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ESTIMATION OF THE MEAN NORMAL
MEASURE FROM FLAT SECTIONS

MARKUS KIDERLEN,∗ University of Aarhus

Abstract

We discuss the determination of the mean normal measure of a stationary random set
Z ⊂ R

d by taking measurements at the intersections of Z with k-dimensional planes.
We show that mean normal measures of sections with vertical planes determine the mean
normal measure of Z if k ≥ 3 or if k = 2 and an additional mild assumption holds. The
mean normal measures of finitely many flat sections are not sufficient for this purpose.
On the other hand, a discrete mean normal measure can be verified (i.e. an a priori guess
can be confirmed or discarded) using mean normal measures of intersections with m

suitably chosen planes when m ≥ �d/k� + 1. This even holds for almost all m-tuples
of k-dimensional planes are viable for verification. A consistent estimator for the mean
normal measure of Z, based on stereological measurements in vertical sections, is also
presented.
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1. Introduction

Local first-order properties of a stationary random surface are completely described by its
surface area density and its rose of normal directions. The surface area density is a real-valued
quantity given as the mean surface area of the random surface per unit volume. The rose of
normal directions is a measure on the unit sphere and can be interpreted as the distribution of
the unit normal of the surface at a typical point. This distribution has been used to describe
(average) anisotropy properties of the random surface, and a number of stereological procedures
have been suggested to estimate this measure from flat sections; see [1, Chapter 5], [2],
[28, Chapter 9], and the references therein. Actually, all estimation procedures first yield
the unoriented mean normal measure, which is the product of the surface area density and
the rose of normal directions. An estimator for the rose of normal directions is then simply
obtained by normalization. For sufficiently regular stationary random sets Z, the rose of normal
directions is often defined as the rose of the boundary ∂Z of Z; see, e.g. [18]. However, not all
kinds of anisotropy can be determined using the unoriented mean normal measure. Consider,
for example, the random surface consisting of the union of small circles in the plane, arranged
in horizontal rows. This random set clearly exhibits anisotropy, but its rose of normal directions
is uniform. This kind of anisotropy, owing to systematic spatial displacements, was formalized
and studied in [27]. Even if the displacement is not systematic, the rose of normal directions
can be uniform, although, intuitively, the process is not isotropic. Consider, for example,
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Figure 1: Two realizations of planar stationary random sets in a rectangular sampling window with
different (oriented) mean normal measures, but coinciding unoriented mean normal measures.

the boundary ∂Z of a stationary Boolean model Z in the plane whose typical particle is a
deterministic Reuleaux triangle (an equilateral triangle T whose sides are replaced by circular
arcs with endpoints at two vertices of T and centered at the third vertex). In this case the rose
of normal directions is uniform, as it does not distinguish between the inner and outer unit
normals at a boundary point.

Weil [31] introduced a variant of the unoriented mean normal measure, the mean normal
measure S̄(Z, ·) of a stationary random set Z in the extended convex ring, taking only the outer
unit normals into account. (Schneider [24] called S̄(Z, ·) the oriented mean normal measure of
Z.) The mean normal measure was previously considered in [17], [20], and [30] for Boolean
models and further treated in [32] and [33]. In the above example, where Z is a Boolean model
with a Reuleaux triangle as the typical particle, S̄(Z, ·) is not uniform. Figure 1 illustrates that
the mean normal measure can also be used to distinguish between certain random sets, even if
the unoriented mean normal measures coincide.

The purpose of the present article is to discuss how far S̄(Z, ·) is determined from information
in lower-dimensional sections and to suggest an estimator for S̄(Z, ·) using a stereological
procedure based on vertical sections. Similar uniqueness questions were dealt with in [13],
but there, the intersection planes L were considered to be uniform random and connections
between certain means of the mean normal measures S̄′(Z ∩ L, ·) of Z ∩ L (with respect to
L) and S̄(Z, ·) were discussed. The prime notation indicates that the mean normal measure
is taken relative to L; see also Section 2. In contrast to the unoriented mean normal measure,
the oriented measure S̄(Z, ·) cannot be recovered from one-dimensional sections alone, even
if the distributions of the random sets Z ∩ g are known for all lines g; see [13]. Flat sections of
dimension k are sufficient for this purpose if k is at least equal to two. It was shown in [7] that
the mean normal measures S̄′(Z ∩ L, ·) determine S̄(Z, ·) if L runs through the family of all
k-dimensional planes. It will be shown in Corollary 3.1 of Section 3 that we can even restrict
to planes containing a given direction u (vertical sections) if k ≥ 3 or if k = 2 and a mild
additional assumption is satisfied. The mean normal measures of finitely many intersections
are not sufficient to determine S̄(Z, ·). On the other hand, a discrete mean normal measure
can be verified (i.e. an a priori guess can be confirmed or discarded) using the mean normal
measures of m intersections with k-dimensional planes, whenever m ≥ �d/k� + 1. This even
holds for almost all m-tuples of k-dimensional planes. This is made precise in Theorem 3.2.

In Section 4 we discuss a procedure to estimate the mean normal measure. In the planar
case other approaches have been suggested. Weil [30] gave a method for sets with a polygonal
boundary. He also suggested an estimator that uses the additivity of the support function.
Rataj [20] constructed an estimator of certain (mean) mixed areas based of area dilations
by suitable test sets. From these mixed areas he derived an estimate of the mean normal
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measure. In some practical applications only digitizations of the random set Z are available.
Estimators for the mean normal measure from digital images can be found in [14] for the
planar case and in [9] and [34] for three-dimensional sets. The only other estimation procedure
in higher dimensions was suggested by Schneider in [24]. He used classical stereological
information from intersections with pairs of parallel hyperplanes to estimate the mean normal
measure of a stationary particle process. This method, however, relies on the inversion of
an integral transform, for which no discrete inversion algorithm is known. In Section 4 we
present an estimator which is based on the analysis of vertical sections of Z. For each vertical
section plane L, certain intersection points of ∂(Z ∩ L) with test lines in L are counted. A
twofold application of a known algorithm to invert the cosine transform then yields a discrete
nonparametric estimator for S̄(Z, ·).

