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Abstract Palmer has shown that those hermitians in the weak-star operator closure of a commutative
C∗-algebra represented on a dual Banach space X that are known to commute with the initial C∗-algebra
form the real part of a weakly closed C∗-algebra on X. Relying on a result of Murphy, it is shown in
this paper that this last proviso may be dropped, and that the weak-star closure is even a W ∗-algebra.

When the dual Banach space X is separable, one can prove a similar result for C∗-equivalent algebras,
via a ‘separable patch’ completion theorem for Boolean algebras of projections on such spaces.
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1. Introduction

The closure in the weak operator topology of a C∗-algebra on X (see § 3 for the definition)
is again a C∗-algebra, both in the commutative case and when the unit ball is relatively
compact in the weak operator topology (see, for example, [18,20]).

If the underlying space is a dual space, one may wonder about the closure in the weak-
star, the σ(X, ′X), operator topology. This is a more delicate problem: multiplication is
not right continuous for this topology. Nevertheless, for commutative algebras, Palmer
[18] established that those hermitians in the weak operator closure that are known to
commute with the initial C∗-algebra also form the real part of a C∗-algebra on X.

Reconciling the two order relations on hermitian projections (see Theorem 2.8) and
using a result of Murphy [17] (see Theorem 2.5) allows one to drop this last proviso and
then to show that the weak-star closure is even a W ∗-algebra [22].

Further, we develop results on the closures of C∗-equivalent-algebras (C∗-algebras that
are represented, though not isometrically, in an L(X)) on duals of separable Banach
spaces. To do this we prove a ‘separable patch’ completion theorem for Boolean algebras
of projections on such spaces (Theorem 8.1).
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2. Terminology and prerequisites

We follow the standard notation and sketch only a few salient details, referring the reader
to [5–7], for example, for a full exposition and other references.

In particular, A1 will denote the unit ball of a subset A of a normed space, and 〈x, x′〉
will denote the value of the functional x′ in X ′ at x in X. Then iX : x �→ x̂ will denote
the natural injection of a space X into its second dual X ′′.

Associated with the weak topology σ(X, X ′) and the weak-star topology σ(X, ′X)
(when X is the dual of ′X) are the operator topologies they induce on L(X), namely the
weak operator topologies of pointwise convergence in σ(X, X ′) and σ(X, ′X).

Thus, when D is a subset of L(X), the weak (operator) closure D̄σ(X,X′) is the closure
of D in the σ(X, X ′)-operator topology, while when X is the dual of ′X, the weak-star
(operator) closure D̄σ(X,′X) is the closure of D in the σ(X, ′X)-operator topology.

The bounded weak-star (operator) topology is the strongest topology agreeing with the
weak-star (operator) topology on every weak-star compact set.

A set is relatively weakly compact if its weak operator closure is compact in the weak
operator topology.

2.1. Numerical range in Banach algebras

Throughout this section, A will denote a complex unital Banach algebra. The state
space of A is

S(A) = {ϕ ∈ A′ : 〈1, ϕ〉 = 1 = ‖ϕ‖}

and the algebra numerical range of an element a is

V (a) = {〈a, ϕ〉 : ϕ ∈ S(A)}.

The numerical radius |a|v (= |V (a)|) of an element a determines a norm on A equivalent
to the given norm: e−1‖a‖ � |a|v � ‖a‖ for any a.

For any a ∈ A the spectrum of a lies inside the numerical range: σ(a) ⊆ V (A, a).

2.1.1. Hermitian elements of Banach algebras

Definition 2.1. An element h ∈ A is hermitian if its algebra numerical range is real:
equivalently, if ‖eirh‖ = 1 (r ∈ R): equivalently, if ‖1 + ira‖ = 1 + o(r) as r → 0.

Remark 2.2. If h is hermitian, then coσ(h) = V (A, h), where ‘co’ denotes convex
hull.

Theorem 2.3 (Sinclair’s Theorem). ‖h‖ = ρ(h) (the spectral radius of h) for any
hermitian h ∈ A.

