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Abstract. A ring R with identity is called strongly clean if every element of
R is the sum of an idempotent and a unit that commute. For a commutative
local ring R, n = 3, 4, and m, k, s ∈ � it is proved that �n(R) is strongly clean
if and only if �n(R[[x]]) is strongly clean if and only if �n(R[[x1, x2, . . . , xm]]) is strongly
clean if and only if �n( R[x]

(xk) ) is strongly clean if and only if �n( R[x1,x2,...,xs]
(x

n1
1 ,x

n2
2 ,...,xns

s )
) is strongly

clean if and only if �n(R ∝ R) is strongly clean where R ∝ R = {(a b
0 a) : a, b ∈ R} is the

trivial extension of R. This extends a result of J. Chen, X. Yang and Y. Zhou [5] from
n = 2 to 3 and 4.

2000 Mathematics Subject Classification. Primary 16U99, 16S50, 16S99. Secon-
dary 16U60, 16U10.

1. Introduction. In this paper, R is an associative ring with identity. A ring R is
called clean if for every element a ∈ R, there exist an idempotent e and a unit u in R
such that a = e + u [10], and R is called strongly clean if in addition eu = ue [11]. By
Han and Nicholson [8], the cleanness of the ring R implies that of the matrix ring
�n(R) for any n ≥ 1. But if R is strongly clean, the matrix ring �n(R) with n > 1 may
not be strongly clean. For example, the matrix ring �2(�(2)) is not strongly clean. This
fact was observed by Sánchez Campos [12] and by Wang and Chen [13] independently
(answering two questions of Nicholson in [11]). When is the matrix ring over a strongly
clean ring still strongly clean? Recently, the authors found an equation condition [5,
Theorem 8] for �2(R) over a commutative local ring to be strongly clean. In [4], the
authors defined n-SRC ring (see Definition 2.1) and found the matrix ring �n(R) over
a commutative local ring is strongly clean if and only if R is n-SRC.

Let R[[x]] denote the formal power series ring with elements of the form
∑∞

i=0 rixi,
ri ∈ R, x0 = 1. In [5, Theorem 9] it is proved that �2(R) over a commutative local
ring R is strongly clean if and only if �2(R[[x]]) is strongly clean. This is equivalent
to saying that if �2(R) is strongly clean, then the power series extension (�2(R))[[x]]
(∼= �2(R[[x]])) is also strongly clean. However, it is not known, whether or not R[[x]]
is also strongly clean wherever R is a strongly clear ring.

1Correspondence: Xiande Yang, Department of Mathematics and Statistics, Memorial University of
Newfoundland, St. John’s, A1C 5S7, Canada. Fax:(709)737-3010.
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Generally, if �2(R) has a property, one may think �n(R) also has the property.
However, in [4], the authors gave an example showing that the strong cleanness of
�2(R) over a commutative local ring R need not imply the strong cleanness of �3(R).
Hence, the equivalence of strong cleanness for �2(R) and (�2(R))[[x]] need not imply
the equivalence of strong cleanness for �n(R) and (�n(R))[[x]](∼= �n(R[[x]])).

Here we have proved the following main result.

THEOREM. LetR be a commutative local ring, and let n = 3,4, and m, k, s ∈ �. Then
the following are equivalent (see Definition 2.8 for R ∝ R).

(1) �n(R) is strongly clean.
(2) �n(R[[x]]) is strongly clean.
(3) �n( R[x]

(xm) ) is strongly clean.
(4) �n(R[[x1, x2, . . . , xk]]) is strongly clean.
(5) �n( R[x1,x2,...,xs]

(x
n1
1 ,x

n2
2 ,...,xns

s )
) is strongly clean.

(6) �n(R ∝ R) is strongly clean.

As usual, we use U(R) and J(R) to denote the group of units and the Jacobson
radical of R respectively. For a field F , if h(t), g(t) ∈ F [t], then gcd(h(t), g(t)) denotes
the monic greatest common divisor of polynomials h(t), g(t).