In the next section we give a more formal definition of the mean normal measure and recall
relevant integral formulae connecting it to flat sections of Z.

2. The mean normal measure

We introduce some notation. The Euclidean norm and the inner product in R
d are denoted

by ‖ · ‖ and 〈·, ·〉, respectively, the unit ball is denoted by Bd , and the unit sphere is denoted by
Sd−1 = ∂Bd . Let u⊥ be the linear hyperplane with unit normal u ∈ Sd−1. We will often use
the great sphere u◦ := u⊥ ∩ Sd−1 orthogonal to u and the relative open half spheres generated
by it. Set

u⊕ := {v ∈ Sd−1 : 〈u, v〉 > 0}
and u� := (−u)⊕. Let Ld

k be the Grassmannian of all k-dimensional linear subspaces of R
d ,

and let νk be the rotation invariant probability measure on this space. We write

Ld
k (u) := {L ∈ Ld

k : u ∈ L}
for the sheaf of all k-dimensional subspaces containing the direction u. For a measure µ defined
on a σ -algebra B and B ∈ B, we will write µ � B := µ(· ∩ B). Thus, µ � B coincides with µ

on all Borel subsets of B and vanishes identically outside B. We will always denote by Hm the
Hausdorff measure of dimension m in R

d . A measure µ on Sd−1 is even if it coincides with its
even part given by

A �→ 1
2 (µ(A) + µ(−A))

for Borel sets A ⊂ Sd−1.
Let K denote the set of convex bodies (compact convex sets) in R

d . The support measures
(generalized curvature measures) �j(K, ·), j = 0, . . . , d − 1, of K ∈ K can be defined as
coefficients of a Steiner-type formula for local parallel volumes; see [23, Chapter 4]. As we
will use only the support measure of order j = d − 1, we give a more direct description, which
applies to arbitrary closed sets [10], but will here be used only for sets in the extended convex
ring. The convex ring R is the family of all finite unions of convex bodies, and the extended
convex ring

S := {A ⊂ R
d : A ∩ K ∈ R for all K ∈ K}

is the family of sets that can locally be written as finite unions of convex bodies. For K ∈ S, let
∂+K be the positive boundary consisting of all x ∈ ∂K that have an outer normal u ∈ Sd−1,
meaning that there exists a positive ε such that x is the (unique) metric projection of x+εu on K .
Equivalently, the intersection of the ball (x + εu) + εBd and K is the singleton {x}. The set

https://doi.org/10.1239/aap/1208358885 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358885


34 • SGSA M. KIDERLEN

N(K, x) of all the outer normals of K at x ∈ ∂+K contains either one, two antipodal, or
infinitely many points. Set

∂iK := {x ∈ ∂+K : card N(K, x) = i}, i = 1, 2.

The unique normal in x ∈ ∂1K at K is denoted by u(K, x). For x ∈ ∂2K , we select u(K, x)

as one of the two possible normals in a measurable manner. As K ∈ S, we have

Hd−1(∂K) = Hd−1(∂+K) = Hd−1(∂1K ∪ ∂2K).

If K ∈ S is topologically regular (i.e. it is the closure of its interior) then ∂2K = ∅. The
support measure (of order d − 1) of K is the measure on R

d × Sd−1 given by

�(K, ·) =
∫

∂1K∪∂2K

1(x,u(K,x))∈· Hd−1(dx) +
∫

∂2K

1(x,−u(K,x))∈· Hd−1(dx).

The projection S(K, ·) = �(K, R
d × ·) is the surface area measure (of order d − 1) of K .

If K is contained in a subspace L ∈ Ld
k with k ≤ d − 2, the curvature measure �(K, ·) is

trivial. Then we often consider the curvature measure of K as a subset of L and denote it by
�′(K, ·). The subspace L will be clear from the context. Note that �′(K, ·) is a measure on
L × Sk−1(L), where Sk−1(L) = Sd−1 ∩ L is the unit sphere in L. We denote the orthogonal
projection of x ∈ R

d on L by x|L. Let

prL(u) := (u|L)

‖u|L‖
be the spherical projection of u ∈ Sd−1 on Sk−1(L). As prL(u) is undefined when u is in the
orthogonal complement L⊥ of L, we set prL(u) := v0 for some fixed vector v0 ∈ Sk−1(L)

in this case. Rataj [21] showed a translative Crofton-type formula for sets of positive reach,
which, by additivity, also holds for sets K ∈ R. For L ∈ Ld

k , k = 1, . . . , d − 1, and any
measurable function f : L⊥ × L × Sk−1(L) → R+, we have∫

L⊥

∫
L×Sk−1(L)

f (−z, x, u)�′((K + z) ∩ L, d(x, u))Hd−k(dz)

=
∫

Rd×Sd−1
f (x|L⊥, x|L, prL(u))‖u|L‖�(K, d(x, u)). (2.1)

This relation can also be derived from [11, Satz 2.9 and Lemma 2.5] using support measures
relative to a gauge body which is not necessarily the Euclidean ball; see also [15]. Specializing
(2.1) to surface area measures, we obtain

∫
L⊥

S′((K + z) ∩ L, ·)Hd−k(dz) = πLS(K, ·), (2.2)

where πL is a linear and weakly continuous operator from the space M of finite signed Borel
measures on Sd−1 to the space M(L) of finite signed Borel measures on Sk−1(L). For µ ∈ M,
the measure πLµ is defined as the image measure of

∫
(·)

‖u|L‖µ(du) (2.3)
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under the spherical projection prL. In particular, if L = g = lin v is a line with direction
v ∈ Sd−1, the measure πgµ is concentrated on {−v, v} and has total mass

(πgµ)({−v, v}) = Cµ(v), (2.4)

where

Cµ =
∫

Sd−1
|〈u, ·〉|µ(du)

is the cosine transform of µ. For later use, we note that

πL
MπL = πM (2.5)

for all nontrivial subspaces M ⊂ L, where πL
M is the projection operator on the unit sphere in

M , relative to L. The operator πL is strongly related to the cosine transform and, hence, to
projection bodies (see [3] and [29]). It is a special case of the more general spherical projection
operators πL,m, where the integrand in (2.3) is taken to the power m (see [8] for their properties
and use in geometric tomography, and for a proof of (2.5) in terms of πL,m). A generalization
of (2.2) for mixed surface area measures was shown in [7].

