5.4.4, 〈λ − µ]0, γ〉 = 〈λ, γ〉 − 〈µ]0, γ〉 > CG − 〈µ]0, γ〉 > 0 for all γ ∈ ΓG. Thus
µ]0 6 λ. Consider the morphisms

Hj,6µ0

G → H
j,6µ]0
G → Hj,6λ

G → Hj
G.
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We have Ker(Iµ
]
0

µ0 ) ⊂ Ker(Iλµ0
) ⊂ Ker(Iµ0). By Lemma 5.4.3, Ker(Iµ

]
0

µ0 ) = Ker(Iµ0), and hence
Ker(Iλµ0

) = Ker(Iµ0).
For any element b ∈ Ker(Hj,6λ

G → Hj
G), we have b ∈ Ker(Hj,6λ

G →
∏
H ′ jM ). By the property

(b) of Proposition 5.1.5, b is the image of an element b0 ∈ Ker(Hj,6µ0

G →
∏
H ′ jM ). We have

b0 ∈ Ker(Iµ0) = Ker(Iλµ0
), so its image b in Hj,6λ

G is zero. This implies that the morphism
Hj,6λ
G → Hj

G is injective. 2

6. Rational Hecke-finite cohomology

In this section, we will define a subspace Hj, Hf-rat
G,N,I,W of Hj

G,N,I,W and prove the following.

Proposition 6.0.1. The two Q`-vector subspaces Hj, cusp
G,N,I,W and Hj, Hf-rat

G,N,I,W of Hj
G,N,I,W are equal.

In § 6.1 we give some preparations. In § 6.2 we show that the constant term morphisms
commute with the action of the Hecke algebra. Using this, in § 6.3 we prove Proposition 6.0.1.

In § 6, all the stacks are restricted to ηI .

6.1 Compatibility of constant term morphisms and level change
6.1.1 Let K be a compact open subgroup of G(O). Let N be a level such that KN ⊂ K.

We define
ChtG,K,I,W := ChtG,N,I,W /(K/KN ).

It is independent of the choice of N .
Let d ∈ N be large enough as in Proposition 2.2.1; we define FG,K,I,W to be the inverse

image of SdG,I,W by εK,d : ChtG,K,I,W → [GI,d\GrG,I,W ]. Just as in Remark 2.4.6, FG,K,I,W
is independent of d. Similarly we define FΞ

G,K,I,W over ChtG,K,I,W /Ξ. We define Hj
G,K,I,W :=

lim−→µ
Hj
c (Cht6µG,K,I,W /Ξ,FΞ

G,K,I,W ).

6.1.2 Let K ′ ⊂ K be two compact open subgroups of G(O). The inclusion K ′/KN ↪→
K/KN induces a morphism prGK′,K : ChtG,K′,I,W → ChtG,K,I,W . Note that all the stacks are
restricted to ηI . Morphism prGK′,K is finite étale of degree the cardinality of K/K ′. The following
diagram is commutative.

ChtG,K′,I,W
prG
K′,K //

εK′,d ))

ChtG,K,I,W

εK,duu
[GI,d\GrG,I,W ]

Note that (prGK′,K)∗ = (prGK′,K)! and

(prGK′,K)∗FG,K,I,W = (prGK′,K)∗(εK,d)
∗SdG,I,W = (εK′,d)

∗SdG,I,W = FG,K′,I,W .

The adjunction morphism adj(prGK′,K) : Id→ (prGK′,K)∗(prGK′,K)∗ induces an (injective) morphism
of cohomology groups, which we still denote by

adj(prGK′,K) : Hj
G,K,I,W → Hj

G,K′,I,W .
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Note that (prGK′,K)! = (prGK′,K)∗. The counit morphism (in this case equal to the trace map)
Co(prGK′,K) : (prGK′,K)!(prGK′,K)!

→ Id induces a (surjective) morphism of cohomology groups,
which we still denote by

Co(prGK′,K) : Hj
G,K′,I,W → Hj

G,K,I,W .

6.1.3 Let v be a place in X. Let N = Nv + nv. Taking projective limit over n, we define

lim
←−
n

ChtG,Nv+nv,I,W .

Let g ∈ G(Fv). The right action of g (by left multiplication by g−1) induces an isomorphism

lim
←−
n

ChtG,Nv+nv,I,W
∼
→ lim
←−
n

ChtG,Nv+nv,I,W (G → τG, ψv, ψv) 7→ (G′→ τG′, ψv, ψ′v)

where ψv (respectively ψv) is the level structure outside v (respectively on v). The G-bundle G′ is
defined by gluing G

∣∣
Γ∞v

and G
∣∣
X−v by G

∣∣
Γ∞v−v

g−→ G
∣∣
Γ∞v−v

ψv
←−
∼
G
∣∣
Γ∞v−v. We have ψ′v = g−1◦ψv.

Let
ChtG,∞,I,W := lim

←−
N

ChtG,N,I,W .

Similarly, ChtG,∞,I,W is equipped with an action of G(A).

6.1.4 Let P be a parabolic subgroup of G and M its Levi quotient. We define

ChtP,∞,I,W := lim
←−
N

ChtP,N,I,W .

Just as in 6.1.3, ChtP,∞,I,W is equipped with an action of P (A). For any compact open subgroup
K ⊂ G(O), we define

Cht′P,K,I,W := ChtP,∞,I,W
P (O)
× G(O)/K. (6.1)

We have a morphism

ChtP,∞,I,W
P (O)
× G(O)→ ChtG,∞,I,W (6.2)

by sending ((P, ψP ) → (τP, τψP ), g ∈ G(O)) to ((G, g−1 ◦ ψG) → (τG, g−1 ◦ τψG)), where

G = P
P
×G and ψG = ψP

P
×G. It induces a morphism

ChtP,∞,I,W
P (O)
× G(O)→ ChtP,I,W ×

ChtG,I,W
ChtG,∞,I,W . (6.3)

This is a G(O)-equivariant morphism of G(O)-torsors over ChtP,I,W , where G(O) acts on the
left-hand side of (6.3) by right action (right multiplication) on G(O) and acts on the right-hand
side of (6.3) by the right action on ChtG,∞,I,W defined in 6.1.3. Thus (6.3) is an isomorphism.
We have

ChtP,∞,I,W
P (O)
× G(O)/K

∼
→ ChtP,I,W ×

ChtG,I,W
ChtG,∞,I,W /K,

i.e.
Cht′P,K,I,W = ChtP,I,W ×

ChtG,I,W
ChtG,K,I,W . (6.4)

When K = KN for some level N , we have ChtP,N,I,W = ChtP,∞,I,W /KP,N , where KP,N :=
KN ∩ P (O). We deduce that Cht′P,KN ,I,W defined in (6.1) coincides with Cht′P,N,I,W defined in
Definition 3.4.2.
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6.1.5 We define
ChtM,∞,I,W := lim

←−
N

ChtM,N,I,W .