2. Main results.

DEFINITION 2.1. [4] Let R be a commutative local ring. In R[t], a factorization
h(t) = h0(t)h1(t) of a monic polynomial h(t) is said to be an SRC factorization if
h0(0), h1(1) are units and h0(t), h1(t) are coprime in the principal ideal domain R̄[t]
(= R/J(R)[t]). R is an SRC ring ( resp. n-SRC ring) if every monic polynomial (resp.
every monic polynomial of degree n) has an SRC factorization.

LEMMA 2.2. [4] Let R be a commutative local ring. Then R is n-SRC if and only if
�n(R) is strongly clean; R is SRC if and only if �n(R) is strongly clean for all n ∈ �.

THEOREM 2.3. Let R be a commutative local ring. Then the following are equivalent:
(1) R is a 3-SRC ring.
(2) R[[x]] is a 3-SRC ring.

Proof. (1) ⇒ (2): R[[x]] is a commutative local ring with J(R[[x]]) = J(R) + xR[[x]].
Define θ : R[[x]] → R by θ (r0 + r1x + r2x2 + · · ·) = r0. It is easy to verify that θ is an
epimorphism. Let ηJ(R): R → R/J(R) be the natural ring epimorphism with ηJ(R)(r) =
r = r + J(R) and ηJ(R[[x]]) be defined similarly. Then the following diagram commutes
where θ (r + J(R[[x]])) = θ (r) + J(R) = r + J(R) = r, r ∈ R, is an isomorphism since it
is a field epimorphism.

R[[x]]
θ−→ R

ηJ(R[[x]])
|↓ |↓ηJ(R)

R[[x]]/J(R[[x]])
θ−→ R/J(R)

Further it induces the following commutative diagram where η′
J(R)(r0 + r1t + · · · +

rntn) = ηJ(R)(r0) + ηJ(R)(r1)t + · · · + ηJ(R)(rn)tn with r0 + r1t + · · · + rntn ∈ R[t] and
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η′
J(R[[x]]) defined similarly. θ

′
( f0 + f1t + · · · + fntn) = θ ( f0) + θ ( f1)t + · · · + θ ( fn)tn with

f0 + f1t + · · · + fntn ∈ R[[x]][t], θ
′
(f0 + f1t + . . . + fntn) = θ (f0) + θ (f1)t + · · · + θ (fn)tn

with f0 + f1t + . . . + fntn ∈ R[[x]]
J(R[[x]]) [t] and θ

′
is an isomorphism.

R[[x]][t]
θ ′−→ R[t]

η′
J(R[[x]])

|↓ |↓η′
J(R)

R[[x]]
J(R[[x]]) [t]

θ
′

−→ R
J(R) [t].

Let h(t) = f0 + f1t + f2t2 + t3 ∈ R[[x]][t] with fi = ri0 + ri1x + ri2x2 + · · · , i = 0, 1, 2.
I: If h(0) ∈ U(R), then let h0(t) = h(t), h1(t) = 1 and if h(1) ∈ U(R), then let h0(t) = 1,
h1(t) = h(t). In either case, h(t) has an SRC factorization.
II: If h(0) = f0 ∈ J(R[[x]]), h(1) = f0 + f1 + f2 + 1 ∈ J(R[[x]]), i.e., r00 ∈ J(R), and r00 +
r10 + r20 + 1 ∈ J(R), we want to prove h(t) still has an SRC factorization.
Let h′(t) = θ ′(h(t)). Then h′(t) = r00 + r10t + r20t2 + t3, h′(0) = r00 ∈ J(R) and h′(1) =
r00 + r10 + r20 + 1 ∈ J(R). Since R is a 3-SRC ring, there exist

(a)

{
h′

0(t) = a00 + a10t + t2

h′
1(t) = b00 + t

or

(b)

{
h′

0(t) = a00 + t

h′
1(t) = b00 + b10t + t2

such that h′
0(0) ∈ U(R), h′

1(1) ∈ U(R), gcd(η′
J(R)(h0(t)), η′

J(R)(h1(t))) = 1 and h′(t) =
h′

0(t)h′
1(t).

Case (a): {
h′

0(t) = a00 + a10t + t2

h′
1(t) = b00 + t.