For a definition and basic properties of random closed sets, we refer the reader to
[26, Chapters 1 and 2]. The mean normal measure S̄(Z, ·) can be defined for stationary random
closed sets in R

d without any further assumption; cf. [10, Section 7]. However, owing to
this generality, even the intuitive property that its mean total mass for a topologically regular
random set equals the surface area density does not hold. In the following we will consider
only stationary random closed sets Z in the extended convex ring S. Many of the results also
hold for UPR sets, that is sets that can be written as locally finite unions of sets of positive
reach, which are such that any finite intersection of them has again positive reach. However, as
we make extensive use of translative Crofton formulae for surface area measures, this would
require additional assumptions on the relative positions of Z and the considered intersection
plane; see [21]. Throughout this article, we assume that Z is a stationary set in S and has finite
mean local surface area. We have

E Hd−1(∂Z ∩ K) < ∞ (2.6)

for one (and hence all) convex body K with interior points. In the literature the stronger
integrability condition

E 2N(Z∩K) < ∞ (2.7)

is sometimes assumed, where N(M) is the minimal number of convex bodies needed to write
the nonempty set M ∈ R as their union, and N(∅) = 0. We will not require (2.7). For K ∈ K
with the origin in its interior, Weil [31] defined the mean normal measure of Z by

S̄(Z, ·) := lim
r→∞

1

Hd(rK)
E S(Z ∩ rK, ·),

which is independent of K . Moreover,

S̄(Z, ·) = E(S(Z ∩ Cd, ·) − S(Z ∩ Cd
1 , ·)),

where Cd is the unit cube in R
d and

Cd
1 =

{
x = (x1, . . . , xd) ∈ Cd : max

i=1,...,d
xi = 1

}
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is its ‘upper-right boundary’. A third representation of the mean normal measure is

S̄(Z, ·) = 1

Hd(K)
E �(Z; (int K) × ·), (2.8)

where K is an arbitrary convex body with interior points. Equation (2.8) follows from a special
case of a translative integral formula for support measures in [22]. In [31] condition (2.7) was
assumed, but this condition can be replaced by the weaker condition (2.6), as, for any Borel set
A ⊂ Sd−1,

0 ≤ S(Z ∩ K, A) ≤ 2Hd−1(∂Z ∩ K),

where the right-hand side is monotone in K with respect to set inclusion.
A combination of (2.8) and (2.1) implies that

S̄′(Z ∩ L, ·) = πLS̄(Z, ·). (2.9)

This was shown by Weil [31] (see also [32]) and is the starting point for our uniqueness results.

3. Determination of the mean normal measure

Fix k ∈ {2, . . . , d − 1}. It was shown in [7] that a finite signed measure µ on the unit sphere
is uniquely determined by the family of all its projections πLµ, L ∈ Ld

k . In view of (2.9) and
the linearity of πL, this shows that the mean normal measure S̄(Z, ·) is uniquely determined
by all mean normal measures of sections S̄′(Z ∩ L, ·), L ∈ Ld

k . Our first result states that the
latter family actually contains considerable redundant information, as we can restrict to vertical
planes, i.e. planes that contain a line with a given direction u ∈ Sd−1, at least when k ≥ 3.
Its proof is based on injectivity properties of the cosine transform and avoids the use of mixed
volumes and spherical harmonics which are the basis of the uniqueness result in [7]. We will
write o for the zero measure.

Theorem 3.1. Let a finite signed measure µ on the unit sphere, k ∈ {2, . . . , d − 1}, and
u ∈ Sd−1 be given. If k ≥ 3 then

πLµ = o for all L ∈ Ld
k (u), (3.1)

implies that µ = o. For k = 2, the same implication holds true when µ � u◦ is even.

Proof. We first fix v ∈ Sd−1 and m ≥ 2, and show an intermediate claim. If

πMµ = o for all M ∈ Ld
m(v), (3.2)

then µ � v⊕ = o. In fact, as a unit vector is in v⊕ if and only if its spherical projection on M is
in v⊕ ∩ M , (3.2) implies that

πM(µ � v⊕) = (πMµ) �(v⊕ ∩ M) = o.

Hence, if g is an arbitrary line in M and we abbreviate µ⊕ := µ � v⊕, (2.5) gives

πg(µ
⊕) = πM

g (πMµ⊕) = o.

As g was arbitrary in M , which in turn was arbitrary in Ld
m(v), (2.4) implies that the cosine

transform Cµ⊕ of µ⊕ vanishes on Sd−1. The cosine transform determines the even part of a
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measure; see [23, Theorem 3.5.3 and Note 3 on p. 192]. As µ⊕ is concentrated on a relative
open half sphere, we find that µ⊕ = o and the intermediate claim is shown.

Now let the assumptions of the theorem be satisfied with k ≥ 2. The intermediate claim
with m = k and v = ±u implies that

µ �(u⊕ ∪ u�) = o, (3.3)

and it is enough to show that the restriction µ◦ of µ to the Borel sets in u◦ vanishes. For
L ∈ Ld

k (u) and M = L ∩ u⊥, we have prL = prM on u◦, so (3.3) and (3.1) imply that

πu⊥
M (µ◦) = πLµ = o. (3.4)

Consider the case in which k ≥ 3. As L can be chosen arbitrarily, (3.4) is true for all subspaces
M of u⊥ of dimension k − 1 ≥ 2. Thus, the intermediate claim can be applied in u⊥ with
m = k − 1, µ replaced by µ◦, and arbitrary v ∈ u◦. We obtain µ◦ �(v⊕ ∩ u◦) = o for all
v ∈ u◦, which clearly gives the desired result µ = o.