Although the Jordan product of two hermitians need not be hermitian (indeed the
square of an hermitian need not be hermitian [8]), nevertheless, we have the following
theorem.

Theorem 2.4. Let h and k be hermitian in A. Then i(hk − kh) is hermitian.
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The next result is the key to finessing the absence of right weak-star operator continuity
for multiplication.

Theorem 2.5 (Murphy [17]). Let A be a complex unital Banach algebra. Let h, k

be hermitians in A such that hk and h2 [or k2] are also hermitian. Then hk = kh.

This was proved by deftly using Theorem 2.4 repeatedly to show that (when h2 is
hermitian)

h(hk − kh) = (hk − kh)h.

Kaplansky conjectured (prompted, apparently, by Jacobson [15, Lemma 2]) that in a
Banach algebra a commutator of two elements which commutes with either of these
elements must be quasi-nilpotent. This conjecture was established, independently, by
Kleinecke [16] and Shirokov [19]. For an accessible exposition see [13, Problem 232].

Since i(hk−kh) is hermitian and quasi-nilpotent it must vanish, by Sinclair’s Theorem;
that is, hk = kh.

2.2. Order

The numerical range order relation on the set of hermitian operators in a Banach
algebra is defined as follows.

Definition 2.6. Given a hermitian element h in the Banach algebra A, we say that
h � 0 if and only if V (A, h) ⊆ R

+, or, equivalently, if and only if σ(h) ⊆ R
+ (see

Remark 2.2).

If h is hermitian, then 0 � h � 1 if and only if σ(h) ⊆ [0, 1]; that is, if and only if h is
positive and ‖h‖ � 1.

2.3. Projections

The natural ordering on projections (idempotents) is that e ⊆ f if and only if ef =
fe = e.

2.3.1. Ordering of hermitian projections

If e is a (non-trivial) hermitian projection, then ‖e‖ = 1 (by Sinclair’s Theorem). Also,
σ(e) ⊆ {0, 1}, so 0 � e � 1 for any hermitian projection e.

Suppose that e and f are two hermitian projections in A and that e ⊆ f ; that is,
e = ef = fe. If χ is a character on the commutative unital subalgebra of A generated by
e, f , then χ(e) = χ(e)χ(f), and both χ(e) and χ(f) are either 0 or 1. Thus, χ(e) � χ(f)
and therefore σ(f − e) � 0, so e � f in the numerical range sense.

In fact, the two orders coincide; see Theorem 2.8. (This was shown for projections on
a strictly convex X in [3, Theorem 2.17].)

Lemma 2.7. Let e be a hermitian projection in A and let h be a positive hermitian
in A with ‖h‖ � 1. If e � h, then e = ehe.
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Proof. Let B = eAe. If φ ∈ S(B), then a �→ 〈eae, φ〉 ∈ S(A). Since 0 � e � h � 1, we
have

〈e, φ〉 = 〈eee, φ〉 � 〈ehe, φ〉 � 〈e1e, φ〉 = 〈e, φ〉,
from which we see that V (B, e − ehe) = {0}, and thus, since |a|v = 0 implies that a = 0,
we have e − ehe = 0 (in B and therefore in A). �

Theorem 2.8. Suppose that e and f are hermitian projections in a Banach algebra
A and that e � f in the numerical range sense. Then e ⊆ f ; that is, ef = fe = e.

Proof. By the preceding lemma we have e = efe. Multiplying out shows that (ef −
fe)3 = 0 from which, by Sinclair’s Theorem, we have ef = fe. �

2.4. Numerical range on a Banach space

When X is a complex Banach space we define

ΠX = {(x, x′) ∈ X × X ′ : 〈x, x′〉 = ‖x‖ = ‖x′‖ = 1}

and the spatial numerical range V (T ) of the operator T to be

V (T ) = {〈Tx, x′〉 : (x, x′) ∈ ΠX}.

It is convenient to write ωx,x′ : T → 〈Tx, x′〉 to denote the state specified by the element
(x, x′) of ΠX and ωΠ = {ωx,x′ : (x, x′) ∈ ΠX} for the set of such states.