Let h0(t) = A0 + A1t + t2 ∈ R[[x]][t] with Ai = ai0 + ai1x + ai2x2 + · · · , i = 0, 1 and
h1(t) = B0 + t ∈ R[[x]] with B0 = b00 + b01x + b02x2 + · · · . We prove there exist A0, A1

and B0 ∈ R[[x]] such that h(t) = h0(t)h1(t).

h(t) = h0(t)h1(t) ⇔ h(t) = f0 + f1t + f2t2 + t3 = (A0 + A1t + t2)(B0 + t)

⇔ (r00 + r01x + r02x2 + · · ·) + (r10 + r11x + r12x2 + · · ·)t
+ (r20 + r21x + r22x2 + · · ·)t2 + t3

= [(a00 + a01x + a02x2 + · · ·) + (a10 + a11x + a12x2 + · · ·)t + t2]

× [(b00 + b01x + b02x2 + · · ·) + t]

⇔ (r00 + r10t + r20t2 + t3) + (r01 + r11t + r21t2)x + (r02 + r12t + r22t2)x2 + · · ·
= [(a00 + a10t + t2) + (a01 + a11t)x + (a02 + a12t)x2 + · · ·]

× [(b00 + t) + b01x + b02x2 + · · ·]
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⇔ the following equation system with aij and bmn as variables is solvable:

(P0) : (a00 + a10t + t2)(b00 + t) = r00 + r10t + r20t2 + t3

(Pn)(n ∈ �) : (a00 + a10t + t2)b0n + (a01 + a11t)b0,n−1 + · · · + (a0,n−1 + a1,n−1t)b01

+ (a0n + a1nt)(b00 + t) = r0n + r1nt + r2nt2.

Use mathematical induction on n: (P0) holds by the assumption of h0(t) and h1(t).
Suppose (Pn), n = 0, 1, . . . , k − 1, are solvable; we prove (Pk) is solvable.

(Pk) : (a00 + a10t + t2)b0k + (a01 + a11t)b0,k−1 + · · · + (a0,k−1 + a1,k−1t)b01

+(a0k + a1kt)(b00 + t) = r0k + r1kt + r2kt2.

Since the coefficients of t in (a01 + a11t)b0,k−1 + · · · + (a0,k−1 + a1,k−1t)b01 are all known
by induction hypothesis, (Pk) is transformed into

(∗) : (a00 + a10t + t2)b0k + (a0k + a1kt)(b00 + t)
= −[(a01 + a11t)b0,k−1 + · · · + (a0,k−1 + a1,k−1t)b01] + r0k + r1kt + r2kt2.

In the equation (∗), a0k, a1k and b0k are variables. Transfer (∗) into linear equation
system: ⎧⎨⎩

a00b0k + a0kb00 = r′
0k

a10b0k + a0k + a1kb00 = r′
1k

b0k + a1k = r′
2k

with r′
ik, i = 0, 1, 2, being the coefficients of the polynomial on the right hand side of

the equation (∗). Define matrices A, X, B as following:

A =
⎡⎣b00 0 a00

1 b00 a10

0 1 1

⎤⎦ , X =
⎡⎣ a0k

a1k

b0k

⎤⎦ , B =
⎡⎣ r′

0k
r′

1k
r′

2k

⎤⎦ .

Then the above equation can be transformed into the matrix equation AX = B. By
h′

0(0) ∈ U(R), h′
1(1) ∈ U(R), h′(0) = h′

0(0)h′
1(0) ∈ J(R) and h′(1) = h′

0(1)h′
1(1) ∈ J(R)

we get a00 ∈ U(R) and b00 ∈ J(R). So detA = (b00)2 + a00 − a10b00 = a00 + b00(b00 −
a10) ∈ U(R). Hence the matrix equation has a solution, i.e., (Pk) is solvable. So h0(t)
and h1(t) exist by induction.

Case (b): {
h′

0(t) = a00 + t

h′
1(t) = b00 + b10t + t2.