For k = 2, M in (3.4) is a line and (2.4) applied in u⊥ together with the injectivity of the
cosine transform on even measures implies that the even part of µ◦ must be 0. As we assumed
that µ◦ was even, this gives µ◦ = o, as required.

Owing to (2.9), we may rephrase this result in terms of the mean normal measure.

Corollary 3.1. Let Z be a stationary random set in the extended convex ring in R
d such that

(2.6) holds. For fixed u ∈ Sd−1, the mean normal measure S̄(Z, ·) is uniquely determined by
the mean normal measures S̄′(Z ∩ L, ·), where L runs through the sheaf of planes Ld

k (u) if
k ≥ 3.

The same holds true if k = 2 and S̄(Z, ·) � u◦ is even.

Some comments on the case in which k = 2 are relevant to mention here, as ordinary planes
in R

3 are the most important case for applications. Firstly, the additional condition for k = 2 is
obviously fulfilled when S̄(Z, ·) � u◦ = o, and this is true in particular if S̄(Z, ·) is absolutely
continuous with respect to the spherical Lebesgue measure. If this cannot be assumed, we can
randomize the choice of u. Whenever u is chosen as a random isotropic direction on Sd−1

(independent of Z), then S̄(Z, ·) � u⊥ = o holds almost surely. Thus, the uniqueness result
also holds almost surely. If extra assumptions are to be avoided, we can consider one additional
section with a hyperplane that does not contain the axis of the sheaf. With essentially the same
arguments that led to Theorem 3.1, it can be shown that S̄(Z, ·) is uniquely determined by the
collection of measures

S̄′(Z ∩ L, ·), L ∈ Ld
2(u) ∪ {L0},

where L0 ∈ Ld
d−1 satisfies u �∈ L0.

The question arises whether finitely many sections are enough to determine the mean normal
measure. This is not the case, as we will show below. On the other hand, discrete mean normal
measures can be verified using finitely many (actually very few) suitably chosen flat sections. To
prove these results, we will describe the action of πL on discrete measures in a more geometric
way, apply tools from geometric tomography, and transfer the obtained statements to mean
normal measures of random sets.

We call a measure discrete if its support is at most countable. Let Md denote the space of all
discrete finite signed measures on Sd−1 and M+

d denote the subcone of positive measures in Md .
We write δu for the Dirac point measure supported by u ∈ Sd−1. Any measure µ ∈ M+

d is of

https://doi.org/10.1239/aap/1208358885 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358885


38 • SGSA M. KIDERLEN

the form µ = ∑N
i=1 αiδui

with positive masses αi , pairwise different support points u1, u2, . . .

in Sd−1, N ∈ N or N = ∞, and
∑N

i=1 αi < ∞. The idea that spherical projections of discrete
measures are closely related to orthogonal projections of associated point sets in R

d was pointed
out to us by W. Weil and is expressed formally by (3.6), below. For µ as above, we set

P (µ) :=
N⋃

i=1

{αiui}.

This gives rise to a bijection from M+
d onto the family F of at most countable sets F ⊂ R

d \{0}
with the properties that

(a) any ray emanating from 0 hits F in at most one point;

(b)
∑

x∈F ‖x‖ < ∞.

Let L ∈ Ld
k , 1 ≤ k ≤ d − 1. The definition of πL implies that

πLµ =
∑

x∈L\{0}
‖x‖XP (µ)(x)δx/‖x‖, (3.5)

where
XA(x) = card(A ∩ (x + L⊥)), x ∈ L,

is the (discrete) X-ray function of A ⊂ R
d in direction L⊥. Thus, πLµ is uniquely determined

by the X-ray function of P (µ). The converse is true for L in

N d
k (µ) := {M ∈ Ld

k : prM(u1), . . . , prM(uN) are pairwise different and

M⊥ ∩ {u1, . . . , uN } = ∅}.

For L ∈ N d
k (µ), we have XP (µ) = 1P (µ)|L on L and

P (πLµ) = P (µ)|L. (3.6)

Note that
νk(N

d
k (µ)) = 1 if 2 ≤ k ≤ d − 1

for all µ ∈ M+
d , whereas N d

1 (µ) = ∅ if the support of µ consists of at least three points.
Surface area measures of convex bodies with interior points have this property for d ≥ 2,
which is the reason that (3.6) is of interest only for k ≥ 2.

We now ask whether a discrete measureµ is determined by spherical projections on subspaces
in a given finite set L ⊂ Ld

k . Owing to (3.6) and the injectivity of P , this question can be
rephrased to asking whether a discrete set in R

d is determined by all X-ray functions on planes
in L. Discrete tomography yields an answer to this question.

Proposition 3.1. Let 1 ≤ k ≤ d − 1, and let L ⊂ Ld
k be finite. Then there exist two different

finite measures µ and µ′, indistinguishable by their spherical projections on the members
of L:

πLµ = πLµ′

for all L ∈ L. These measures can be chosen even and with finite supports.
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Proof. Owing to (2.5), it is enough to consider hyperplanes L. Let L = {L1, . . . , Lm} ⊂
Ld

d−1. According to [4, Lemma 2.3.2], there exists an {L⊥
1 , . . . , L⊥

m}-switching component.
This is a union A ∪ A′ of finite, disjoint, and nonempty sets A and A′ with

card(A ∩ (x + L⊥
i )) = card(A′ ∩ (x + L⊥

i )) for all x ∈ R
d , i = 1, . . . , m. (3.7)

Hence, A and A′ have the same discrete X-ray functions in the directions L⊥
1 , . . . , L⊥

m, although
they are disjoint. Equation (3.7) is invariant with respect to arbitrary translations of A ∪ A′. It
is also unchanged when A ∪ A′ is reflected at the origin. We can therefore assume that

A ∩
m⋃

i=1

L⊥
i = A′ ∩

m⋃
i=1

L⊥
i = ∅,

every ray starting at 0 hitsA∪A′ in at most one point, and thatA andA′ are both origin symmetric.
These conditions imply that there exist finite even measures µ and µ′ with P (µ) = A and
P (µ′) = A′ with disjoint finite supports. Owing to (3.5), the spherical projections of these
measures can be expressed using the X-ray functions of A and A′, which coincide by (3.7). We
thus obtain πLi

µ = πLi
µ′ for all i = 1, . . . , m.