2.4.1. Hermitian elements on a Banach space

Definition 2.9. An operator H on X is hermitian if its spatial numerical range is
real: equivalently, if ‖eirH‖ = 1 (r ∈ R): equivalently, if ‖1 + irH‖ = 1 + o(r) as r → 0.

Remark 2.10. Since, for any T ∈ L(X),

V (T ) ⊆ V (L(X), T ) = co V (T )

(see [5, § 9]), we see that H (in L(X)) is hermitian on the space X precisely when
H is hermitian in the Banach algebra L(X). This is also clear from the exponential
characterizations of hermiticity. The set of hermitian operators on X is an R-linear
subspace, closed in the weak and strong operator topologies, and contains IX .

2.4.2. Hermitians on a dual Banach space

Let X be the dual of some other Banach space ′X. (Such a predual of X need not be
unique.)

An operator T on X is defined to be lower hermitian if its lower numerical range

VL(T ) = {〈Tx, ψ〉 : (x, ψ) ∈ ΠL} ⊆ R

is real: here

ΠL = Π′X = {(x, ψ) ∈ X ×′X : 〈x, ψ〉 = ‖x‖ = ‖ψ‖ = 1}.
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Now VL(T ) ⊆ V (T ) ⊆ VL(T ) for any T , as follows from the Bishop–Phelps Theo-
rem [4]. Hence the following result.

Theorem 2.11. H is hermitian if and only if H is lower hermitian. Hence, the set of
hermitians on a dual space X is closed in the σ(X, ′X) operator topology.

3. C∗-algebras on a Banach space

3.1. Vidav–Palmer Theorem

The now classical numerical range characterization of C∗-algebras is as follows.

Theorem 3.1 (Vidav–Palmer Theorem). Let H be the set of hermitian elements
of a complex unital Banach algebra A. If A = H + iH, then A is a C∗-algebra under the
given norm and the natural involution.

By a C∗-algebra on X we mean a unital Banach subalgebra of L(X) which satisfies the
hypotheses of the Vidav–Palmer Theorem, the unit being the identity operator on X.

Any bounded linear functional on an (abstract) C∗-algebra A, (= H + iH), can be
written as a linear combination of states. Hence, if (hα) is a bounded monotone net in
H, then the scalar net (ω(hα)) converges for each bounded linear functional ω on A. In
consequence we can make the following remark.

Remark 3.2. Suppose that A is a C∗-algebra, that Θ : A → L(X) is a bounded
algebra homomorphism, and that (hα) is a bounded monotone net in H. Then the net
(〈Θ(hα), ψ〉) converges for each ψ ∈ X ′. Consequently, if the net (Θ(hα)) has a cluster
point for the operator topology generated by a subfamily Γ of X ′, then there is only one
such cluster point, and it is therefore the Γ -limit of the net.

3.2. Weak closures of C∗-algebras on X

First we recall the main results for C∗-algebras on a Banach space, before moving
on, via renorming and monotone limits for hermitians, to the more subtle problems of
weak-star closures that arise when the underlying space is itself a dual space (see § 7).

Some compactness or commutativity hypothesis seems to be necessary for the weak
operator closure of a C∗-algebra on X again to be a C∗-algebra. Even then it is not clear
whether the weak closure has to be a W ∗-algebra in either the abstract or the spatial
sense. We shall say that A is a spatial W ∗-algebra (on X) if

(i) A is a C∗-algebra on X,

(ii) A is an abstract W ∗-algebra (is a dual Banach space) and

(iii) in addition the states ωΠ are normal (i.e. respect suprema and infima of monotone
nets).
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3.2.1. When A is commutative

The next result is originally due to Palmer [18, Lemma 2.7]; a short proof can be found
in [9].

Lemma 3.3. Suppose that A is a commutative C∗-algebra on X. Then

‖Bx‖ = ‖B∗x‖
for all B ∈ A and x ∈ X.

This lemma allows one to extend the C∗-structure from A to the closure of A in the
strong operator topology, which, by convexity, coincides with Āσ(X,X′); if a net Hα +iKα,
with Hα, Kα hermitian in A, converges in the strong operator topology, then its real and
imaginary parts do so too [21].

