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ON THE MINIMAL CROSSING NUMBER 
AND THE BRAID INDEX OF LINKS 

YOSHIYUKIOHYAMA 

ABSTRACT. In this paper we prove an inequality that involves the minimal crossing 
number and the braid index of links by estimating Murasugi and Przytycki's index for 
a planar bipartite graph. 

1. Introduction. This paper is concerned with classical links, that is, closed 1-
manifolds embedded piecewise-linearly in the oriented 3-sphere S3. Every oriented link 
L in S3 is represented as a closed braid with a finite number of strings[l]. The braid 
index of L, denoted by fr(L), is defined as the minimal number of strings needed for L. 
Yamada[ 10] proves that the number of Seifert circles, denoted by 5(D), of a link diagram 
D of L is more than or equal to the braid index of L. Moreover, Murasugi and Przyty-
cki[8] determine the deficit S(D) — b(L) for some kind of links by making use of a new 
concept, called an index of a graph. In this paper, we prove the following theorem by 
making use of Murasugi and Przytycki's results. 

THEOREM 3.8. Let Lbe a nonsplit link and c(L) the minimal crossing number ofL, 
that is, the minimal number of double points among all projections ofL, then we have 

c(L)>2{b(L)-l}. 

In [4], Fox conjectured an inequality that involves the bridge index and the mini
mal crossing number of a knot. In §4, we prove Fox's conjecture for a certain kind of 
special alternating links by using the braid index ofL. We refer to Berge[2], Burde and 
Zieschang[3] and Rolfsen[9] for standard definitions and results in graph theory and knot 
theory. The author would like to express his appreciation to the referees for their valuable 
suggestions. 

2. Definitions and results. Throughout this paper what is meant by a graph is fre
quently a geometric realization of a graph as a finite 1-dimensional CW-complex in R3. 
A vertex and an edge correspond to a 0-simplex and a 1-simplex, respectively. 

A graph G is said to be separable if there are two subgraphs H and K such that G = 
HUK mdHHK = {VQ}, where H and Kboth have at least one edge and VQ is a vertex. 
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Otherwise G is nonseparable. The vertex vo is called a cut vertex. A block is a maximal 
nonseparable connected subgraph of G. A connected graph is decomposed into finitely 
many blocks. If G\, G2,. . . , Gk are blocks of G, we write G = G\ * G2 * • • • * Gk and G 
is called the block sum of G\, G2,. . . , G .̂ 

If two or more than two edges have the same ends, these edges are called multiple-
edges. On the other hand, if two distinct vertices are joined by exactly one edge e, then 
e is called a singular edge of G. 

A cut edge of G is an edge whose removal increases the number of connected com
ponents. 

For a vertex v, star v denotes the smallest subgraph of G that contains all edges and 
vertices of G which are incident to v. If X is a connected subgraph of G, then G/X is 
defined as the graph obtained from G by identifying all points in X to one point. 

The valency of a vertex v, val(v), is the number of edges incident to v. 
Murasugi and Przytycki[8] define a new concept called 'an index of a graph' and 

prove Theorem 2.2 below. 

DEFINITION 2.1 ([8] DEFINITION 2.1). Let G be a graph. 

(1) A family F = {e\, ej,..., e*} of edges of G is said to be independent if (i) all ej 
(j = 1,2, ...,&) are singular and (ii) there is an edge e, in F and a vertex v, one of the 
ends of et, such that {e\,..., et-\, e l + i , . . . , ek} is independent in the graph Gj star v. We 
assume that the empty set of edges is independent. 

(2) ind(G) is defined to be the maximal number of independent edges in G. 

THEOREM 2.2 ([8] THEOREM 2.4). Let G be a bipartite graph. If G consists of blocks 
Gi,G2,... ,Gjt then 

k 

ind(G) = £ind(G;). 
1=1 

By \E(G)\ and | V(G)|, we denote the number of egdes and vertices in G, respectively. 
In §3, we prove the following theorem. 

THEOREM 3.7. Let G be a connected, planar, bipartite graph without a cut edge, 
then 

| £ ( G ) | > 2 { | V ( G ) | - i n d ( G ) - l } . 