Gardner [4, p. 64] introduced the notion of verification of sets by X-rays. We transfer this
notion to the present context for measures in a subcone M′ of M. A measure µ ∈ M′ can
be verified by spherical projections on m planes in Ld

k if L1, . . . , Lm ∈ Ld
k can be chosen

(depending on µ) such that if µ′ ∈ M′ and πLi
µ = πLi

µ′ for 1 ≤ i ≤ m then µ = µ′. We
say that a measure µ ∈ M′ can almost surely be verified by m spherical projections on planes
in Ld

k if, for all (L1, . . . , Lm) ∈ Ld
k × · · · × Ld

k with the possible exception of a zero measure
set of ν⊗m

k , again, µ′ ∈ M′ and πLi
µ = πLi

µ′ for 1 ≤ i ≤ m implies that µ = µ′. Note that
the zero measure set may depend on µ. This subtle dependence on µ is the reason for the use
of the term verification instead of determination; cf. [4, p. 64]. Clearly, almost sure verification
is stronger than ordinary verification.

Proposition 3.2. Let 2 ≤ k ≤ d − 1, and let m = �d/k� + 1. Then any µ ∈ M+
d can almost

surely be verified by m spherical projections on planes in Ld
k . The value of m is best possible

here.

Proof. Let µ ∈ M+
d , let F := P (µ), and let m = �d/k� + 1. We modify the proof of

[5, Theorem 7.4] appropriately. We first choose m − 1 subspaces L1, . . . , Lm−1 ∈ N d
k (µ)

such that L⊥
1 , . . . , L⊥

m−1 are in general position. Note that ν
⊗(m−1)
k -almost all (L1, . . . , Lm−1)

satisfy these conditions. The subspace T := ⋂m−1
i=1 L⊥

i has dimension

dim T = (m − 1)(d − k) − (m − 2)d = d −
⌊

d

k

⌋
k < k.

The set

G :=
m−1⋂
i=1

{x + L⊥
i : x ∈ F |Li}

is a finite union of translates of T , G = {y1 +T , . . . , ys +T }, say. Let Lij be the maximal linear
subspace parallel to the affine hull of (yi + T ) ∪ (yj + T ), 1 ≤ i < j ≤ s. As dim T < k,
we have dim Lij ≤ k and almost all Lm ∈ Ld

k have the property that L⊥
m intersects Lij in one

point for all 1 ≤ i < j ≤ s. Hence, all (d − k)-dimensional planes x + L⊥
m, x ∈ R

d , intersect
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at most one of the translates of T in G, and each of these intersections is a single point. Fix
one of these subspaces Lm ∈ N d

k (µ). It is easy to see that

F =
m⋂

i=1

{x + L⊥
i : x ∈ F |Li},

where the right-hand side is determined by the spherical projections of µ owing to (3.6). But
F = P (µ) determines µ. Note that (L1, . . . , Lm) was chosen arbitrarily in Ld

k × · · · × Ld
k

excluding only a zero measure set (which may depend on µ).
It remains to show that the number m is best possible. In the proof of [5, Theorem 7.4] the

existence of a finite set F ⊂ R
d (being actually the vertex set of a zonotope with interior points)

is shown such that, for any set L ⊂ Ld
k of �d/k� subspaces, there exists a different finite set

F ′ ⊂ R
d with the same X-rays as F in directions L⊥ for all L ∈ L. The two measures µ and

µ′ with P (µ) = F and P (µ′) = F ′ show that m is optimal.

In view of (2.9) the above results can be reformulated in terms of random sets. We call a
random set Z polyhedral if it is almost surely a locally finite union of convex polytopes. Typical
examples of polyhedral sets are crystalline media. Restricting further, we call a random set
Z simple polyhedral if there exists an at most countable set of unit vectors containing almost
surely all facet unit normals of Z. A stationary random set Z is simple polyhedral if and only if
S̄(Z, ·) is discrete. The random sets in part (a) of Theorem 3.2, below, can actually be chosen
to be Boolean models (with deterministic grains); see [26, Section 4.4] for a definition.

Theorem 3.2. (a) For any 1 ≤ k ≤ d − 1 and any finite L ⊂ Ld
k , there exist two stationary

simple polyhedral random sets Z and Z′ with different mean normal measures, but such that

S̄′(Z ∩ L, ·) = S̄′(Z′ ∩ L, ·)
holds for all L ∈ L.