Theorem 3.4. Let A be a commutative C∗-algebra on X and let H be the set of
hermitian elements of A. Let H̄σ(X,X′) be the weak operator topology closure of H and
Āσ(X,X′) be the weak operator topology closure of A. Then

Āσ(X,X′) = H̄σ(X,X′) + iH̄σ(X,X′)

so Āσ(X,X′) is a C∗-algebra on X. Moreover, (Āσ(X,X′))1 = Āσ(X,X′)
1 (Kaplansky Density

Theorem).

3.2.2. When A1 is relatively weakly compact

Only bounded sets can be compact, so it is perhaps not surprising that here our result
extends only to the bounded weak operator closure of A, equal to

A˜ =
∞⋃

n=1

nĀσ(X,X′)
1 .

Theorem 3.5. Suppose that A is a C∗-algebra on X and that its unit ball A1 is rel-
atively weakly compact. Then A˜, the closure of A in the bounded weak operator topol-
ogy, is a spatial W ∗-algebra on X and (A˜)1 = Āσ(X,X′)

1 (Kaplansky Density Theorem).
Moreover, any faithful representation of A˜ as a concrete von Neumann algebra is weak
operator bicontinuous on bounded sets.

The proof of the theorem [22] rests on the fact that, by the identity of comparable com-
pact Hausdorff topologies, the weak topology on Aσ(X,X′)

1 is the weak topology induced
by the states ωΠ .

It is not clear whether A˜ is σ(X, X ′)-closed.
Every bounded linear operator from a C∗-algebra into a Banach space not containing

c0 is automatically weakly compact. This theorem goes back to Grothendieck, Bartle–
Dunford–Schwartz and others. See [10, Chapter VI, Notes] for an interesting discussion
of its genesis and development and [23, Theorem 2] for a further generalization to com-
pressible approximate order unit spaces. As a result of this we have the following corollary.

Corollary 3.6. Any C∗-algebra on a space not containing c0 has a bounded weak
closure which is a spatial W ∗-algebra.

This theme has also been treated in [12].
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3.2.3. Commutative and compact

When A is commutative and A1 is relatively weakly compact the weak closure Āσ(X,X′)

is a W ∗-algebra and any faithful representation as a von Neumann algebra is weakly and
strongly continuous on bounded sets. This happens precisely when A is representable by
a spectral measure (see also § 5.3).

4. Renorming of L(X) and X

Any (equivalent) renorming of X induces a renorming of L(X). Conversely, renormings
of certain subfamilies of L(X) can be used to induce renormings of X.

4.1. Renorming by a semigroup

Any bounded semigroup in L(X) effects a renorming of X under which the elements
of the semigroup become contractions.

Indeed, given a bounded semigroup S in L(X) (‖S‖ � KS for some KS), with IX ∈ S,
one can define a new norm | · |S on X, and then on L(X), by

|x|S = sup{‖Sx‖ : S ∈ S}, x ∈ X.

Then
‖x‖ � |x|S � KS‖x‖, x ∈ X

and
|S|S � 1, S ∈ S.

If S is a group, then |S|S = 1 for all S.

4.2. Unitary renorming

Suppose we have a bounded unital isomorphism Θ : A → L(X) from a C∗-algebra
A into L(X), not necessarily an isometry. To distinguish, we shall term such a Θ a
representation of A in L(X), and call A a C∗-equivalent algebra.

Then the group of unitaries U in A maps to a bounded group in L(X) containing IX

and induces a norm
|x|Θ = sup{‖Θ(u)x‖ : u ∈ U}, x ∈ X,

on X equivalent to the original norm. In turn this induces an operator norm | · |Θ on
L(X); and then |eitΘ(h)|Θ = 1 for each hermitian h ∈ H and t ∈ R. Thus, each Θ(h) is
| · |Θ-hermitian, and with this norm Θ(A) is a C∗-algebra on X. Moreover, Θ is then a
∗-isomorphism. The results of § 3.2 then extend to C∗-algebras represented in X.