Just as in 6.1.3, ChtM,∞,I,W is equipped with an action of M(A). Recall that for any level N , in

Definition 3.4.2, we defined Cht′M,N,I,W = ChtM,N,I,W

P (ON )
× G(ON ). Let KU,N := KN ∩U(O) and

KM,N := KP,N/KU,N . Taking into account that ChtM,N,I,W = ChtM,∞,I,W /KM,N , we deduce

Cht′M,N,I,W = ChtM,∞,I,W
P (O)/KU,N
× G(O)/KN . (6.5)

When we consider the action of the Hecke algebras in 6.2.4 in the next section, we will need
some functoriality on KN . For this reason, we rewrite (6.5) in the following way. Note that KN

is normal in G(O). The stabilizer of any P (O)-orbit in G(O)/KN is KP,N . We deduce from (6.5)
that

Cht′M,N,I,W =
⊔

P (O)-orbits in G(O)/KN

ChtM,∞,I,W /(KP,N/KU,N )

=
⊔

P (A)-orbits in G(A)/KN

ChtM,∞,I,W /(KP,N/KU,N ). (6.6)

The second equation is because that P (O)\G(O) = P (A)\G(A), and that in each P (A)-orbit in
G(A)/KN , we can choose a representative in G(O)/KN .

In the following, we want to generalize (6.6) for any compact open subgroup K ⊂ G(O)
(which may not be normal in G(O)).

6.1.6 Let D be the category of discrete sets S equipped with a continuous action of P (A)
with finitely many orbits such that the stabilizer of any point is conjugated to some open
subgroup of finite index in P (O). In particular, for any compact open subgroupK ⊂G(O), the set
S = G(A)/K is an object in D.

For any S ∈ D, we define functorially the cohomology group H ′M,S,I,W in the following way.
When S has only one orbit, choose a point s ∈ S, and let H be the stabilizer of s. Then

H is a subgroup of P (A) conjugated to some open subgroup of finite index in P (O). We have
S = P (A)/H. Let R be a subgroup of finite index in H ∩ U(A) and normal in H. By 6.1.5,
ChtM,∞,I,W is equipped with an action of M(A), thus an action of P (A) by the projection
P (A)�M(A). Note that R ⊂ U(A) acts trivially on ChtM,∞,I,W . We define a Deligne–Mumford
stack

ChtM,∞,I,W /(H/R).

We define the cohomology group H ′M,S,R,I,W as in Definition 2.6.8 for ChtM,∞,I,W /(H/R)
(instead of ChtM,N,I,W ). Concretely, we have a morphism ChtM,∞,I,W /(H/R)Ξ→ ChtM,I,W /Ξ,
where ChtM,I,W is the stack of M -shtukas without level structure. Let FΞ

M,∞,I,W be the inverse
image of FΞ

M,I,W . We define

H ′ jM,S,R,I,W := lim−→
µ

∏
ν

Hj
c (Cht6µ, νM,∞,I,W /(H/R)Ξ,FΞ

M,∞,I,W ).

Let R1 ⊂ R2 be two subgroups of finite index in H ∩U(A) and normal in H. The projection
H/R1 � H/R2 induces a morphism

qR1,R2 : ChtM,∞,I,W /(H/R1)→ ChtM,∞,I,W /(H/R2).
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It is a gerbe for the finite q-group R2/R1. The counit morphism (which is equal to the trace map
because qR1,R2 is smooth of dimension 0) Co(qR1,R2) : (qR1,R2)!(qR1,R2)!

→ Id is an isomorphism.
Indeed, just as in the proof (i) of Lemma 4.6.6, by proper base change and the fact that qR1,R2 is
smooth, we reduce to the case of Lemma 6.1.7 below with Γ = R2/R1. The morphism Co(qR1,R2)
induces an isomorphism of cohomology groups

H ′M,S,R1,I,W
∼
→ H ′M,S,R2,I,W . (6.7)

We define H ′M,S,I,W to be any H ′M,S,R,I,W , where we identify H ′M,S,R1,I,W
and H ′M,S,R2,I,W

by
(6.7).

Recall that S has only one orbit. H ′M,S,I,W is independent of the choice of the point s
in S. In fact, let s1, s2 be two points of S, and let H1 (respectively H2) be the stabilizer
of s1 (respectively s2); then H2 = p−1H1p for some p ∈ P (A). The action of p induces an
isomorphism ChtM,∞,I,W /(H1/R)

∼
→ ChtM,∞,I,W /(p−1H1p/p

−1Rp). We deduce an isomorphism
of cohomology groups by the adjunction morphism.

In general, S =
⊔
α∈A α is a finite union of orbits, and we define

H ′M,S,I,W :=
⊕
α∈A

H ′M,α,I,W .

When S = G(A)/K for some compact open subgroup K in G(O), we write

H ′M,K,I,W := H ′M,S,I,W . (6.8)

Lemma 6.1.7. Let Γ be a finite group over an algebraically closed field k over Fq. We denote by
BΓ the classifying stack of Γ over k. Let q : BΓ→ Spec k be the structure morphism. Then the
counit morphism (equal to the trace map) Co(q) : q!q

!
→ Id of functors on Dc(Spec k,Q`) is an

isomorphism.

Proof. The counit morphism Co(q) is the dual of the adjunction morphism adj(q) : Id→ q∗q
∗. For

any F ∈ Dc(Spec k,Q`), q∗F is a complex F of Γ-modules with trivial action of Γ. Since Hj(BΓ,
q∗F) = Hj(Γ, F ) (group cohomology), we have H0(BΓ, q∗F) = FΓ = F and Hj(BΓ, q∗F) = 0
for j > 0. So adj(q) is an isomorphism. By duality, we deduce the lemma. 2

6.1.8 Let S ∈ D. We define

Cht′P,S,I,W := ChtP,∞,I,W
P (A)
× S. (6.9)

For each orbit α in S, choose a representative, and let Hα be the stabilizer (well defined up to
conjugation). Then

Cht′P,S,I,W =
⊔

α∈{P (A)-orbits in S}

ChtP,∞,I,W /Hα.

For each α, let Rα be a subgroup of finite index in Hα ∩ U(A) and normal in Hα. Let
R = (Rα)α∈{P (A)-orbits in S}. We define

Cht′M,S,R,I,W :=
⊔

α∈{P (A)-orbits in S}

ChtM,∞,I,W /(Hα/Rα). (6.10)
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For each α, we have morphisms of prestacks

ChtP,∞,I,W /Hα
→ ChtM,∞,I,W /Hα

→ ChtM,∞,I,W /(Hα/Rα), (6.11)

where the first and third prestacks are Deligne–Mumford stacks, while the second is only a
prestack. Taking union over all the orbits, we deduce from (6.11) a morphism

πS,R : Cht′P,S,I,W → Cht′M,S,R,I,W . (6.12)

In particular, when S = G(A)/KN , the stack Cht′P,S,I,W coincides with Cht′P,N,I,W . For every
orbit α, we can choose a representative in G(O)/KN (so thatHα = KP,N ) and choose Rα =KU,N .
Then Cht′M,S,R,I,W coincides with Cht′M,N,I,W , H ′M,S,R,I,W coincides with H ′M,N,I,W defined in
Definition 3.4.9, and (6.12) coincides with π′ defined in (3.26).

6.1.9 For any compact open subgroup K ⊂ G(O), let S = G(A)/K. Note that in this case
we have Cht′P,K,I,W = Cht′P,S,I,W . For any R as in 6.1.8, we have the following morphisms.