(b) Let 2 ≤ k ≤ d − 1, let m = �d/k�+ 1, and let Z be a stationary simple polyhedral random
set obeying (2.6). Then, for ν⊗m

k -almost all (L1, . . . , Lm) ∈ (Ld
k )m and all stationary simple

polyhedral random sets Z′,

S̄′(Z ∩ Li, ·) = S̄′(Z′ ∩ Li, ·), i = 1, . . . , m,

implies that S̄(Z, ·) = S̄(Z′, ·).
Proof. As part (b) is a direct consequence of Proposition 3.2 and (2.9), it remains to show

part (a). According to Proposition 3.1, there exist two different finite even measures µ and
µ′ with finite supports such that πLµ = πLµ′ holds for all L ∈ L. We may assume that
the supports of µ and µ′ are not concentrated on great circles of Sd−1 (otherwise, add a
suitable even measure in M+

d to both). Owing to Minkowski’s existence theorem (see, e.g.
[23, Section 7.1]), there exist two convex polytopes K and K ′ (origin symmetric and with
interior points) with S(K, ·) = µ and S(K ′, ·) = µ′. Now let Z and Z′ be stationary Boolean
models with deterministic typical grains K and K ′, respectively. Their positive intensities γ

and γ ′ depend on the volumes V (K) and V (K ′) of K and K ′ and are chosen such that

γ e−γV (K) = γ ′e−γ ′V (K ′) =: α.
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Using [33, Section 3.2], we see that

S̄(Z, ·) = γ e−γV (K)S(K, ·) = αµ

and S̄(Z′, ·) = αµ′. Hence, S̄(Z, ·) �= S̄(Z′, ·), but

S̄′(Z ∩ L, ·) = απLµ = απLµ′ = S̄′(Z′ ∩ L, ·)
holds for all L ∈ L according to (2.9).

4. Estimation of the mean normal measure from vertical sections

From a stereological point of view, an estimation procedure for S̄(Z, ·) should only require
simple data acquisition such as measurements of lengths or counting. Schneider [24] suggested
using surface area measurements in intersections with hyperplanes. He considered the mean
normal measure S̄(X, ·) of a stationary particle process X of convex particles, and showed that
the family of densities

H
d−2

(∂uX ∩ u⊥), u ∈ Sd−1,

determined S̄(X, ·) uniquely. Here H
d−2

denotes the density of the (d − 2)-dimensional
Hausdorff measure, and ∂uX is the surface process of all boundary points of X-particles having
an outer unit normal in Sd−1 ∩ u⊕ (Schneider actually worked with normals in the closed
half sphere Sd−1 \ u�, which led to the same densities for almost all u). He also suggested
estimating H

d−2
(∂uX ∩ u⊥) using a pair of parallel hyperplanes at small distance to avoid an

explicit determination of the outer normal in R
d . His uniqueness proof was based on injectivity

properties of the hemispherical sine transform. As there is no discrete algorithm available
which allows us to invert this integral transform, the suggested method is of limited value for
applications, at least for the time being.

Here we suggest a method that is based on vertical sections in the spirit of the proof of
Theorem 3.1. It allows us to replace the inversion of the hemispherical sine transform by
the inversion of the cosine transform, for which nonparametric algorithms are known. The
common direction u of the sheaf of vertical intersection planes will be considered fixed and
called the reference direction in the following. For L ∈ Ld

k (u), let ∂u
L(Z ∩ L) denote the set of

all boundary points of Z∩L (relative to L) that have an outer unit normal in Sk−1(L)∩u⊕. For
a test line g = lin v ⊂ L, v ∈ Sk−1(L), and a measurable set W ⊂ g with 0 < H1(W) < ∞,
set

γ +(v) := 1

H1(W)
card(W ∩ ∂u

L(Z ∩ L)). (4.1)

E γ +(v) is independent of the choice of W . Obviously, γ +(v) requires only the knowledge of
u and Z ∩ L. Moreover, γ + is an unbiased estimator of the cosine transform of S̄(Z, ·) � u⊕,
which can be shown using the concept of weighted surface processes in [19] or by more direct
arguments given below. We present an alternative proof here.

Proposition 4.1. Let Z be topologically regular (Z = cl int Z), and assume that (2.6) holds.
Using the above notation, we have

E γ +(v) =
∫

u⊕
|〈w, v〉|S̄(Z, dw) = C[S̄(Z, ·) � u⊕](v) (4.2)

for all v ∈ Sd−1.

https://doi.org/10.1239/aap/1208358885 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358885


42 • SGSA M. KIDERLEN

Proof. Let D1 and Dd−1 be relative open unit cubes in g and v⊥, respectively, and set
Cd := cl(D1 + Dd−1). We may assume that W = D1. As ∂u

L(Z ∩ L) = (∂uZ) ∩ L, we have

E γ +(v) = E �′(Z ∩ g, (∂uZ ∩ D1) × S1(g)).

As support measures are defined locally, the stationarity of Z, Fubini’s theorem, and (2.1) imply
that

E γ +(v) =
∫

v⊥
E �′([Z ∩ g] ∩ [Cd + z], (∂uZ ∩ D1) × S1(g))Hd−1(dz)

= E
∫

v⊥
�′([(Z ∩ Cd) + z] ∩ g, ([∂uZ + z] ∩ D1) × S1(g))Hd−1(dz)

= E
∫

Rd×Sd−1
1x∈∂uZ 1x|g∈D1 ‖w|g‖�(Z ∩ Cd, d(x, w))

= E
∫

[int Cd∩∂uZ]×Sd−1
|〈w, v〉|�(Z ∩ Cd, d(x, w)).

In the last step we used the fact that �(Z ∩Cd, ·) vanishes outside Cd × Sd−1 and the fact that
�(Z ∩ Cd, ·)-almost all (x, w) with x ∈ D1 × ∂Dd−1 satisfy w ∈ v⊥ and, therefore, do not
contribute to the integral. Again using the fact that the support measures are defined locally, we
may replace Z ∩ Cd by Z. As Z = cl int Z, Hd−1-almost all x ∈ ∂Z have a unique outer unit
normal w and 1x∈∂uZ = 1w∈u⊕ holds. Another application of Fubini’s theorem and (2.8) yield

E γ +(v) =
∫

u⊕
|〈w, v〉| E[�(Z, int Cd × ·)](dw)

=
∫

u⊕
|〈w, v〉|S̄(Z, dw).

Measurability of the involved functions in the preceding line of arguments follows from the
weak continuity of support measures and the general considerations in [25, Anhang II].