Let h0(t) = A0 + t ∈ R[[x]] with A0 = a00 + a01x + a02x2 + · · · ∈ R[[x]][t] and h1(t) =
B0 + B1t + t2 ∈ R[[x]][t] with Bi = bi0 + bi1x + bi2x2 + · · · , i = 0, 1. Now we show
there exist A0, B0 and B1 ∈ R[[x]] such that h(t) = h0(t)h1(t).

h(t) = h0(t)h1(t) ⇔
h(t) = f0 + f1t + f2t2 + t3 = (A0 + t)(B0 + B1t + t2)

⇔ (r00 + r01x + r02x2 + · · ·) + (r10 + r11x + r12x2 + · · ·)t
+ (r20 + r21x + r22x2 + · · ·)t2 + t3

= [(a00 + a01x + a02x2 + · · ·) + t][(b00 + b01x + b02x2 + · · ·)
+ (b10 + b11x + b12x2 + · · ·)t + t2]
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⇔ (r00 + r10t + r20t2 + t3) + (r01 + r11t + r21t2)x + (r02 + r12t + r22t2)x2 + · · ·
= [(a00 + t) + a01x + a02x2 + · · ·][(b00 + b10t + t2) + (b01 + b11t)x

+ (b02 + b12t)x2 + · · ·]
⇔ the following equation system has a solution:

(P0) : (a00 + t)(b00 + b10t + t2) = r00 + r10t + r20t2 + t3

(Pn)(n ∈ �) : a0n(b00 + b10t + t2) + a0,n−1(b01 + b11t) + · · · + a01(b0,n−1 + b1,n−1t)
+ (a00 + t)(b0n + b1nt) = r0n + r1nt + r2nt2

(P0) holds by assumption of h0(t) and h1(t). Inductively, assume (Pn), n = 0, 1, . . . ,

k − 1, have solutions, and we prove (Pk) is solvable.

(Pk) : a0k(b00 + b10t + t2) + a0,k−1(b01 + b11t) + · · · + a01(b0,k−1 + b1,k−1t)
+ (a00 + t)(b0k + b1kt) = r0k + r1kt + r2kt2.

Since the coefficients of t in a0,k−1(b01 + b11t) + · · · + a01(b0,k−1 + b1,k−1t) are all known
by induction hypothesis, (Pk) is transformed into

(∗∗) : a0k(b00 + b10t + t2) + (a00 + t)(b0k + b1kt)
= −[a0,k−1(b01 + b11t) + · · · + a01(b0,k−1 + b1,k−1t)] + r0k + r1kt + r2kt2

with a0k and b0k, b1k being variables. Transfer (∗∗) into linear equation system:⎧⎨⎩
a0kb00 + a00b0k = r′

0k
a0kb10 + a00b1k + b0k = r′

1k
a0k + b1k = r′

2k

with r′
ik, i = 0, 1, 2, being the coefficients of the polynomial on the right hand side of

the equation (∗∗). Define matrices A, X, B as

A =
⎡⎣ b00 a00 0

b10 1 a00

1 0 1

⎤⎦ , X =
⎡⎣ a0k

b0k

b1k

⎤⎦ , B =
⎡⎣ r′

0k
r′

1k
r′

2k

⎤⎦ .

Then the above equation can be transformed into the matrix equation AX = B.
h′(t) = h′

0(t)h′
1(t) is an SRC factorization with h′(0) = h′

0(0)h′
1(0) ∈ J(R), h′(1) =

h′
0(1)h′

1(1) ∈ J(R) and h′
0(0) ∈ U(R), h′

1(1) ∈ U(R). So a00 ∈ U(R), b00 ∈ J(R), b10 +
1 ∈ U(R) and a00 + 1 ∈ J(R). Hence detA = b00 + (a00)2 − a00b10 = b00 + a00(a00 +
1) − a00(1 + b10) ∈ U(R). So the matrix equation is solvable and then so is equation
(∗∗) and by induction (Pn) is solvable.