Cht′P,S,I,W
iK

tt

πS,R

**
pP

��

ChtG,K,I,W
pG

**

Cht′M,S,R,I,W

pMttηI

(6.13)

Just as in Proposition 3.5.3 and Remark 3.5.4, the morphism iK is schematic and proper. Apply
the construction in § 3 to (6.13). Similarly to (3.9), we have

Cht′P,S,I,W

εP,d

��

πS,R,d
''

πS,R

++
C̃ht

′
M,S,R,I,W

ε̃M,d

��

π̃0
d

// Cht′M,S,R,I,W

εM,d

��
[PI,d\GrP,I,W ]

π0
d

// [MI,d\GrM,I,W ]

(6.14)

where πS,R,d is smooth. Let FG be the canonical Satake sheaf on ChtG,K,I,W and FM be the
canonical Satake sheaf on Cht′M,S,R,I,W . We construct a morphism cPG,K : (πS,R)!(iK)∗FG →
FM similar to (3.22) and (3.23). Namely, cPG,K is the composition of some isomorphisms and
the counit morphism (πS,R,d)!(πS,R,d)

!
→ Id. Note that since πS,R,d is smooth, the composition

(πS,R,d)!(πS,R,d)
∗[2m](m)

∼
→ (πd)!(πd)

!
→ Id is the trace map in [SGA4, XVIII 2], where m is the

dimension of πS,R,d.
Similar to (3.33), we have a composition of morphisms of functors in Db

c(η
I ,Q`):

(pG)!FG
adj(iK)
−−−−→ (pG)!(iK)∗(iK)∗FG ' (pM )!(πS,R)!(iK)∗FG

cPG,K−−−→ (pM )!FM .

We define
H ′P,K,I,W := H ′P,S,I,W := (pP )!(iK)∗FG.
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The morphism (pG)!FG
adj(iK)
−−−−→ (pG)!(iK)∗(iK)∗FG induces a morphism

Hj
G,K,I,W → H ′P,S,I,W . (6.15)

The morphism (pM )!(πS,R)!(iK)∗FG
cPG,K−−−→ (pM )!FM induces a morphism

H ′P,S,I,W → H ′ jM,S,R,I,W . (6.16)

We define the constant term morphism to be the composition of (6.15) and (6.16)

CP, jG,S,R : Hj
G,K,I,W → H ′ jM,S,R,I,W . (6.17)

For R1 ⊂ R2 as in 6.1.6, the following diagram is commutative

Hj
G,K,I,W

CP, jG,S,R1 //

CP, jG,S,R2
))

H ′ jM,S,R1,I,W

' (6.7)
��

H ′ jM,S,R2,I,W

(6.18)

because CP, jG,S,R1
, CP, jG,S,R2

and (6.7) are defined by counit morphisms (which in these cases are
equal to trace maps), and by [SGA4, XVIII Théorème 2.9], the trace morphism is compatible
with composition.

In 6.1.6 we defined H ′ jM,K,I,W . We deduce from (6.18) a morphism

CP, jG,K : Hj
G,K,I,W → H ′ jM,K,I,W , (6.19)

which is the composition Hj
G,K,I,W → H ′ jP,K,I,W → H ′ jM,K,I,W .

6.1.10 Let S1, S2 ∈ D and f : S1→ S2 be a morphism in D. Note that f is P (A)-equivariant
and it sends orbit to orbit. For each P (A)-orbit β in S2, choose a representative sβ ∈ β with
stabilizer Hβ . If f−1(β) is empty, take any Rβ subgroup of finite index in Hβ

2 ∩U(A) and normal
in Hβ

2 . If f
−1(β) is non-empty, for every P (A)-orbit α ∈ f−1(β), choose a representative sα ∈ α

such that f(sα) = sβ . Let Hα
1 be the stabilizer of sα. Then Hα

1 ⊂ Hα
2 . Let Rβ be a subgroup of

finite index in (
⋂
α∈f−1(β)H

α
1 ) ∩ U(A) ⊂ Hβ

2 ∩ U(A) and normal in Hβ
2 .

The morphism Hα
1 /R

β ↪→ Hβ
2 /R

β for β = f(α) induces a morphism

qMα : ChtM,∞,I,W /(Hα
1 /R

β)→ ChtM,∞,I,W /(Hβ
2 /R

β). (6.20)

Let R = ((Rβ)β∈{P (A)-orbits in S2}). Similarly to (6.10), we define Cht′M,S1,R,I,W and
Cht′M,S2,R,I,W . Then (6.20) for every orbit α induces a morphism

qMf : Cht′M,S1,R,I,W → Cht′M,S2,R,I,W . (6.21)

Similarly to 6.1.2, the adjunction morphism Id→ (qMf )∗(q
M
f )∗ induces a morphism

adj(qMf ) : H ′M,S2,I,W → H ′M,S1,I,W . (6.22)

The counit morphism (qMf )!(q
M
f )!
→ Id induces a morphism

Co(qMf ) : H ′M,S1,I,W → H ′M,S2,I,W . (6.23)
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In the following, we will apply the functoriality to the cases:

– K ′ ⊂ K, S1 = G(A)/K ′, S2 = G(A)/K and f is the projection G(A)/K ′ � G(A)/K;
– S1 = G(A)/K̃, S2 = G(A)/g−1K̃g and f is the isomorphism induced by the right

multiplication by g: G(A)/K̃
∼
→ G(A)/g−1K̃g.

Remark 6.1.11. In 6.1.10, we can also first define morphisms of cohomology groups for each orbit
α: the adjunction morphism Id→ (qMα )∗(q

M
α )∗ induces a morphism

adj(qMα ) : H ′M,f(α),I,W → H ′M,α,I,W , (6.24)

where the orbit α (respectively f(α)) is considered as subset of S1 (respectively S2). The counit
morphism (qMα )!(q

M
α )!
→ Id induces a morphism

Co(qMα ) : H ′M,α,I,W → H ′M,f(α),I,W . (6.25)

Then taking sum over all the orbits, we obtain (6.22) and (6.23).
Similarly, in 6.1.12 below, we can first prove the statement for cohomology groups orbit by

orbit, and then take the sum over all the orbits. But the notations would be more complicated.

6.1.12 Any S1, S2 ∈ D and f : S1→ S2 morphism in D induce a morphism

qPf : Cht′P,S1,I,W → Cht′P,S2,I,W .

The adjunction morphism Id→ (qPf )∗(q
P
f )∗ induces a morphism

adj(qPf ) : H ′P,S2,I,W → H ′P,S1,I,W .

The counit morphism (qPf )!(q
P
f )!
→ Id induces a morphism

Co(qPf ) : H ′P,S1,I,W → H ′P,S2,I,W .

For each orbit α in S1 with β = f(α), let Hα
1 , H

β
2 and Rβ as in 6.1.10. We have a Cartesian

square.

ChtP,∞,I,W /H
α
1

(6.11)

��

qPα // ChtP,∞,I,W /H
β
2

(6.11)
��

ChtM,∞,I,W /(H
α
1 /R

β)
qMα // ChtM,∞,I,W /(H

β
2 /R

β)

(6.26)

Taking union over all the orbits, with the notations in 6.1.8 and 6.1.10, we deduce a Cartesian
square.

Cht′P,S1,I,W

πS1,R

��

qPf // Cht′P,S2,I,W

πS2,R

��
Cht′M,S1,R,I,W

qMf // Cht′M,S2,R,I,W

(6.27)
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Diagram (6.27) induces a commutative diagram of cohomology groups

H ′P,S2,I,W

(6.16)

��

adj(qPf )
// H ′P,S1,I,W

(6.16)

��
H ′M,S2,I,W

adj(qMf )
// H ′M,S1,I,W

(6.28)

because (6.27) is Cartesian, (6.16) is given by a counit morphism (equal to the trace morphism),
and by [SGA4, XVIII Théorème 2.9], the trace morphism commutes with base change.