We remark that Proposition 4.1 is still valid when Z is not topologically regular, but the
counts in the definition of γ + must be modified: any isolated point of g ∩ ∂u

L(Z ∩ L) in W

must be counted twice, as it (almost surely) comes from a boundary point of Z with exactly two
antipodal outer normals. Proposition 4.1 implies that E γ + determines S̄(Z, ·) � u⊕ uniquely,
as this measure is concentrated on a set without antipodal pairs. Replacing u by −u, we can
define a variable γ −(v) as in (4.1). It satisfies

E γ − = C[S̄(Z, ·) � u�]. (4.3)

An estimation procedure for S̄(Z, ·) is now straightforward if we use known inversion
algorithms from [6] and [12] to find a discrete approximation of a measure from finitely many
(approximate) values of its cosine transform. Here we choose the least squares approach, as it
is more robust against measurement errors than the linear program approach. To ease presen-
tation, we restrict considerations to two-dimensional vertical sections in R

3 and assume that
Z = cl int Z. An extension to k-dimensional vertical sections for not necessarily topologically
regular sets Z ⊂ R

d is straightforward, as long as 2 ≤ k ≤ d − 1.

(a) Choose a reference direction u ∈ S2 such that S̄(Z, ·) � u◦ = o; see the comments after
Corollary 3.1.
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(b) Choose m ∈ N vertical planes L1, . . . , Lm ∈ L3
2(u), and consider independent realiza-

tions of the intersections Z ∩ Li, i = 1, . . . , m.

(c) In each Li choose n ∈ N test directions vi1, . . . , vin ∈ S1(Li) and determine the counts
γ −(vij ) and γ +(vij ) of directed boundary points of Z∩Li in unit intervals j = 1, . . . , n

and i = 1, . . . , m. Define the mn-dimensional vectors of observations


− := (γ −(vij ))ij and 
+ := (γ +(vij ))ij .

According to (4.2) and (4.3), these vectors are unbiased estimators for

([C(S̄(Z, ·) � u�)](vij ))ij and ([C(S̄(Z, ·) � u⊕)](vij ))ij ,

respectively.

(d) For µ ∈ M+, set µ� := µ � u� and

C−(µ) := (Cµ�(vij ))ij ∈ R
mn,

and define C+(µ) analogously. Find solutions µ̂−
m,n and µ̂+

m,n of the optimization
problems

minimize ‖C−(µ) − 
−‖ subject to µ ∈ M+ being even (4.4)

and

minimize ‖C+(µ) − 
+‖ subject to µ ∈ M+ being even, (4.5)

respectively. As these solutions are even measures whose cosine transforms best fit the
measurements (in the least squares sense), they can be considered as estimators for the
even parts of S̄(Z, ·) � u� and S̄(Z, ·) � u⊕, respectively.

(e) The measure
µ̂m,n = 2((µ̂−

m,n � u�) + (µ̂+
m,n � u⊕)) (4.6)

is an estimator for S̄(Z, ·).
The infinite-dimensional least squares problems (4.4) and (4.5) can be discretized in a loss-

free way; see, e.g. [6]. This means that among all the solutions of (4.4) (and similarly among
those of (4.5)) there exists one with support in a finite set T of prescribed directions, where
T depends only on the measurement directions vij . This allows us to replace (4.4) and (4.5)
by quadratic programs with nonnegativity constraints. The latter can then be solved using
standard software. Note that the resulting estimator µ̂m,n in (4.6) is not necessarily a mean
normal measure of some stationary random set, as its centroid need not coincide with the origin.
Asymptotically, however, µ̂m,n converges to the mean normal measure of Z if the number of
test directions vij increases and these directions are chosen properly. To make this strong
consistency result precise, we impose a condition on vij , which is slightly stronger than the
denseness of the symmetrized sequence in S2. Following [12, p. 14], the sequence

(vij )ij = (v11, . . . , v1n, v21, . . . , v2n, . . . )
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is called asymptotically dense in S2 if

lim inf
k→∞

1

k
card(Fk ∩ G) > 0

for all origin-symmetric open sets G �= ∅ in S2. Here Fk is the set of the first k members
of (vij ). Gardner et al. [6] discussed related notions.

Theorem 4.1. Let Z be a stationary random set in S with Z = cl int Z, and let

E[N(Z ∩ K)]2 < ∞ (4.7)

for one (and hence all) convex body K with interior points. Assume that (vij )ij is an asymp-
totically dense sequence in S2 and that n is fixed. Then, almost surely, the weak convergence

lim
m→∞ µ̂m,n = S̄(Z, ·)

holds.

Proof. Owing to (4.6), it is enough to show that µ+
m,n converges weakly and almost surely

to the even part ν+ of S̄(Z, ·) � u⊕ (and the corresponding result for µ−
m,n, which follows by

replacing u by −u). Note that (4.2) reads as E γ + = Cν+ with this notation. The convergence
claim is shown in several steps.

(i) The total masses µ+
m,n(S

2) of µ+
m,n are almost surely uniformly bounded.

(ii) Let τm denote the sequence of even probability measures

τm := 1

2mn

m∑
i=1

n∑
j=1

(δvij
+ δ−vij

),

and let m′ be a subsequence of m such that τm′ converges weakly to a measure τ , say.
Then, almost surely,

1

n

n∑
i=1

lim
m→∞

1

m′
m′∑
i=1

f (vij )γ
+
ij =

∫
S2

(Cν+)f dτ

for any even continuous function f on the sphere.

(iii) If (m′) is a subsequence of (m) such that a realization of µ+
m′,n converges weakly to µ+

and τm′ to τ , then

1

n

n∑
i=1

lim
m→∞

m′∑
i=1

(Cµ+
m′,n)(vij )γ

+
ij =

∫
S2

(Cµ+)(Cν+) dτ.

(iv) Excluding a zero measure set, we know that any accumulation point of µ+
m,n is ν+.

(v) Almost surely, µ+
m,n converges weakly to ν+.
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We start by showing step (ii) and writing ‖f ‖∞ for the maximum norm of f . Consider the
independent random variables

Xj := 1

n

n∑
i=1

f (vij )γ
+
ij .