Let L be a link and D a diagram of L. If we split D at each crossing of D according to 
the orientation of D, then D is decomposed into finitely many simple closed curves on a 
plane, called Seifert circles of D. Let S(D) be the number of Seifert circles of D and c(D) 
the number of crossings in D. The Seifert graph T(D) (associated with D) is a graph with 
S(D) vertices vi, V2,..., vs(D) and c(D) edges e\, e^,..., ec^o)- Each vertex corresponds to 
a Seifert circle and each edge corresponds to a crossing. Two distinct vertices v{ and v7 

are connected by e^ if two Seifert circles 5/ and 57(corresponding to v, and v7) are joined 
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by a crossing ck (corresponding to ek). Therefore the Seifert graph is a planar bipartite 
graph and \E(T(D))\ = c(D), |v(r(D))| = S(D). The graph in Figure 2-1 is the Seifert 
graph of the figure eight knot. 

FIGURE 2-1 

DEFINITION 2.3 ([8] DEFINITION 7.1). For an oriented diagram D of an oriented link 
L, we define 

ind(D) = indr(D). 

From Definition 2.3, we see immediately that Theorem 3.7 is equivalent to the fol
lowing: 

THEOREM 3.7 A. IfD is a diagram of a link L with no nugatory crossings, where a 
nugatory crossing is a removable crossing as is shown in Figure 2-2, then 

c(D) > 2{S(D) - ind(D) - 1}. 

FIGURE 2-2 

Murasugi and Przytycki[8] show the following theorem by making use of Yamada's 
result [10]. 

THEOREM 2.4 ([8] LEMMA 8.6). For any diagram D of a link L, 

b(L) < S(D) - ind(D). 
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3. Proofs. Let T be a connected planar bipartite graph without a cut vertex or a cut 
edge. Obviously T has no loops. We call a vertex v as is shown in Figure 3-1 a stump of 
order n where n is the valency of v. A vertex v with val(v) = 3 in Figure 3-2(a) and (b) 
will be called a vertex of type (3.1) and type (3.2), respectively. 

FIGURE 3-1 

(a) (b) 

FIGURE 3-2 

We define the following operations for a planar graph G without a loop and a cut edge. 

OPERATION A. For a graph G, if there is a vertex v with val(v) = 2 as is shown in 
Figure 3-3 or of type (3.1), we form the quotient graph Gj star v and whenever stumps 
occur in G/ star v delete these stumps and edges incident to them. 

/ \ 

FIGURE 3-3 

OPERATION B. (1) For a graph G without a vertex whose valency is two or of type 
(3.1), if there is a vertex v of type (3.2) we form the quotient graph G' — Gj star v. (2) If 
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a vertex v of type (3.1) occurs in G', we form the graph G" — G'/ star v. (3) If a vertex 
v of type (3.1) ocuurs in G", we form the graph G"/ star v. 

First we perform Operation A on T repeatedly till all vertices with valencies two or 
of type (3.1) vanish. We obtain a sequence of graphs T = To,Tj, . . . , T/ where T/ is 
obtained from r,-_i by Operation A. T/ does not contain a vertex v with val(v) = 2 or of 
type (3.1). 

Next we perform Operation B on Tt repeatedly till all vertices of type (3.2) or of 
type (3.1) vanish. Then we obtain a sequence of graphs T/ = 1^, Fj,..., rj" l+m2, where 
m\ is the number of times we perform Operation B(l) and W2 is the total number of times 
we perform Operation B(2) and B(3). In rp + m 2 , a vertex with valency three is the stump 
of order 3 that are created by Operation B. 

Now we perform Operation A / times. Let/7 be the number of deleted stumps in Oper
ation A. And let s\ and s2 be the numbers of stumps of order 3 which occur in Operation 
B(l), and B(2) or B(3), respectively. 

The following Proposition 3.1 is immediate from Définition 2.1. 