Diagram (6.27) induces a commutative diagram of cohomology groups

H ′P,S1,I,W

(6.16)

��

Co(qPf )
// H ′P,S2,I,W

(6.16)

��
H ′M,S1,I,W

Co(qMf )
// H ′M,S2,I,W

(6.29)

because by [SGA4, XVIII Théorème 2.9], the trace morphism is compatible with composition.

Remark 6.1.13. When S1 = G(A)/KN1 and S2 = G(A)/KN2 with N1 ⊃ N2, we have the
projection f : G(A)/KN1 �G(A)/KN2 . We have Cht′M,N1,I,W = Cht′M,S1,R1,I,W with Rα1 = KU,N1

for each P (A)-orbit α in S1 and Cht′M,N2,I,W = Cht′M,S2,R2,I,W with Rβ2 = KU,N2 for each
P (A)-orbit β in S2. Note that Rα1 6= R

f(α)
2 , and thus the commutative diagram

Cht′P,N1,I,W

π′

��

// Cht′P,N2,I,W

π′

��
Cht′M,N1,I,W

// Cht′M,N2,I,W

(6.30)

does NOT coincide with diagram (6.27). In particular, diagram (6.30) is not Cartesian (the
morphism from Cht′P,N1,I,W to the fiber product is finite étale of degree ](KU,N2/KU,N1) which
is a power of q).

6.1.14 Let K ′ ⊂ K be two compact open subgroups of G(O). Applying 6.1.10 to
S1 = G(A)/K ′, S2 = G(A)/K and the projection f : G(A)/K ′ � G(A)/K, we deduce a finite
étale morphism (denoted by qMf in 6.1.10)

prMK′,K : Cht′M,S1,R,I,W → Cht′M,S2,R,I,W ,

where R is defined in 6.1.10. The adjunction morphism adj(prMK′,K) : Id → (prMK′,K)∗(prMK′,K)∗

induces
adj(prMK′,K) : H ′ jM,K,I,W → H ′ jM,K′,I,W .

The counit morphism Co(prMK′,K) : (prMK′,K)!(prMK′,K)!
→ Id induces

Co(prMK′,K) : H ′ jM,K′,I,W → H ′ jM,K,I,W .
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Lemma 6.1.15. For K ′ ⊂K as in 6.1.14, the following diagram of cohomology groups commutes.

Hj
G,K,I,W

adj(prG
K′,K)

//

CP, jG,K
��

Hj
G,K′,I,W

CP, j
G,K′
��

H ′ jM,K,I,W

adj(prM
K′,K)

// H ′ jM,K′,I,W

(6.31)

Proof. (1) By (6.4), we have a Cartesian square.

ChtG,K,I,W ChtG,K′,I,W
prG
K′,Koo

Cht′P,K,I,W

iK

OO

Cht′P,K′,I,W

iK′

OO

prP
K′,K

oo

(6.32)

Since adjunction morphism is compatible with composition, we deduce that the following diagram
is commutative.

Hj
G,K,I,W

adj(prG
K′,K)

//

adj(iK)

��

Hj
G,K′,I,W

adj(iK′ )
��

H ′ jP,K,I,W

adj(prP
K′,K)

// H ′ jP,K′,I,W

(2) Applying 6.1.12 to S1 = G(A)/K ′, S2 = G(A)/K and the projection f : G(A)/K ′ �
G(A)/K, we deduce from (6.28) that the following diagram is commutative.

H ′ jP,K,I,W

adj(prP
K′,K)

//

(6.16)

��

H ′ jP,K′,I,W

(6.16)

��

H ′ jM,K,I,W

adj(prM
K′,K)

// H ′ jM,K′,I,W 2

Lemma 6.1.16. For K ′ ⊂K as in 6.1.14, the following diagram of cohomology groups commutes.

Hj
G,K′,I,W

Co(prG
K′,K)

//

CP, j
G,K′

��

Hj
G,K,I,W

CP, jG,K
��

H ′ jM,K′,I,W

Co(prM
K′,K)

// H ′ jM,K,I,W

Proof. (1) By [SGA4, XVIII Théorème 2.9], the trace morphism commutes with base change.
Since (6.32) is Cartesian, we deduce that the following diagram is commutative.

Hj
G,K′,I,W

Co(prG
K′,K)

//

adj(iK′ )
��

Hj
G,K,I,W

adj(iK)

��

H ′ jP,K′,I,W

Co(prP
K′,K)

// H ′ jP,K,I,W
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(2) Applying 6.1.12 to S1 = G(A)/K ′, S2 = G(A)/K and the projection f : G(A)/K ′ �
G(A)/K, we deduce from (6.29) that the following diagram is commutative.

H ′ jP,K′,I,W

Co(prP
K′,K)

//

(6.16)

��

H ′ jP,K,I,W

(6.16)

��

H ′ jM,K′,I,W

Co(prM
K′,K)

// H ′ jM,K,I,W
2

6.2 Compatibility of constant term morphisms and actions of Hecke algebras
We first recall the action of the local Hecke algebras. The goal of this subsection is Lemmas 6.2.6
and 6.2.12.

6.2.1 Let v be a place in X. Let g ∈ G(Fv). By 6.1.3, the right action of g induces an
isomorphism

ChtG,∞,I,W
∼
→ ChtG,∞,I,W . (6.33)

Let K̃ ⊂ G(O) be a compact open subgroup such that g−1K̃g ⊂ G(O). The isomorphism
(6.33) is K̃-equivariant, where k ∈ K̃ acts on the second stack by g−1kg. It induces an isomorphism

ChtG,∞,I,W /K̃
∼
→ ChtG,∞,I,W /g−1K̃g,

i.e. Cht
G,K̃,I,W

∼
→ Cht

G,g−1K̃g,I,W
. It induces (by adjunction) an isomorphism of cohomology

groups
adj(g) : Hj

G,g−1K̃g,I,W

∼
→ Hj

G,K̃,I,W
. (6.34)

6.2.2 We denote by Ov the ring of integral adèles outside v. Let K = KvKv ⊂
G(Ov)G(Ov) = G(O) be an open compact subgroup. Let h = 1KvgKv ∈ Cc(Kv\G(Fv)/Kv,Q`)
be the characteristic function of KvgKv for some g ∈ G(Fv). The action of h on Hj

G,K,I,W is given
by the following composition of morphisms

T (h) : Hj
G,K,I,W

adj−−→ Hj
G,K∩g−1Kg,I,W

adj(g)
−−−→
∼

Hj
G,gKg−1∩K,I,W

Co−→ Hj
G,K,I,W , (6.35)

where adj = adj(prGK∩g−1Kg,K) and Co = Co(prGgKg−1∩K,K), the isomorphism adj(g) is induced
by (6.34) applied to K̃ = gKg−1 ∩ K. Note that (6.35) depends only on the class KvgKv of
g in G(Fv). The action of T (h) is equivalent to the one constructed by Hecke correspondence
(see [Laf18, 2.20 and 4.4]).