Their variance can be bounded by

var(Xj ) ≤ ‖f ‖2∞
n2 E

( n∑
i=1

γ +
ij

)2

≤ ‖f ‖2∞
n

max
i=1

E(γ +
ij )2.

Here γ +
ij counts (certain) boundary points of Z in a unit line segment s, say. Assuming general

position, a convex set can have at most two boundary points in s, so γ +
ij ≤ 2N(Z ∩ s) and

stationarity implies that
E(γ +

ij )2 ≤ 4 E(N(Z ∩ 1
2B3))2.

By (4.7), the Kolmogorov criterion
∑∞

j=1 var(Xj )/j
2 < ∞ is satisfied and (Xj ) obeys the

strong law of large numbers. The zero measure set to be excluded in the strong law of large
numbers can be chosen independent of f , as the Banach space of continuous functions on S2

is separable.
Step (iii) follows from step (ii), as the weak convergence of µ+

m′′,n to µ+ implies uniform
convergence of the corresponding cosine transforms; see, e.g. [23, Theorem 1.8.12].

To show step (i), we use the fact that µ+
m,n is a solution of (4.5). It therefore yields a better

objective function value than the zero measure, so

‖C(µ+
m,n) − 
+‖2 ≤ ‖
+‖2.

Let cij = C(µ+
m,n)(vij ) be the components of C+(µ+

m,n). The Cauchy–Schwarz inequality
yields

1

mn

∑
ij

cij ≤ (mn)−1/2‖C+(µ+
m,n)‖ ≤

(
2

mn

∑
ij

cij γ
+
ij

)1/2

. (4.8)

As vij is asymptotically dense, there exists a constant c > 0 such that

1

c
≤ 1

mn

∑
ij

|〈vij , ·〉|

holds on S2 for all sufficiently large m. The left-hand side of (4.8) is therefore bounded from
below by µ+

m,n(S
2)/c. As |〈vij , ·〉| ≤ 1, the right-hand side of (4.8) can be estimated from

above, and we obtain

µ+
m,n(S

2) ≤ 2c2

mn

∑
ij

γ +
ij .

Again, the strong law of large numbers implies that the right-hand side of the last inequality is
almost surely bounded.

To show step (iv), we fix a realization such that µ+
m,n(S

2) is bounded. Owing to step (i),
this holds for almost all realizations. Let µ+ denote an arbitrary accumulation point of this
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sequence and assume that µ+
m′,n converges to it. Extracting a subsequence m′′ of m′, we may

assume that τm′′ → τ .
By the definition of µ+

m′,n, no even measure in M+ can yield a better objective function
value than µ+

m′,n in (4.5). In particular, comparison with ν+ yields

‖C(µ+
m,n) − 
+‖2 ≤ ‖C(ν+) − 
+‖2.

This gives

1

m′′n
(‖C(µ+

m′′,n)‖2 − ‖C(ν+)‖2) ≤ 2

m′′n
∑
ij

((Cµ+
m′′,n)(vij ) − Cν+(vij ))γ

+
ij .

In view of steps (ii) and (iii), letting m tend to ∞ implies that
∫

S2
(Cµ+ − Cν+)2 dτ ≤ 0.

As (vij ) is asymptotically dense in S2, the support of τ is S2, and thus Cµ+ −Cν+ = 0 on S2.
The two measures involved are even and, therefore, uniquely determined by their cosine
transforms, which gives µ+ = ν+, as required.

Finally, step (v) follows from the fact that a set of uniformly bounded measures is relatively
compact in the weak topology. Hence, the convergence of µ+

m,n to ν+ is equivalent to the fact
that ν+ is the only accumulation point of µ+

m,n. The latter was shown in step (iv).

The proof of Theorem 4.1 follows the approach introduced by Männle [16], who showed the
consistency of a least squares estimator of a measure from cosine transforms under stochastic
independence of the measurements. In general, independence of the sequence γ +

ij can be assured
only if each of the counts is obtained from an independent realization of Z—a sampling scheme,
which is not realistic in practice. If long-range dependence in Z is not present or negligible
(as in the example of a Boolean model of convex grains with uniformly bounded diameter),
this independence can (under ergodicity assumptions, approximately) be assured by placing
the test line segments W in the definition of γ + far enough apart. We mention that the above
convergence result can also be derived under stronger (but somewhat unrealistic) assumptions
from [6, Section 9]. The speed of convergence result, also shown there, cannot be transferred
directly to the present situation, as the restriction of measures in (4.6) is not a Lipschitz mapping
in the Prohorov metric. Our last result shows that the requirements in Theorem 4.1 are in
particular satisfied when u, L1, L2, . . . , and the test directions are randomized. With this in
mind, we denote the unique normalized Haar measure on L3

2(u) by νu
2 .

Corollary 4.1. Let Z be a stationary random set in S with Z = cl int Z such that (4.7) holds.
Assume that n ∈ N is fixed and that

(a) u ∈ S2 is a random isotropic reference direction in S2 independent of Z,

(b) given u, the planes L1, L2, . . . are independent and identically distributed (i.i.d.) in
L3

2(u) with distribution νu
2 independent of Z,

(c) given u and L1, L2, . . . , for each i = 1, 2, . . . , the directions vi1, . . . , vin are i.i.d.
isotropic random vectors in S1(Li) independent of Z.

Then, almost surely, µ̂m,n converges weakly to S̄(Z, ·) as m tends to ∞.

https://doi.org/10.1239/aap/1208358885 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358885


Estimation of the mean normal measure SGSA • 47

Proof. In view of Theorem 4.1 it remains to show that the (random) sequence vij is almost
surely asymptotically dense in S2. Given u, the distribution of v11 is up to a normalizing
constant the measure ∫

S2
1w∈·(1 − 〈u, w〉2)−1/2 dw,

which has S2 as its support. The strong law of large numbers now shows that (vij ) is almost
surely asymptotically dense.
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