PROPOSITION 3.1. 

ind(r) > / + mi +m2-

When we perform Operation A, the number of edges decreases by two or three and the 
number of vertices decreases by two. The order of deleted stumps created in Operation 
A is at least two. When we perform Operation B, the number of edges decreases by three 
and the number of vertices decreases by three and two depending to Operation B( 1), and 
B(2) or B(3). Therefore we can estimate the numbers of edges and vertices in rp+m2 as 
follows. 

PROPOSITION 3.2. 

|£(rm1+m2)| < | £ ( r ) | _ 2/ — 2/7 — 3mi - 3m2, 

|V(rm1+m2)| = | v ( D | - 2 / - p - 3 m i -2m 2 . 

Let g(G) = EveV(G),vai(v)>4{val(v) — 4} for a graph G. Then we prove the following. 

LEMMA 3.3. 

PROOF. Let/*; = gfPj) — g(Prl) (i = 1,2,..., mi +m2). By vuv2 and v3, we denote 
the vertices which are incident to the vertex v of type (3.2) and they are identified to v'. 
Suppose that Y\ is obtained from T\~x by Operation B(l). Then to estimate /i/, it is enough 
to consider the following four cases. 

https://doi.org/10.4153/CJM-1993-007-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-007-x


122 YOSHIYUKI OHYAMA 

CASE 1. val(v,-) > 4 (i = 1,2,3). Let val(v,) = 4 + /,- (/ =1 ,2 ,3) , then we have 

giV^-giVr1) = {va l (v , ) -4}-^{val (v / ) -4} = (9+r1+r2+r3)-4-(r1+r2+r3) = 5. 
i=\ 

CASE 2. val(vi) = 3, val(v,-) > 4 (/ = 2,3). Then g(r|) - g(r\-1) = 4. 

CASE 3. val(vi) = val(v2) = 3, val(v3) > 4. Then g(Fz) - gat" 1 ) = 3. 

CASE 4. val(v,-) = 3 (i = 1,2,3). Then g(rj) - gCrp1) = 2. 
Therefore we have 

(3-D hi = g(Tii)-g(rrl)>2. 

Moreover we consider the case where stumps of order 3 occur after Operation B(l). 
When we perform Operation B on G = Vfl, since G has no vertex with valency two 
the orders of stumps in G' — T\ are at least three. If a stump of order 3 occurs in G\ 
then G has either the subgraph as is shown in Figure 3-4 (a) or (b). However, since G in 
Operation B(l) has no vertex of type (3.1), we only need to consider a graph G in Figure 
3-4 (b). 

(a) (b) 

FIGURE 3-4 

If the valency of each v, (i — 1,2,3) is three, two of these v; are joined with an edge 
and the third vertex is incident to a cut edge in G as is shown in Figure 3-5 since G is 
planar. 

vi 

v 3 Y 

A 
FIGURE 3-5 

Since T has no cut edges and cut edges cannot be created by Operation A or B, a graph 
G has no cut edges. Therefore the valency of one of v, (/ = 1,2,3) is more than three. 
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Namely, Case 4 cannot occur when stumps of order 3 occur after Operation B(l). If two 
stumps of order 3 are created by Operation B(l) a graph G has the subgraph as is shown 
in Figure 3-6 which is nonplanar. Therefore at most one stump of order 3 can be created 
by Operation B(l). 

FIGURE 3-6 

Then we have by Case 1, 2 and 3 

(3-2) ^(r;)-g(rr1)>3. 

When rj is obtained by Operation B(2) or B(3), the value g(rj) does not decrease. Since 
g(T) > 0, it follows from (3-1) and (3-2) 

g(T7l+m2) > 2(#m - J I ) + 3*I = 2m! + *,. 

This completes the proof of Lemma 3.3. 

Next we estimate the number of stumps of order 3 that are created by Operation B(2) 
andB(3). 

LEMMA 3.4. 

2rri2 > si-

PROOF. The graph G' which is obtained by Operation B(l) is decomposed into 
finitely many blocks. It is enough to consider one of these blocks H which contains a ver
tex of type (3.1), since Operation B(2) and B(3) have no influence on the other blocks. 
Operation B cannot decrease the valency of any vertex. A vertex of type (3.1) which 
are created by Operation B(l) is obtained from a vertex of type (3.2) by identifying two 
vertices incident to the vertex of type (3.2) as is shown in Figure 3-7. 