6.2.3 Let K̃ and g as in 6.2.1. The right action of g (by right multiplication by g) on G(A)
induces an isomorphism

G(A)/K̃
∼
→ G(A)/g−1K̃g. (6.36)

Applying 6.1.10 to S1 = G(A)/K̃, S2 = G(A)/g−1K̃g and the isomorphism (6.36), we deduce an
isomorphism of cohomology groups

adj(g) : H ′ j
M,g−1K̃g,I,W

∼
→ H ′ j

M,K̃,I,W
. (6.37)
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6.2.4 Let K and h as in 6.2.2. The action of h on H ′ jM,K,I,W is given by the following
composition of morphisms

T (h) : H ′ jM,K,I,W

adj−−→ H ′ j
M,K∩g−1Kg,I,W

adj(g)
−−−→
∼

H ′ j
M,gKg−1∩K,I,W

Co−→ H ′ jM,K,I,W , (6.38)

where adj = adj(prMK∩g−1Kg,K) and Co = Co(prMgKg−1∩K,K), the isomorphism adj(g) is induced
by (6.37) applied to K̃ = gKg−1∩K. Note that K̃ may not be normal in G(O). Note that (6.38)
depends only on the class KvgKv of g in G(Fv).

Lemma 6.2.5. Let K̃ and g as in 6.2.1. The following diagram of cohomology groups commutes.

Hj

G,g−1K̃g,I,W

adj(g)

∼
//

CP, j
G,g−1K̃g

��

Hj

G,K̃,I,W

CP, j
G,K̃
��

H ′ j
M,g−1K̃g,I,W

adj(g)

∼
// H ′ j

M,K̃,I,W

(6.39)

Proof. (1) Since the isomorphism (6.3) is G(O)-equivariant, we deduce a Cartesian square.

ChtP,I,W ×
ChtG,I,W

ChtG,∞,I,W /K̃
g

'
// ChtP,I,W ×

ChtG,I,W
ChtG,∞,I,W /g−1K̃g

ChtP,∞,I,W
P (A)
× G(A)/K̃

g

'
//

'
OO

ChtP,∞,I,W
P (A)
× G(A)/g−1K̃g

'
OO

We deduce a Cartesian square.

Cht
G,K̃,I,W

g

'
// Cht

G,g−1K̃g,I,W

Cht′
P,K̃,I,W

g

'
//

i′
K̃

OO

Cht′
P,g−1K̃g,I,W

i′
g−1K̃g

OO

It induces a commutative diagram.

Hj

G,g−1K̃g,I,W

adj(g)

∼
//

adj(i′
g−1K̃g

)
��

Hj

G,K̃,I,W

adj(i′
K̃

)
��

H ′ j
P,g−1K̃g,I,W

adj(g)

∼
// H ′ j

P,K̃,I,W

(2) Applying 6.1.12 to S1 = G(A)/K̃, S2 = G(A)/g−1K̃g and f the isomorphism (6.36), we
deduce from (6.29) a commutative diagram.

H ′ j
P,g−1K̃g,I,W

adj(g)

∼
//

(6.16)
��

H ′ j
P,K̃,I,W

(6.16)
��

H ′ j
M,g−1K̃g,I,W

adj(g)

∼
// H ′ j

M,K̃,I,W

2

1141

https://doi.org/10.1112/S0010437X20007058 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007058


C. Xue

Lemma 6.2.6. For any place v of X, any K and h ∈ Cc(Kv\G(Fv)/Kv,Q`) as in 6.2.2, the
following diagram of cohomology groups commutes

Hj
G,K,I,W

T (h) //

CP, jG,K
��

Hj
G,K,I,W

CP, jG,K
��

H ′ jM,K,I,W

T (h) // H ′ jM,K,I,W

(6.40)

where the horizontal morphisms are defined in 6.2.2 and 6.2.4, the vertical morphisms are the
constant term morphism defined in (6.19).

Proof. By Lemma 6.1.15, Lemma 6.2.5 and Lemma 6.1.16. 2

6.2.7 From now on let N ⊂ X be a closed subscheme and v be a place in XrN . We have
the (unnormalized) Satake transform:

Cc(G(Ov)\G(Fv)/G(Ov),Q`) ↪→ Cc(M(Ov)\M(Fv)/M(Ov),Q`)

h 7→ hM : m 7→
∑

u∈U(Fv)/U(Ov)

h(mu). (6.41)

6.2.8 We have KM,N = Kv
M,NKM,N,v ⊂ M(Ov)M(Ov). For any KM,v ⊂ M(Ov) open

compact subgroup, we have Kv
M,NKM,v ⊂ M(Ov)M(Ov). We define Hj

M,Kv
M,NKM,v ,I,W

as in
Definition 2.6.8 (replacing ChtM,N,I,W by ChtM,Kv

M,NKM,v ,I,W
). We define

lim−→
KM,v

Hj
M,Kv

M,NKM,v ,I,W
.

As in 6.2.1 (by replacing G byM), for anym ∈M(Fv) andKM,v such thatm−1KM,vm ⊂M(Ov),
we have an isomorphism Hj

M,m−1Kv
M,NKM,vm,I,W

∼
→ Hj

M,Kv
M,NKM,v ,I,W

. Taking limit on KM,v, we

deduce an action of M(Fv) on lim−→KM,v
Hj
M,Kv

M,NKM,v ,I,W
.

We have KN = Kv
NKN,v ⊂ G(Ov)G(Ov). For any Kv ⊂ G(Ov) open compact subgroup, we

have Kv
NKv ⊂ G(Ov)G(Ov). Applying 6.1.6 to S = G(A)/Kv

NKv, we define H ′ jM,Kv
NKv ,I,W

. We
define

lim−→
Kv

H ′ jM,Kv
NKv ,I,W

.

Note that v is a place in XrN , so KN,v = G(Ov) and KM,N,v = M(Ov). We have

H ′ jM,Kv
NG(Ov),I,W = H ′ jM,N,I,W = Hj

M,N,I,W

P (ON )
× G(ON ) = Hj

M,Kv
M,NM(Ov),I,W

P (ON )
× G(ON ),

where H ′ jM,N,I,W is defined in Definition 3.4.9. We deduce

lim−→
Kv

H ′ jM,Kv
NKv ,I,W

= Ind
G(Fv)
P (Fv)

((
lim−→
KM,v

Hj
M,Kv

M,NKM,v ,I,W

)
P (ON )
× G(ON )

)
, (6.42)

where Ind
G(Fv)
P (Fv) is the (unnormalized) parabolic induction.
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6.2.9 Let V be a Q`-vector space equipped with a continuous action of M(Fv), denoted by
σ : M(Fv)→ GL(V ). We recall that

Ind
G(Fv)
P (Fv) V = {f : G(Fv)→ V continuous, f(pg) = σ(p)f(g), p ∈ P (Fv), g ∈ G(Fv)}.

We have a morphism

(Ind
G(Fv)
P (Fv) V )G(Ov)

→ VM(Ov) : f 7→ f(1). (6.43)

Lemma 6.2.10. Morphism (6.43) is an isomorphism. Moreover, for h ∈ Cc(G(Ov)\G(Fv)/G(Ov),
Q`), the action of T (h) on (Ind

G(Fv)
P (Fv) V )G(Ov) coincides with the action of T (hM ) on VM(Ov).

Proof. Morphism (6.43) admits an inverse f(1) 7→ f given by

f(x) = f(xPxK) = σ(xP )f(xK) = σ(xP )f(1),

where x = xPxK ∈ G(Fv) = P (Fv)G(Ov). Thus (Ind
G(Fv)
P (Fv) V )G(Ov) = VM(Ov).