5. Boolean algebras of projections and renorming

Boolean algebras of projections need not be bounded but when they are they become
hermitian after renorming the underlying space.
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5.1. Boolean algebras of projections

Consider a Boolean algebra of projections E on a complex Banach space X: a family
of projections such that I ∈ E and

E ∈ E =⇒ E2 = E,

E ∈ E =⇒ I − E ∈ E ,

E, F ∈ E =⇒ EF = FE ∈ E .

And E is bounded if every ‖E‖ � KE for some constant KE . The fundamental result here
is that of [2]; see [11, Proposition 5.3] for the current author’s brief proof.

Lemma 5.1. If E is a Boolean algebra of projections on X bounded by KE , then

SE =
{ ⊕

finite

λjEj : |λj | � 1, Ej ∈ E
}

is a bounded multiplicative semigroup of operators on X; here
⊕

denotes a disjoint sum.
Also

‖SE‖ � 4KE .

5.2. Renorming (by) a Boolean algebra of projections

Given a bounded Boolean algebra of projections E on X, use the recipe of § 4.1, applied
to the semigroup SE of Lemma 5.1, to obtain a new norm | · |SE on X (abbreviated to
| · |E), equivalent to the original norm on X, inducing in its turn an operator norm | · |E
on L(X). Then |S|E � 1 for each S ∈ SE .

Since eitE = I − E + eitE ∈ SE for any E ∈ E and t ∈ R we see that |eitE |E � 1 and
therefore each eitE is an | · |E -isometry. Hence, we have the following result.

Theorem 5.2. Any bounded Boolean algebra of projections E is (simultaneously)
hermitian equivalent. Indeed, each E ∈ E is | · |E -hermitian.

Then A (= linC[E ]), the norm closed algebra generated by E , is a C∗-algebra under
the operator norm induced by | · |E , which on A coincides with the spectral norm: that
is, |A|E = ρ(A∗A)1/2.

5.3. Boolean algebras of projections and spectral measures

We write Bo(Λ) for the σ-algebra of Borel subsets of a compact space Λ, the smallest
σ-algebra containing all the open subsets of Λ.

Any Boolean algebra E can be represented as the range of a finitely additive function
on the family of Borel subsets of its Stone space:

E : Bo(Λ) → L(X) : τ �→ E(τ).

For each x ∈ X, we obtain a finitely additive vector measure

Ex : Bo(Λ) → X : τ �→ E(τ)x.
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The vector measures Ex all are σ(X, X ′)-countably additive if and only if the range of E
is relatively compact in L(X) in the σ(X, X ′)-operator topology; equivalently, if and only
A1 is relatively σ(X, X ′) compact, where A = linC[E ]. If so, E is effectively the range of
a spectral measure of class (Bo(Λ), X ′): recall that, given a σ-algebra Σ of subsets of a
set Ω and a total subset Γ of X ′, a spectral measure of class (Σ, Γ ) is a Boolean algebra
homomorphism σ �→ E(σ) from Σ into L(X) such that 〈E(σ)x, x′〉 is countably additive
for each x ∈ X and x′ ∈ Γ .

Consider a bounded Boolean algebra E of projections on a complex Banach space X;
and let A be its closed linear (= algebra) span. By Theorem 5.2 we may renorm to
make all the projections in E hermitian, and then A is spectrally normed. Hence, as
in [21, Theorem 2] we have the following.

Theorem 5.3. Let E be a relatively weakly compact Boolean algebra of projections
on a complex Banach space X, and let A be the C∗-algebra generated by E . Then A
is representable by a spectral measure of class (Bo(Λ), X ′), the weak closure Āσ(X,X′)

is a spatial W ∗-algebra on X and any faithful representation of Āσ(X,X′) as a concrete
von Neumann algebra on a Hilbert space is weakly bicontinuous on bounded sets.

6. Monotone limits on a dual space

Theorem 6.1 is valid for families of hermitians on a dual Banach space, whether they
belong to a C∗-algebra or not.