From case (a) and case (b), we know there exist h0(t) and h1(t) such that
h(t) = h0(t)h1(t) and h0(0) ∈ U(R[[x]]), h1(1) ∈ U(R[[x]]). Now η′

J(R[[x]])(h0(t)) =
(θ

′
)−1η′

J(R)θ
′(h0(t)) and η′

J(R[[x]])(h1(t)) = (θ
′
)−1 η′

J(R)θ
′(h1(t)). Since gcd(η′

J(R)θ
′(h0(t)),

η′
J(R)θ

′(h1(t))) = 1, we get gcd((θ
′
)−1η′

J(R)θ
′(h0(t)), (θ

′
)−1η′

J(R)θ
′(h1(t))) = 1, i.e.,

gcd(η′
J(R[[x]])(h0(t)), η′

J(R[[x]])(h1(t))) = 1. So h(t) has an SRC factorization, i.e., R[[x]]
is a 3-SRC ring.

(2) ⇒ (1). By Lemma 2.2, �3(R[[x]]) is strongly clean. So its image �3(R) is also
strongly clean. Again by Lemma 2.2, R is 3-SRC. �

We sketch proof of the following theorem; the proof is similar to that of
Theorem 2.3.
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THEOREM 2.4. Let R be a commutative local ring. Then the following are equivalent:
(1) R is a 4-SRC ring.
(2) R[[x]] is a 4-SRC ring.

Proof. (1) ⇒ (2): Define ring homomorphisms similar to that in Theorem 2.3.
Then the following diagrams commute.

R[[x]]
θ−→ R

ηJ(R[[x]])
|↓ |↓ηJ(R)

R[[x]]/J(R[[x]])
θ−→ R/J(R)

R[[x]][t]
θ ′−→ R[t]

η′
J(R[[x]])

|↓ |↓η′
J(R)

R[[x]]
J(R[[x]]) [t]

θ
′

−→ R
J(R) [t]

Let h(t) = f0 + f1t + f2t2 + f3t3 + t4 ∈ R[[x]][t] with fi = ri0 + ri1x + ri2x2 + · · · ∈
R[[x]], i = 0, 1, 2, 3.
I: If h(0) ∈ U(R), or h(1) ∈ U(R), then as in Theorem 2.3, h(t) has an SRC factorization.
II: If h(0) = f0 ∈ J(R[[x]]), h(1) = f0 + f1 + f2 + f3 + 1 ∈ J(R[[x]]), i.e., r00 ∈ J(R), and
r00 + r10 + r20 + r30 + 1 ∈ J(R), we prove h(t) has an SRC factorization.
Let h′(t) = θ ′(h(t)). Then h′(t) = r00 + r10t + r20t2 + r30t3 + t4, h′(0) = r00 ∈ J(R) and
h′(1) = r00 + r10 + r20 + r30 + 1 ∈ J(R). Since R is a 4-SRC ring, there exist the
following three cases

(a)

{
h′

0(t) = a00 + a10t + a20t2 + t3

h′
1(t) = b00 + t

or

(b)

{
h′

0(t) = a00 + a10t + t2

h′
1(t) = b00 + b10t + t2

or

(c)

{
h′

0(t) = a00 + t

h′
1(t) = b00 + b10t + b20t2 + t3

such that h′
0(0) ∈ U(R), h′

1(1) ∈ U(R), gcd(η′
J(R)(h0(t)), η′

J(R)(h1(t))) = 1 and h′(t) =
h′

0(t)h′
1(t).

Case (a): {
h′

0(t) = a00 + a10t + a20t2 + t3

h′
1(t) = b00 + t.
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Similar to case (a) in Theorem 2.3, we prove the following matrix A is invertible.

A =

⎡⎢⎢⎣
b00 0 0 a00

1 b00 0 a10

0 1 b00 a20

0 0 1 1

⎤⎥⎥⎦.

By h′
0(0) ∈ U(R), h′

1(1) ∈ U(R), h′(0) = h′
0(0)h′

1(0) ∈ J(R) h′(1) = h′
0(1)h′

1(1) ∈ J(R), we
get a00 ∈ U(R) and b00 ∈ J(R). So det A = b00(b2

00 − a10 − b00a20) − a00 ∈ U(R).
Case (b): {

h′
0(t) = a00 + a10t + t2

h′
1(t) = b00 + b10t + t2.

As in case (a), we prove A is invertible where

A =

⎡⎢⎢⎣
b00 0 a00 0
b10 b00 a10 a00

1 b10 1 a10

0 1 0 1

⎤⎥⎥⎦ .