Moreover, for g = gP gK ∈ G(Fv) and f ∈ (Ind
G(Fv)
P (Fv) V )G(Ov), we have

gf(1) = f(gP gK) = σ(gP )f(gK) = σ(gP )f(1). (6.44)

Note that G(Fv) = M(Fv)U(Fv)G(Ov). Denote by dg (respectively dm, du, dk) the Haar measure
on G(Fv) (respectively M(Fv), U(Fv), G(Ov)) such that the volume of G(Ov) (respectively
M(Ov), U(Ov), G(Ov)) is 1. We have dg = dmdudk. Taking the integral over G(Fv) of the
product by h(g) of (6.44), we deduce that the action of T (h) on (Ind

G(Fv)
P (Fv) V )G(Ov) coincides with

the action of T (hM ) on VM(Ov). 2

6.2.11 Let V = (lim−→KM,v
Hj
M,Kv

M,NKM,v ,I,W
)
P (ON )
× G(ON ). We have:

VM(Ov) = Hj
M,Kv

M,NM(Ov),I,W

P (ON )
× G(ON ) = H ′ jM,N,I,W ;

(Ind
G(Fv)
P (Fv) V )G(Ov) =

(
lim−→
Kv

H ′ jM,Kv
NKv ,I,W

)G(Ov)

= H ′ jM,Kv
NG(Ov),I,W = H ′ jM,N,I,W .

By Lemma 6.2.10, the action of T (h) on H ′ jM,N,I,W (defined in (6.38)) coincides with the action
of T (hM ) on H ′ jM,N,I,W (induced by the action of T (hM ) on Hj

M,N,I,W ). Combining this fact and
Lemma 6.2.6, we deduce the following.

Lemma 6.2.12. For any place v ofXrN and any h ∈ Cc(G(Ov)\G(Fv)/G(Ov),Q`), the following
diagram of cohomology groups is commutative

Hj
G,N,I,W

T (h) //

CP, jG,N
��

Hj
G,N,I,W

CP, jG,N
��

H ′ jM,N,I,W

T (hM ) // H ′ jM,N,I,W

(6.45)

where the vertical morphisms are the constant term morphism defined in Definition 3.5.10.
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Remark 6.2.13. For a direct proof of Lemma 6.2.12, see [Xue17, Lemme 8.1.1].

Remark 6.2.14. We could normalize the constant term morphism CP, jG,N and the Satake transform
(6.41) by δ1/2 as usual, where δ is the modular function of P (Fv). But we do not need this
normalization in this paper.

Remark 6.2.15. When I = ∅ and W = 1, S = G(A)/K, we have H ′ 0M,S,R,I,W included in
C(M(F )U(A)\G(A)/KΞ,Q`). In (6.17), we defined CP, 0G,S,R,I,W . Commutative diagram (6.18)
implies that for a given Haar measure du on U(A), (

∫
R du) ·CP, 0G,S,R,I,W is independent on R. This

identifies CP, 0G,S,I,W with the classical constant term morphism (3.44) associated to du.

6.3 Cuspidal cohomology and rational Hecke-finite cohomology
Definition 6.3.1. We define

Hj, Hf-rat
G,N,I,W := {c ∈ Hj

G,N,I,W , dimQ` Cc(KN\G(A)/KN ,Q`) · c < +∞}.

Proposition 6.0.1 will follow from Lemmas 6.3.2 and 6.3.3 below.

Lemma 6.3.2. We have an inclusion

Hj, cusp
G,N,I,W ⊂ H

j, Hf-rat
G,N,I,W . (6.46)

Proof. By Theorem 5.0.1, the Q`-vector space Hj, cusp
G,N,I,W has finite dimension. By Lemma 6.2.6,

it is stable under the action of the Hecke algebra Cc(KN\G(A)/KN ,Q`). We complete the proof
by Definition 6.3.1. 2

Lemma 6.3.3. We have an inclusion

Hj, cusp
G,N,I,W ⊃ H

j, Hf-rat
G,N,I,W . (6.47)

The proof of Lemma 6.3.3 will use the fact that any non-zero image of a constant term
morphism CG,jP is supported on the components H ′ j, νM indexed by ν in a translated cone in
Λ̂+,Q
ZG/ZM

. The proof will also need the following lemma, which is for example a consequence of
the Satake isomorphism.

Lemma 6.3.4. Under the Satake transformation (6.41), the algebra Cc(M(Ov)\M(Fv)/M(Ov),
Q`) is finite over Cc(G(Ov)\G(Fv)/G(Ov),Q`).

Proof of Lemma 6.3.3. Let a ∈HHf-rat
G,N,I,W . We argue by contradiction. Suppose that a /∈Hj, cusp

G,N,I,W .
Then there exists a maximal parabolic subgroup P such that CP, jG (a) 6= 0. We denote by M the
Levi quotient of P . Let v be a place in XrN .

(1) On the one hand, by Definition 6.3.1, the Q`-vector subspace Cc(G(Ov)\G(Fv)/G(Ov),
Q`) · a has finite dimension. Then Lemma 6.2.12 applied to K = KN and Lemma 6.3.4 imply
that the Q`-vector space Cc(M(Ov)\M(Fv)/M(Ov),Q`) · CP, jG (a) has finite dimension.

(2) On the other hand, since a ∈ Hj
G,N,I,W , there exists µ ∈ Λ̂+,Q

Gad such that a ∈
Im(Hj, 6µ

G,N,I,W → Hj
G,N,I,W ). We deduce from (3.38) that CP, jG (a) is the image of an element
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a0 ∈ H ′ j, 6µM,N,I,W in H ′ jM,N,I,W . By 3.4.8, a0 is supported on the components H ′ j, νM,N,I,W of H ′ jM,N,I,W

indexed by ν in the translated cone Λ̂µZM/ZG ⊂ Λ̂QZM/ZG . So is CP, jG (a).
Let g ∈ ZM (Fv) such that g /∈ ZM (Ov)ZG(Fv). We denote by ξ(g) the image of g by the

composition of morphisms

ZM (Fv)→ ZM (A)→ BunM (Fq)→ BunM
(1.16)
−−−→ Λ̂QZM/ZG .

The choice of g implies that ξ(g) 6= 0. Note that P is maximal, so Λ̂QZM/ZG 'Q. For all ν ∈ Λ̂QZM/ZG ,

the action of g on ChtM /Ξ induces an isomorphism g : ChtνM /Ξ
∼
→ Cht

ν+ξ(g)
M /Ξ (the inverse

is induced by g−1). We denote by T (g) ∈ Cc(M(Ov)\M(Fv)/M(Ov),Q`) the Hecke operator
associated to g. Then T (g) induces an isomorphism H ′ j, νM,N,I,W

∼
→ H

′ j, ν+ξ(g)
M,N,I,W .

Suppose that ξ(g) > 0 (if not, we take g−1 in place of g). Since CP, jG (a) 6= 0, there exists
m ∈ Z>0 such that T (g)m · CP, jG (a) is supported on the cone Λ̂

µ+mξ(g)
ZM/ZG

⊃ Λ̂µZM/ZG , but not

supported on Λ̂µZM/ZG . Therefore T (g)2m · CP, jG (a) is supported on the cone Λ̂
µ+2mξ(g)
ZM/ZG

, but not

supported on Λ̂
µ+mξ(g)
ZM/ZG

, etc. We deduce that

CP, jG (a), T (g)m · CP, jG (a), T (g)2m · CP, jG (a), T (g)3m · CP, jG (a), . . .

are linearly independent. So the Q`-vector space generated by T (g)Z · CP, jG (a) has infinite
dimension. Hence Cc(M(Ov)\M(Fv)/M(Ov),Q`) · CP, jG (a) has infinite dimension.