Therefore all the vertices of type (3.1) which are created by Operation B(l) are con
nected to the identified vertex v' by multiple edges in G' depicted in Figure 3-8. 

If four vertices of type (3.1) occur in the block //, then H has the subdivision of the 
graph in Figure 3-9. 

Using the inverse operation as is shown in Figure 3-7, we consider a graph G before 
Operation B(l). G has the subdivision of one of four graphs in Figure 3-10. None of these 
four graphs is planar. Therefore at most three vertices of type (3.1) occur in H. 
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FIGURE 3-7 

FIGURE 3-: 

FIGURE 3-9 

Next we consider the number of vertices of type (3.1) which are created by Oper
ation B(2) and B(3). When we perform Operation B(2) or B(3) at a vertex v of type 
(3.1) once, the block H' which contains the vertex v may be decomposed into the blocks 
H\,H'2,... ,H'q some of which contain vertices of type (3.1). A vertex of type (3.1) which 
are created by Operation B(2) or B(3) is obtained from a vertex of type (3.2) as is shown 
in Figure 3-11. In each block / / • ( /= 1,2,..., q), at most two vertices of type (3.1) occur. 
In fact if three vertices of type (3.1) occur in the block / / j , then H' has the subdivision of 

iph in Figure 3-12 which is nonplanar. 
Let m be the number of times we perform Operation B(2) or B(3) on the block H till 

all vertices of type (3.1) vanish, and s the number of stumps of order 3 that are created by 
Operation B(2) and B(3) on the block H. After Operation B(2) and B(3) on the block //, 
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(b) 

(d) 

FIGURE 3-10 

FIGURE 3-11 

FIGURE 3-12 

finally H is decomposed into k blocks H\, H^,..., Hk. In each block / / / ( / = 1,2,..., &), 
no vertex of type (3.1) are created by the last operation. Therefore if V3 denotes the 
number of vertices of type (3.1) that are in the block H and are created by Operation 
B(2) and B(3) on the block H, we have 

(3-3) V3 <3 + 2m + 2(k- \)-2k = 2m+\. 
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All vertices of type (3.1) are identified with one vertex or become to stumps of order 3 
in Operation B(2) or B(3). Since we perform Operation B(2) and B(3) m times, we have 
by (3-3) 

s <2m+ I — m = m + 1 < 2m. 

This completes the proof of Lemma 3.4. 

LEMMA 3.5. 

|£(I7>^)| > 2{ |V(r™)| - 1} + mx - \s2. 

PROOF. First we consider the case where we cannot perform Operation B, that is, 
m\ — m2 — s\ ~ s2 = 0. It is divided into two cases whether there is a vertex whose 
valency is less than four or not. If the graph T/ has no edges, since T/ is connected, T/ 
has only one vertex. If T/ has a vertex with valency two, since there is not a vertex in 
Figure 3-3 or a stump of order n in Th T/ is the graph as is shown in Figure 3-13 (a). 
Similarly if T/ has a vertex with valency three, T/ is the graph as is shown in Figure 3-13 
(b). Therefore we have 

|£(r /)|>2{|v(r /)|-i}. 

o t 
(a) (b) 

FIGURE 3-13 

If there is not a vertex whose valency is less than four, then we have 

|£(r/)| = l £ vai(v) > ^|v(r/)| - 2|v(rz)|, 
1 ver, l 

where we prove Lemma 3.5. 
Next we consider the case m\ > 1. Let k^ and k^ be respectively the numbers of 

vertices in rp + m 2 whose valencies are equal to three and more than three, then we have 

(3-4) | £ ( r 7 ' ^ ) | = i{3fc3+ E val(v)). 
1 ver71+m2,val(v)>4 

Since the graph r^l+W2 has no vertex of type (3.1) and (3.2), a vertex with valency three 
is a stump of order 3. Thus we have 

(3-5) &3 = S\ +52-

By Lemma 3.3, it follows that 

g(r^2)>2ml+su 
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and hence 
J2 {val(v)-4}>2wii+Ji . 

verp+w,2,val(v)>4 

We have now 

(3-6) X) va l<» ^ 4k* + 2 m i + •*! • 
vGr"1+m2,val(v)>4 

From (3-4), (3-5) and (3-6), we see 

|£071+m2)| > I{3(^ +s2) + 4£4 + 2m1 + J l } - l(si +s2 + k4) + mi - ^s2 

= 2(h +k4) + mi - l-s2 = 2\V(IJ^)\ +/ni - ^ 2 . 