A net (Hα)α∈A is upward directed, or increasing, if Hα � Hβ when α � β in the
indexing set A; similarly, (Hα)α∈A is downward directed, or decreasing, if Hα � Hβ when
α � β. A monotone net is a net that is either upward or downward directed.

Theorem 6.1. Let X be the dual of ′X and let (Hα) be a bounded monotone net of
hermitians in L(X). Then (Hα) has a hermitian weak-star limit, say H.

Suppose further that K and K2 are also hermitian and that each HαK is hermitian.
Then HK is hermitian and HK = KH.

In particular, if (Eα) is a monotone net of hermitian projections on X then its weak-
star limit is again a hermitian projection.

Proof. Without loss of generality assume that the net (Hα) is increasing.
For each x, by Alaoglu’s Theorem (Hαx) has a σ(X, ′X)-cluster point, say Hx.
Since the scalar net (〈Hαx, ψ〉) is increasing (for each (x, ψ) ∈ ΠL; see § 2.4.2) the

cluster point is unique (see Remark 3.2), and is therefore the σ(X, ′X)-limit of the net
(Hαx).

It follows that Hx = Hx for some H ∈ L(X) and that H is the σ(X, ′X)-operator limit
of the net (Hα). So H is hermitian, by Theorem 2.11.

The second assertion follows from Murphy’s Theorem (Theorem 2.5).
As for an increasing net (Eα) of hermitian projections, let E be its hermitian weak-

star limit. Ultimately, that is, for large β, we have EβEα = Eα for any given α (using
Theorem 2.8) so that EEα = Eα. Now, again by Theorem 2.5, EαE = Eα and taking
the limit shows that E2 = E. �
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For projections, this result is a lineal descendant of [1]: if a net (Eα) of projections
(not necessarily hermitian) on a Banach space X is monotone (in the natural order) and
has weak x-cluster points, that is, if⋂

α

{Eβx : β � α}σ(X,X′) 
= ∅

for each x ∈ X, then the net converges in the strong operator topology.
One cannot hope for such a strengthening of Theorem 6.1. If ′X = l1(N), so that

X = l∞(N), and if En is the projection onto the span of the first n coordinate projections,
then En ↗ I in the weak-star operator topology. If, however, θ is a Banach limit on l∞

and y is the vector in l∞ such that yn = 1 for all n, then 〈Eny, θ〉 = 0 for all n, while
〈Iy, θ〉 = 1.

7. C∗-algebras on a dual space

Suppose now that X is a dual Banach space on which a C∗-algebra A acts. This hypoth-
esis automatically provides a modicum of compactness, but in a very weak topology.
Nevertheless, something can be accomplished.

7.1. W ∗-closures on a dual space: commutative case

The following theorem, a principal result of the paper, is the promised advance on [18,
Theorem 2.11].

To lighten the notation write

H̄σ = H̄σ(X,′X) and Āσ = H̄σ + iH̄σ.

Theorem 7.1. Let A be a commutative C∗-algebra on a Banach space X, the dual
of ′X, and let H be the set of hermitian elements of A. Then H̄σ is weak-star and
monotone closed, and is the real part of the commutative W ∗-algebra Āσ on X. Moreover,
Āσ is bounded weak-star closed and the involution is bounded weak-star continuous.

Proof. The proof is an elaboration of that of Theorem 6.1.
First, consider a net (Hα) in H converging to H (∈ H̄σ) in the σ(X, ′X) operator

topology. Then H is hermitian, by Theorem 2.11.
Next, HαK(∈ H) is hermitian for each α and each K ∈ H. The limit HK must be

hermitian, and therefore HK = KH, by Theorem 2.5.
In particular, HHα is hermitian (and equal to HαH) for each α, so the limit of HαH,

which is H2, is also hermitian and is in H̄σ.
If now K is the σ(X, ′X)-limit of a net (Kβ) from H, then KH = lim KβH and so

is hermitian. Thus, HK = KH, again by Theorem 2.5. Hence, H̄σ is a norm-closed R-
linear subspace of commuting hermitians on X, and is closed under multiplication. The
Vidav–Palmer Theorem guarantees that Āσ is a C∗-algebra.