(3) We deduce from (1) and (2) a contradiction. So a ∈ Hj cusp
G,N,I,W . 2

Definition 6.3.5 [Laf18, Définition 8.19]. We define

Hj, Hf
G,N,I,W := {c ∈ Hj

G,N,I,W , Cc(KN\G(A)/KN ,Z`) · c is a finitely generated Z`-submodule}.

By definition, Hj, Hf
G,N,I,W ⊂ H

j, Hf-rat
G,N,I,W . Thus Proposition 6.0.1 has the following corollary.

Corollary 6.3.6.
Hj, Hf
G,N,I,W ⊂ H

j, Hf-rat
G,N,I,W = Hj, cusp

G,N,I,W .

In particular, Hj, Hf
G,N,I,W has finite dimension.
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Appendix A. Exact sequences associated to an open and a closed
substack of the stack of shtukas

For simplicity of the notation, we do not write the indices N , I and W .

A.0.1 In the following, we use Λ̂+,Q
Gad . But everything remains true if we replace it by (1/r)R̂+

Gad .
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A.0.2 As in [DG15, 7.4.10], we equip the set Λ̂+,Q
Gad with the order topology, i.e. the one where a

base of open subsets is formed by subsets of the form {λ ∈ Λ̂+,Q
Gad |λ 6 λ0} for λ0 ∈ Λ̂+,Q

Gad . Let S
be a subset of Λ̂+,Q

Gad . We define

BunSG :=
⋃
λ∈S

Bun=λ
G , ChtSG :=

⋃
λ∈S

Cht=λ
G , Cht′SM :=

⋃
λ∈S

Cht′=λM ,

where Cht=λ
G and Cht′=λM are defined in Definition 4.1.10. If the subset S is open (respectively

closed) in Λ̂+,Q
Gad , then BunSG is open (respectively closed) in BunG. So ChtSG is open (respectively

closed) in ChtG and Cht′SM is open (respectively closed) in Cht′M .
If S is a bounded locally closed subset of Λ̂+,Q

Gad , then ChtSG and Cht′SM are Deligne–Mumford
stacks of finite type.

A.0.3 Let µ ∈ Λ̂+,Q
Gad . Let S2 = {λ ∈ Λ̂+,Q

Gad | λ 6 µ}. By definition it is an open subset of Λ̂+,Q
Gad for

the order topology of Gad. It is also open in Λ̂+,Q
M

for the order topology of M = M/ZG (because

λ 6Mµ implies λ 6 µ).
Let S1 be an open subset of S2 for the order topology of Gad. Thus the morphism of

stacks ChtS1
G

jG−→ ChtS2
G (respectively Cht′S1

M

jM−−→ Cht′S2
M ) is an open immersion. By definition,

ChtS2−S1
G (respectively Cht′S2−S1

M ) is the closed substack in ChtS2
G (respectively Cht′S2

M ) which is
the complement of ChtS1

G (respectively Cht′S1
M ).

We define Cht′S2
P (respectively Cht′S1

P ) to be the inverse image of ChtS2
G (respectively ChtS1

G )
in Cht′P . Just as in Lemma 1.7.4, we have π2 : Cht′S2

P → Cht′S2
M (respectively π1 : Cht′S1

P →

Cht′S1
M ). We have Cht′S1

P

jP−→ Cht′S2
P , which is an open immersion. We define Cht′S2−S1

P :=

Cht′S2
P ∩π−1(Cht′S2−S1

M ). It is a closed substack in the complement of Cht′S1
P in Cht′S2

P , but
may not be equal to it.

Lemma A.0.4. The following diagram of algebraic stacks is commutative.

ChtS2−S1
G� _

iG
��

Cht′S2−S1
P

i12oo π12 //
� _

iP
��

Cht′S2−S1
M � _

iM
��

ChtS2
G Cht′S2

P

i2oo π2 // Cht′S2
M

ChtS1
G

?�

jG

OO

Cht′S1
P

i1oo π1 //
?�

jP

OO

Cht′S1
M

?�

jM

OO
(A.1)

Moreover, the left bottom square and the right top square are Cartesian.

A.0.5 For any j, any ν ∈ Λ̂QZM/ZG and any bounded locally closed subset S ⊂ Λ̂+,Q
Gad , we define

Hj, S
G := Hj

c (ChtS
G,ηI

/ΞG,FG); H ′ j, S, νM := Hj
c (Cht

′ S, ν

M,ηI
/ΞG,F ′M ).
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A.0.6 By Proposition 3.5.3, the restriction of morphism i1 (respectively i2) to ηI is proper. The
restriction of morphism i12 to ηI is also proper because Cht′S2−S1

P → ChtS2−S1
G ×

Cht
S2
G

Cht′S2
P is a

closed immersion. Moreover i1, i2 and i12 are schematic. Applying the construction in § 3 to each
line in diagram (A.1), respectively, we obtain the constant term morphism CP, j, S1

G : Hj, S1

G →

H ′ j, S1

M , CP, j, S2

G and CP, j, S2−S1

G (note that the morphism π12,d : Cht′S2−S1
P → C̃ht

′S2−S1

M is smooth
because the right top square of diagram (A.1) is Cartesian).

A.0.7 Diagram (A.1) induces a diagram of cohomology groups with compact support for which
we will study the commutativity.

· · · // Hj−1, S2−S1

G
//

C
P, j−1, S2−S1
G��

Hj, S1

G
//

C
P, j, S1
G��

Hj, S2

G
//

C
P, j, S2
G��

Hj, S2−S1

G
//

C
P, j, S2−S1
G��

· · ·

· · · // H ′ j−1, S2−S1

M
// H ′ j, S1

M
// H ′ j, S2

M
// H ′ j, S2−S1

M
// · · ·

(A.2)

The horizontal maps are the long exact sequences associated to an open substack and the
complementary closed substack. The vertical maps are the constant term morphisms.

Lemma A.0.8. For any j, the following diagram is commutative.

Hj, S1

G
//

C
P, j, S1
G��

Hj, S2

G
//

C
P, j, S2
G��

Hj, S2−S1

G

C
P, j, S2−S1
G��

H ′ j, S1

M
// H ′ j, S2

M
// H ′ j, S2−S1

M

Proof. We denote the morphisms of paws by pG : ChtS2
G → ηI and pM : Cht′S2

M → ηI . For S = S1

or S2 or S2 − S1, denote FSG := FG
∣∣
ChtSG

and FSM := F ′M
∣∣
Cht′SM

. Note that FS1
G = (jG)∗FS2

G and

FS2−S1
G = (iG)∗FS2

G . Similarly FS1
M = (jM )∗FS2

M and FS2−S1
M = (iM )∗FS2

M . Lemma A.0.8 will follow
from the commutativity of the following diagram of complexes in Db

c(η
I ,Q`).

(pG)!(jG)!(jG)∗FS2
G

//

CP, S1
G
��

(pG)!FS2
G

//

CP, S2
G
��

(pG)!(iG)!(iG)∗FS2
G

CP, S2−S1
G
��

(pM )!(jM )!(jM )∗FS2
M

// (pM )!FS2
M

// (pM )!(iM )!(iM )∗FS2
M

(A.3)

The commutativity of the left square is induced by (1) and (2) below. The commutativity of
the right square is induced by (3) and (4) below.