This completes the proof of Lemma 3.5. 

LEMMA 3.6. 

| £ ( n | > 2 { | V ( 0 | - i n d ( n - l } -

PROOF. By Proposition 3.2 and Lemma 3.5, we have 

|£(H| -2l-2p-3mi -3m2 > 2{\V(T)\ - 21-p - 3mx -2m2-\} + mx - -s2, 

and thus 

\E(T)\ > 2{\V(T)\ -l-m{-m2-l} + m2- ±j2 . 

From Proposition 3.1 and Lemma 3.4, it follows 

|^(r) | > 2{| V(D| - ind(D - 1}. 

THEOREM 3.7. Let G be a connected, planar, bipartite graph without a cut edge, 
then 

| £ (G) |>2{ |V(G) | - ind(G) - l} . 

PROOF. Let G be the block sum of G\, G2 , . . . , Gn, then we have 

(3-7) \E(G)\ = £ \E(Gt)\, \V(G)\ = £ | V(G,-)| - (n - 1). 
i=i /=i 

From Theorem 2.2, it follows 

(3-8) ind(G) = £ ind(G/). 
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By Lemma 3.6, we have 

(3-9) \E(Gi)\ > 2{\V(Gi)\ - ind(G/) - 1}. 

By (3-7), (3-8) and (3-9), we have 

\E(G)\ = £ \E(Gt)\ > 2 J è |V(Gt)\ ~ ÊincKG/) - n\ 

= 2 ( £ I V(G,-)| - (H - 1) - X>d(G,) - 1 ) - 2{| V(G)| - ind(G) - 1}. 

This completes the proof of Theorem 3.7. 

Theorem 3.7 is rewritten to the following theorem in terms of a link diagram. 

THEOREM 3.7 A. IfD is a diagram of a link L with no nugatory crossings, then 

c ( D ) > 2 { S ( D ) - i n d ( D ) - l } . 

Let D be a minimal crossing diagram of a link L, then c(D) is equal to the minimal 
crossing number of L. Therefore by Theorem 2.4 and Theorem 3.7A, we obtain Theorem 
3.8. 

THEOREM 3.8. Let Lbe a nonsplit link, c(L) the minimal crossing number ofL and 
b{L) the braid index ofLy then we have 

c(L)>2{b(L)-l}. 

REMARK. Of all prime knots up to 10 crossings, equality in Theorem 3.8 holds for 
each of the following knots; 4i,6i, 8i, 83, 812, 10i, 103, 10i3, IO35, 1058. 

4. On Fox's conjecture. In 1950, R. H. Fox conjectured an estimate of the bridge 
index, denoted by bg(AT), in terms of the minimal crossing number c(K) for a knot, and 
Murasugi[6] proposes the following conjecture for a /x(L) components link. If /x(L) = 1, 
that is reduced to Fox's conjecture. 

CONJECTURE. Let \i{L) be the number of components of L. Then for any nonsplit 
link L, 

(4-1) 3{bg(L) - 1} < c(L) + fi(L) - 1. 

Murasugi shows that (4-1) holds for alternating algebraic links. In this section we 
prove the conjecture for a certain kind of special alternating links by making use of their 
braid indices. 

Let L be a special alternating link, D a reduced special alternating diagram of L and 
r the Seifert graph of D. A special diagram is said to be nice if a disk in R2 bounded by 
a 2-cycle c — {vo, e\, vi, ̂ 2, vo} in T has only edges connecting two vertices vo and vi. 
By the following lemma, we may assume that any special diagram is always nice. 
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LEMMA 4.1 ([8] LEMMA 10.2). Any special diagram can be transformed into a nice 
special diagram by an ambient isotopy of a link. 