By h′
0(0) ∈ U(R), h′

1(1) ∈ U(R), h′(0) = h′
0(0)h′

1(0) ∈ J(R) h′(1) = h′
0(1)h′

1(1) ∈ J(R)
and gcd(h′

0(t), h′
1(t)) = 1, we get b00 ∈ J(R), a00 ∈ U(R), 1 + b10 ∈ U(R), and b10 −

a10 − 1 ∈ U(R) and a00 = −a10 − 1 + j for some j ∈ J(R). So

det A = b00(b00 + a2
10 − b00 − a10b00) − a00(b2

10 + a00 − b00 − a10b10)

= b00(b00 + a2
10 − b00 − a10b00) − a00[(b10 + 1)(b10 − a10 − 1) + j − b00] ∈ U(R).

Case (c): {
h′

0(t) = a00 + t

h′
1(t) = b00 + b10t + b20t2 + t3.

As before,

A =

⎡⎢⎢⎣
b00 a00 0 0
b10 1 a00 0
b20 0 1 a00

1 0 0 1

⎤⎥⎥⎦.

By h′
0(0) ∈ U(R), h′

1(1) ∈ U(R), h′(0) = h′
0(0)h′

1(0) ∈ J(R), h′(1) = h′
0(1)h′

1(1) ∈ J(R),
we get a00 ∈ U(R), b00 ∈ J(R), 1 + a00 ∈ J(R), b00 + b10 + b20 + 1 ∈ U(R) and
a00 − b10 − b20 ∈ U(R). So detA = b00 − a2

00(a00 − b10 − b20) − a00(a00 + 1)b10 ∈ U(R).
Again repeat the last part of Theorem 2.3; h(t) has an SRC factorization, i.e., R[[x]] is
a 4-SRC ring.

(2) ⇒ (1) is similar to the above theorem. �
Before giving the main theorem, we need more lemmas.

LEMMA 2.5. Let R be a ring. Then R[x]
(xk)

∼= R[[x]]
(xk) .
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Proof. Define θ : R[[x]] → R[x]
(xk) by θ (

∑
i≥0 rixi) = r0 + r1x + · · · + rkxk where x =

x + (xk). Then θ is a ring epimorphism with Ker θ = (xk). So R[x]
(xk)

∼= R[[x]]
(xk) . �

LEMMA 2.6. Let R be a local ring. Then R[x1,x2,...,xk]
(x

n1
1 ,x

n2
2 ,...,x

nk
k )

is a local ring.

Proof. Let I = (x1,x2,...,xk)
(x

n1
1 ,x

n2
2 ,...,x

nk
k )

. Then I a nilpotent ideal. Define

θ : R[x1, x2, . . . , xk] → R[x1, x2, . . . , xk](
xn1

1 , xn2
2 , . . . , xnk

k

)
to be the natural ring epimorphism. Then by [1, Corollary 15.8], we have

J(R) + (
xn1

1 , xn2
2 , . . . , xnk

k

)(
xn1

1 , xn2
2 , . . . , xnk

k

) ⊆ J

(
R[x1, x2, . . . , xk](
xn1

1 , xn2
2 , . . . , xnk

k

))
.

So

J(R) + (x1, x2, . . . , xk)(
xn1

1 , xn2
2 , . . . , xnk

k

) ⊆ J

(
R[x1, x2, . . . , xk](
xn1

1 , xn2
2 , . . . , xnk

k

))
.

Hence,

R[x1, x2, . . . , xk](
xn1

1 , xn2
2 , . . . , xnk

k

)
J(R) + (x1, x2, . . . , xk)(

xn1
1 , xn2

2 , . . . , xnk
k

) ∼= R[x1, x2, . . . , xk]
J(R) + (x1, x2, . . . , xk)

∼= R
J(R)

is a division ring. And R[x1,x2,...,xk]
(x

n1
1 ,x

n2
2 ,...,x

nk
k )

is a local ring. �

LEMMA 2.7. Let R be a ring. Then R[x1,x2,...,xk]
(x

n1
1 ,x

n2
2 ,...,x

nk
k )

∼= R[[x1,x2,...,xk]]
(x

n1
1 , x

n2
2 ,...,x

nk
k )

.