By Theorem 6.1 H̄σ is monotone closed, and ΠL (see § 2.4.2) is a separating family of
normal functionals for H̄σ. A routine variation on the standard proof (see, for example,
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[24, Chapter III.3]) shows that there is a separating family of normal states, and this
suffices to show that Āσ is W ∗.

For each lower supporting pair (x, ψ) ∈ Π′X the σ(X, ′X)-continuous functional ω =
ωx,ψ : A �→ 〈Ax, ψ〉 is a state on Āσ; thus, ω(A∗) = ω(A) for each A ∈ Āσ.

Suppose that (Aα) is a bounded σ(X, ′X)-convergent net in Āσ, with limit A ∈ L(X),
and that Hα and Jα are the real and imaginary parts of Aα. Without loss of generality
we may assume that ‖Aα‖ � 1 for all α. Now, by the Kaplansky Density Theorem, we
have Āσ(X,′X)

1 = (Āσ)1 and H̄σ(X,′X)
1 = (H̄σ)1. Hence, Hα, Jα ∈ H̄σ(X,′X)

1 for each α.
Now, for each ω (= ωx,ψ) the bounded real nets ω(Hα) and ω(Jα) must each converge:
for ω(Hα) = Re ω(Aα) and ω(Jα) = Im ω(Aα). Thus, (Hα) and (Jα) each have a unique
cluster point (call them H and J), which must be the σ(X, ′X)-limits of these nets,
respectively. Hence, A ∈ Āσ and (A∗

α) → A∗ weak-star. �

Question 7.2. Is Āσ also σ(X, ′X) closed?

7.2. Commutative C∗-equivalent-algebras on L((′X)′)

Suppose we have a representation Θ : A → L(X) of a C∗-algebra A in L(X). We may
use the recipe of § 4.2 to renorm X, but have no guarantee of a dual renorming, one
corresponding to a renorming of the predual ′X. A warning not to be too ambitious: if
Y is a Banach space for which every equivalent norm on Y ′ is a dual norm, then Y is
reflexive [14, § 18F].

Nevertheless, when A is commutative we have a consequence of the Riesz Representa-
tion Theorem at our disposal (see the proof of [18, Theorem 2.5]).

Lemma 7.3. If A = C(Λ) is a commutative C∗-algebra and if Θ : A → L(X), where
X[= (′X)′], is a bounded unital algebra isomorphism, then there is a spectral measure
E(·) on Bo(Λ), where Λ is the maximal ideal space of A, with values in X, and of class ′X,
such that

Θ(f) =
∫

f(λ)E(dλ).

From this we can derive a σ-completion for any bounded Boolean algebra of projections
on X, in anticipation of the results of § 8.

Theorem 7.4. Given a bounded Boolean algebra E on X, the dual space of ′X, it can
be enlarged to a ′X-σ-complete Boolean algebra on X, namely Ē = {E(κ) : κ ∈ Bo(Λ)}.

Proof. In view of Theorem 5.2 we can apply Lemma 7.3 to the C∗-(equivalent) alge-
bra linC[E ]. �

8. Boolean algebras: separable predual

If X = (′X)′ and ′X is separable, then X1 is not only weak-star compact but also weak-star
metrizable. Subject to this extra hypothesis we can extend Theorem 7.1 to the algebra
generated by a Boolean algebra that is not initially hermitian.
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8.1. Separable patch completion

An important step towards Theorem 8.3 is the following.

Theorem 8.1 (separable patch completion). Suppose that X is the dual of a
separable space and that E is a bounded Boolean algebra of projections on X.

Let Ē = {E(τ) : τ ∈ Bo(Λ)} be the representing spectral measure for the C∗-algebra
A generated by E .

Let Ẽ be the family of operators on X, each of which, on each norm separable subspace
of X, agrees with some member of Ē .

Then Ẽ is a monotone complete Boolean algebra of Ē-hermitian projections contain-
ing E .

Moreover, the norms defined by Ē and Ẽ are identical, i.e. |x|Ē = |x|Ẽ (x ∈ X).

Proof. The proof proceeds in several stages.