We defined the Seifert graph using a reduced special alternating diagram D. Con
versely given a Seifert graph T, we can construct a special alternating diagram D of a 
link L. For convenience, L will be called the link associated with T and it will be denoted 
by l(T). Precisely speaking, two different links l(T) can be associated with T, however 
one is the mirror image of the other. Since we are only concerned about c(L) and bg(L), 
this ambiguity will not cause any confusion. 

We define the order of multiplicity for a reduced special alternating diagram D. 

DEFINITION 4.2. Let T be the Seifert graph of a special alternating diagram D, and 
r ' the graph obtained from T by deleting all singular edges. The order of multiplicity of 
D, A(D), is the number of components of T'. 

THEOREM 4.3. If a link L has a reduced special alternating diagram D with X(D)=1 
or 2, then we have 

(4-2) 3{b(L) - 1} < c(L) + /z(L) - 1, 

where b(L) is the braid index ofL. 

Since the bridge index bg(L) is equal to or less than the braid index b(L), we have the 
following corollary. 

COROLLARY 4.4. If a link L has a reduced special alternating diagram D with 
X(D)=I or 2, then we have 

3{bg(L)- l}<c(L) + jx (£ ) - l . 

PROOF OF THEOREM 4.3. At first we show that (4-2) holds for the case A=l. Let T 
be a spanning tree of V and T' the graph obtained from T by making all edges double as 
is shown in Figure 4-1. 

1 è—• 
• 4 

r r 
FIGURE 4-1 

Since T' is the subgraph of Y which contains all vertices in T, we have 

(4-3) \E(T')\ = 2{\V(T')\ - 1} = 2{|V(D| - 1}. 
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Since T is obtained from Tf by adding some edges, l(T) is obtained from l(T') by adding 
some crossing points. Every time that we add an edge to T', the number of components 
of l(T') increases or decreases by exactly one. Since /x(/(r')) = |V(r')| > / i ( / (0) , we 
must add at least /x(/(r')) — /i(/(0) edges. Therefore we have 

(4-4) \E(T)\ > \E(T')\ + fi(l(T')) - M( / (0) = \E(Tf)\ + \V(T)\ - //(/(D). 

From (4-3) and (4-4), it follows 

\EÇT)\ > 2{\V(D\ - 1}+ |V(D| " M ( / ( H ) 

= 3{|v(ni-i} + i- / i( /(n). 
Since D is a reduced alternating diagram of L, |£(F)| = c(L) by Murasugi[5] and 
| V(T)\ = S(D) > fc(£). Therefore we have 

c ( L ) > 3 { 6 a ) - l } + l -M(L). 

Next we show (4-2) for the case A = 2. Let V be the disjoint union of T[ and T'2. As we 
did above, we form the subgraph T[ and T'2 of r j and T'2, respectively. Then we have 

(4-6) | £ ( r ; ) | = 2 { | V ( r ; ) | - l } (1=1,2), 

(4-7) | £ ( 0 | > \E{T[)\ + \E(Tf
2)\ + ^i{l(T[ U T'2)) - /x(/(0). 

From (4-6) and (4-7), it follows 

\E(T)\ > 2{\V(T[)\ - 1} + 2{|V(7^)| - 1} + |V(7V
1)| + \V(T'2)\ - /i(/(D) 

= 3{|V(r|)| + |V(7v
2)|-2} + 2 - / i ( / ( n ) . 

Since T has a singular edge, ind(0 > 1 and since \V(T[)\ + \V(T'2)\ = \V(T)\ = S(D), 
we have 

(4-9) | V(T[)\ + | V(T'2)\ - 1 > S(D) - ind(D. 

By (4-8) and (4-9), we have 

\E(T)\ > 3{S(D) - ind(0 - 1} + 2 - //(/(D). 

By Theorem 2.4, we finally obtain 

c(L) >3{b(L)- l} + l - /x(L) . 

This completes the proof of Theorem 4.3. 
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