Proof. The proof is similar to Lemma 2.5. �

DEFINITION 2.8. R ∝ R = {( a b
0 a ) : a, b ∈ R} is called the trivial extension of R.

LEMMA 2.9. Let R be a ring. Then R ∝ R ∼= R[x]
(x2) .

Proof. Define θ : R ∝ R → R[x]
(x2) by θ (( a b

0 a )) = a + bx with x = x + (x2). It is easy
to verify that θ is an isomorphism. �

The following is the main result.

THEOREM 2.10. Let R be a commutative local ring, and let n = 3, 4, and m, k, s ∈ �.
Then the following are equivalent:

1. �n(R) is strongly clean.
2. �n(R[[x]]) is strongly clean.
3. �n( R[x]

(xm) ) is strongly clean.
4. �n(R[[x1, x2, . . . , xk]]) is strongly clean.
5. �n( R[x1,x2,...,xs]

(x
n1
1 ,x

n2
2 ,...,xns

s )
) is strongly clean.

6. �n(R ∝ R) is strongly clean.
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Proof. Note by the conditions, known results or above lemmas, R, R[[x]], R[x]
(xm) ,

R[[x1, x2, . . . , xk]], R[x1,x2,...,xs]
(x

n1
1 ,x

n2
2 ,...,xns

s )
, and R ∝ R are all commutative local.

(1) ⇔ (2). By Theorem 2.3, Theorem 2.4 and Lemma 2.2.
(2) ⇒ (3) ⇒ (1). �n(R) is the image of �n( R[x]

(xm) ) and �n( R[x]
(xm) ) is the image of

�n(R[[x]]) by Lemma 2.5.
(2) ⇔ (4). By mathematical induction, Lemma 2.2, Theorem 2.3 and Theorem 2.4.
(4) ⇒ (5) ⇒ (1). This is similar to (2) ⇒ (3) ⇒ (1) because by Lemma 2.7,

R[x1,x2,...,xk]
(x

n1
1 ,x

n2
2 ,...,x

nk
k )

∼= R[[x1,x2,...,xk]]
(x

n1
1 ,x

n2
2 ,...,x

nk
k )

.

(1) ⇔ (6). (1) ⇔ (3) for any m ∈ �. So (6) is a special case of (3) if we let m = 2. �
The following is an application of Theorem 2.10.
A commutative local ring R is called Henselian if R[x] satisfies Hensel’s lemma

[3, 9], i.e., for any monic polynomial f (x) ∈ R[x], if f (x) = g(x) h(x) with g(x), h(x) ∈
R

J(R) [x] monic and coprime, then there exist monic polynomials g(x) and h(x) in R[x]
such that f (x) = g(x)h(x), η′

R(g(x)) = g(x), and η′
R(h(x)) = h(x).

LEMMA 2.11. [4] If R is Henselian, then R is an SRC ring.

COROLLARY 2.12. For any prime number p, let �̂p be the ring of p-adic integers,

and let n = 3, 4 and m, k, s ∈ �. Then �n(�̂p[[x]]), �n( �̂p[x]
(xk) ), �n(�̂p[[x1, x2, . . . , xm]]),

�n( �̂p[x1,x2,...,xs]
(x

n1
1 ,x

n2
2 ,...,xns

s )
), and �n(�̂p ∝ �̂p) are all strongly clean.

Proof. By [6, Theorem 7.18], �̂p is Henselian. (For definitions and properties of �̂p

and Hensel’s lemma, see [7].) So by Theorem 2.10, Lemma 2.2 and Lemma 2.11, the
corollary holds. �

COROLLARY 2.13. Let F be a field, and let n = 3, 4 and m, k, s ∈ �. Then �n(F [[x]]),
�n( F [x]

(xk) ), �n(F [[x1, x2, . . . , xm]]), �n( F [x1,x2,...,xs]
(x

n1
1 ,x

n2
2 ,...,xns

s )
) and �n(F ∝ F) are strongly clean.

Proof. By [2, p. 115, ex. 9], F is Henselian. So again by Theorem 2.10, Lemma 2.2
and Lemma 2.11, the corollary holds. �
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