Claim. The elements of Ẽ are Ē-hermitian projections and form a Boolean algebra.

Consider an E ∈ Ẽ and x ∈ X. Let M = lin[x, Ex] (which is certainly norm separable);
choose τ (= τM) so that E(τ)|M = E|M. Then

E2x = E(Ex) = EE(τ)x = E(τ)2x = E(τ)x = Ex,

which shows that E is a projection. Thus,

eitE |M = eitE(τ)|M,

whence
SeitE |M ∈ SĒ |M

for S ∈ SĒ , and therefore

|eitEx|Ē = sup{‖SeitEx‖ : S ∈ SĒ} � |x|Ē .

This shows that E is Ē-hermitian.
Suppose that E, F ∈ Ẽ . Given any norm separable subspace M there are τ , υ such

that E = E(τ) and F = E(υ) when restricted to M. Then, for x ∈ M,

EFx = E(τ)Fx

= E(τ)E(υ)x

= E(τ ∩ υ)x

= E(υ)E(τ)x

= E(υ)Ex

= FEx,

which shows that EF = FE ∈ Ẽ . It is immediate that Ẽ is a Boolean algebra, which
establishes the claim.
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Claim. For each x ∈ X we have SẼx = SĒx, by construction, and therefore |x|Ē = |x|Ẽ
(x ∈ X).

Claim. Ẽ is monotone complete.

Let ρ be a metric inducing the weak-star topology on X1, which contains the closed
unit Ē-ball {x ∈ X : |x|Ē � 1}. (The latter is σ(X, ′X)-compact if and only if the Ē norm
is a dual norm.)

Consider an increasing net (Eα) from Ẽ . Then (see Remark 3.2) (Eα) has a (unique)
weak-star operator limit, say E.

Let M = lin[x1, x2, . . . ] be a (norm) separable subspace of X.
For each α there is a τα[= τα,M] ∈ Bo(Λ) such that Eα|M = E(τα)|M.
Now there exists α1 such that

ρ(Eαx1, Ex1) < 2−1, α � α1.

Next, there exists α2 � α1 such that

ρ(Eαx1, Ex1) < 2−2,

ρ(Eαx2, Ex2) < 2−2,

}
α � α2.

Continuing in this manner, there is an αk (� αk−1) such that

ρ(Eαxj , Exj) < 2−k, 1 � j � k, α � αk,

and so on.
Put τM =

⋃
k ταk,M ∈ Bo(Λ). Then

Exj = E(τM)xj , j ∈ N,

and therefore

Ez = E(τM)z, z ∈ M.

Thus, E ∈ Ẽ . This establishes the third claim and completes the proof of the theorem. �

Corollary 8.2. If (Eα) ↗ E in Ẽ and if F ∈ Ẽ , then (EαF ) ↗ EF .

Proof. Given M there are τα and υ such that

Eα|M = E(τα)|M, F |M = E(υ)|M,

and then EαF |M → E(τ∪α ∩ υ)|M. �
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8.2. W ∗-closures on the dual of a separable space

Consider a commutative C∗-algebra A represented in L(X), where X is the dual of
a separable predual ′X. Then A is represented by a Boolean algebra of projections E
as described in Lemma 7.3. As we have just seen, E can be extended to a monotone
complete Boolean algebra of projections Ẽ , and this becomes hermitian after renorming
X (though perhaps not dually) according to Theorem 5.2.

Then B (= linC[Ẽ ]) is a C∗-algebra containing A, and B = K + iK, where K = linR[Ẽ ],
the set of hermitians in B, is monotone complete. Thus, B is an AW ∗-algebra, and since
it has separating family of normal functionals (usually one stipulates for states, but a
separating family of normal functionals is adequate; see the proof of Theorem 7.1) it
must be a W ∗-algebra. Since A ⊆ B we have Ã ⊆ B.

Theorem 8.3. Let A be a commutative C∗-algebra represented on X, the dual of a
separable predual ′X. Then the bounded weak-star closed algebra Ã generated by E is,
under the spectral norm, a commutative (abstract) W ∗-algebra.
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