We consider the left square of (A.3)

(pG)!(jG)!(jG)∗FS2
G

TrjG //

��
(1)

(pG)!FS2
G

��
(pM )!(jM )!(π1)!(i1)∗(jG)∗FS2

G

TrjP //

f1

��
(2)

(pM )!(π2)!(i2)∗FS2
G

f2

��
(pM )!(jM )!(jM )∗FS2

M TrjM

// (pM )!FS2
M

(A.4)
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where (1) and (2) are detailed below.
(1) The following diagram of functors is commutative

(pG)!(jG)!(jG)∗
TrjG //

adji1
��

adji2

++

(pG)!

adji2
��

(pG)!(jG)!(i1)!(i1)∗(jG)∗
'
(∗)

//

'
��

(pG)!(i2)!(i2)∗(jG)!(jG)∗
TrjG // (pG)!(i2)!(i2)∗

'
��

(pM )!(jM )!(π1)!(i1)∗(jG)∗
' // (pM )!(π2)!(jP )!(jP )∗(i2)∗

TrjP // (pM )!(π2)!(i2)∗

where (∗) is given by (jG)!(i1)!(i1)∗ ' (i2)!(jP )!(i1)∗ ' (i2)!(i2)∗(jG)!, the last isomorphism is
the proper base change for the left bottom square of diagram (A.1). The commutativity of (1)
follows from the fact that the adjunction morphism commutes with base change and the trace
morphism commutes with base change [SGA4, XVIII Théorème 2.9].

(2) Taking (3.9) into account, we have a commutative diagram, where π2 (respectively π1) is
the composition π̃0

2,d◦π2,d (respectively π̃0
1,d◦π1,d) for some d large enough as in Proposition 2.2.1.

Cht′S2
P

π2,d //

(b)

C̃ht
′S2

M

π̃0
2,d //

(c)

Cht′S2
M

Cht′S1
P

π1,d //
?�

jP

OO

C̃ht
′S1

M

π̃0
1,d //

?�̃
jM

OO

Cht′S1
M

?�

jM

OO
(A.5)

The square (c) is Cartesian. The square (b) may not be Cartesian. As in Lemma 3.1.8, π1,d and
π2,d are smooth. We have dim(π1,d) = dim(π2,d) = d · |I| dimU . We denote this dimension by m.

By (3.22) and (3.23), the morphism f1 (respectively f2) defined in diagram (A.4) is the
composition of Trπ1,d

: (π1,d)!(π1,d)
∗
→ Id[−2m](−m) (respectively Trπ2,d

: (π2,d)!(π2,d)
∗
→

Id[−2m](−m)) with some isomorphisms. By [SGA4, XVIII Théorème 2.9], the trace morphism
is compatible with composition, and thus

Trπ2,d
◦TrjP ' Trπ2,d◦jP ' Tr

j̃M◦π1,d
' Tr

j̃M
◦Trπ1,d

,

where the middle isomorphism is due to the commutativity of square (b). Moreover, by [SGA4]
the trace morphism is compatible with base change, and thus

Tr
j̃M

= (π̃0
1,d)
∗TrjM .

We deduce that (2) is commutative.

Now we consider the right square of (A.3)

(pG)!FS2
G

adjiG //

��
(3)

(pG)!(iG)!(iG)∗FS2
G

��
(pM )!(π2)!(i2)∗FS2

G

adjiP //

f2

��
(4)

(pM )!(iM )!(π12)!(i12)∗(iG)∗FS2
G

f12

��
(pM )!FS2

M

adjiM // (pM )!(iM )!(iM )∗FS2
M

(A.6)

where (3) and (4) are detailed below.
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(3) The following diagram of functors is commutative.

(pG)!

adjiG //

adji2
��

(pG)!(iG)!(iG)∗

adji12
��

(pG)!(i2)!(i2)∗
adjiP //

'
��

(pG)!(i2)!(iP )!(iP )∗(i2)∗

'
��

' // (pG)!(iG)!(i12)!(i12)∗(iG)∗

'
��

(pM )!(π2)!(i2)∗
adjiP // (pM )!(π2)!(iP )!(iP )∗(i2)∗

' // (pM )!(iM )!(π12)!(i12)∗(iG)∗

(4) Taking (3.9) into account, we have a commutative diagram, where π12 is the composition
π̃0

12,d ◦ π12,d.

Cht′S2−S1
P

π12,d //
� _

iP
��

(e)

C̃ht
′S2−S1

M

π̃0
12,d //

� _

ĩM ��
(f)

Cht′S2−S1
M � _

iM
��

Cht′S2
P

π2,d // C̃ht
′S2

M

π̃0
2,d // Cht′S2

M

The squares (e) and (f) are Cartesian.
By (3.22) and (3.23), f12 defined in diagram (A.6) is the composition of Trπ12,d

:
(π12,d)!(π12,d)

∗
→ Id[−2(dimπ12,d)](−dimπ12,d) with some isomorphisms. By [SGA4, XVIII

Théorème 2.9], the trace morphism is compatible with base change, and thus

Trπ12,d
= (ĩM )∗Trπ2,d

.

We deduce that (4) is commutative. 2

Remark A.0.9. We do not know if the complete diagram (A.2) is commutative.

Appendix B. Lemma of the cubic commutative diagram

Lemma B.0.1. Let X ,Y ,Z ,W ,X ′,Y ′,Z ′,W ′ be algebraic stacks. Suppose that we have two
Cartesian squares.

Z //

��

Y
h��

Z ′ //

��

Y ′

h′��
X

g // W X ′ g
′
// W ′

If these two squares are the front and back faces of a commutative diagram

Z ′ //

��

fZ

""

Y ′

��

fY

""
Z //

��

Y

��

X ′ //
fX

""

W ′
fW

""
X // W

(B.1)

then the fibers fZ , fX , fY and fW form a Cartesian square.
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Concretely, let T be a scheme. For any morphism T → Z , we have the compositions of
morphisms T → Z → X , T → Z → Y and T → Z → W . We denote by ZT (respectively
XT , YT , WT ) the fiber of fZ (respectively fX , fY , fW ) over T . The lemma says that ZT is
equivalent to XT ×

WT
YT .

Proof. We will prove a more general statement. Suppose that we have another Cartesian square

Z ′′ //

��

Y ′′

h′′��
X ′′ g

′′
// W ′′

and a commutative diagram.

Z ′′ //

��

##

Y ′′

��

""
Z //

��

Y

��

X ′′ //

##

W ′′

""
X // W

(B.2)

Then we have a canonical isomorphism:

Z ′ ×Z Z ′′ ∼
→ (X ′ ×X X ′′) ×

W ′×W W ′′
(Y ′ ×Y Y ′′). (B.3)

In fact, by definition, we have

Z ′ ×Z Z ′′ ' (X ′ ×W ′ Y
′) ×

X ×W Y
(X ′′ ×W ′′ Y

′′).

For any scheme S, the S-points of both sides of (B.3) classify the data of S-points x′ in X ′, x′′ in
X ′′, y′ in Y ′, y′′ in Y ′′, an isomorphism between the images of x′ and x′′ in X , an isomorphism
between the images of y′ and y′′ in Y , an isomorphism between the images of x′ and y′ in W ′, an
isomorphism between the images of x′′ and y′′ in W ′′, such that the diagram deduced from these
four isomorphisms between the images of x′, x′′, y′, y′′ in W is commutative. We deduce (B.3).

The lemma is the special case when X ′′ = Y ′′ = W ′′ = Z ′′ = T . 2
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