Irish Section Meeting, 21–23 June 2017, What governs what we eat?

Intakes and sources of Vitamin K₁ in Irish pre-school children aged 1–4 years

C. Kingston¹, L. Kehoe¹, J. Walton¹, B.A. McNulty², A.P. Nugent², K.D. Cashman¹ and A. Flynn¹

¹School of Food and Nutritional Sciences, University College Cork, Republic of Ireland and ²UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Republic of Ireland

Vitamin K_1 has a key role in blood coagulation, bone metabolism and the regulation of calcification⁽¹⁾. There are currently insufficient data available to set an average requirement for vitamin K_1 for children however the European Food Safety Authority (EFSA) has recently proposed an Adequate Intake (AI) of 1.0 µg/kg bodyweight per day based on observed intakes⁽¹⁾. Few data are available on vitamin K_1 intakes in young children. The objective of this analysis was to estimate the intake and sources of vitamin K_1 in Irish pre-school children aged 1–4 years (n = 500) using data from the Irish National Pre-School Nutrition Survey (2010–2011) (www.iuna.net). Dietary intake data were collected using a 4d weighed food record and the vitamin K_1 content of foods was primarily determined using data from the UK food composition tables (COFID)⁽²⁾. For certain foods where vitamin K_1 values were not available in COFID, the US⁽³⁾ and Danish food composition tables⁽⁴⁾ and published papers were used to assign suitable vitamin K_1 values. The vitamin K_1 content of composite dishes and retail products were calculated based on their ingredients. Usual intakes of vitamin K_1 were calculated via the NCI-method⁽⁵⁾ using SAS Enterprise Guide. Body weight (kg) was measured in the participants' homes by trained researchers. Differences in vitamin K_1 intakes were assessed using a Kruskal-Wallis test (for non-normal data) and a Wilcoxon two sample test was used for post-hoc analysis. The mean daily intakes of vitamin K_1 were 33, 30, 28 and 32 µg for 1, 2, 3 and 4 year olds, respectively. Adjusted for bodyweight, intakes (µg/kg/d) were 2·9, 2·1, 1·8 and 1·8 respectively showing a decrease (p < 0.001) with increasing age from age 1y to 3–4y respectively. Approximately 82 % of children had intakes above the AI of 1·0 µg/kg bodyweight per day. The table below reports the contribution (%) of food groups to vitamin K_1 intake in Irish children aged 1–4 years, by age.

Food group	1 year olds	2 year olds	3 year olds	4 year olds
	(n = 126)	(n = 124)	(n = 126)	(n = 124)
	%			
Veg & veg dishes	26.0	24.0	26.2	31.9
Green vegetables	14.7	12.5	15.7	20.1
Other vegetables	11.4	11.5	10.6	11.8
Fruit & fruit juices	15.7	17.4	17.1	15.1
Apples & Pears	3.1	6.7	5.9	6.8
Grapes	3.1	3.9	3.9	2.6
Fruit purees & smoothies	3.4	2.8	2.8	1.9
Fruit juices	0.4	0.3	0.6	0.6
Other fruits	5.7	3.8	3.9	3.2
Milk & yogurt	24.8	14.4	8.1	5.7
Fortified infant and child formula	15.7	7.9	2.0	0.8
Milk	8.3	5.9	5.4	4.3
Yogurt	0.8	0.6	0.7	0.7
Meat & meat products	10.4	11.3	10.9	10.2
Potatoes & potato products	4.1	5.4	7.2	6.3
Biscuits cakes & pastries	3.9	4.7	5.7	6.4
Butter, spreading fats & oils	2.7	5.2	5.1	5.1
Other	12-4	17.5	19.7	19.3

The main source of vitamin K_1 for all ages was 'vegetable and vegetable dishes' (24–32 %, range across age), of which 13–20 % came from green vegetables. Other important sources were fruit & fruit juices (15–17 %), meat (10–11 %) and milk (6–25 %). The contribution from milk decreased significantly (p < 0.001) with increasing age from age 1y to age 3–4y primarily due to consumption of fortified infant and child formula in the earlier years⁽⁶⁾. Overall, these findings suggest that intakes of vitamin K_1 are adequate for Irish pre-school children.

This research was funded by the Department of Agriculture, Food and the Marine under the project 'Development of biofortification approaches for enhanced vitamin K content of foods (15/F/670)'

1. EFSA (2017) doi:10.2903.

- 2. Public Health England (2015). PHE. London.
- 3. USDA National Nutrient Database for Standard References 28 (2015) https://ndb.nal.usda.gov/ndb/.
- 4. Danish Food Composition Database (2009) http://www.foodcomp.dk/v7/fcdb_default.asp.
- 5. Tooze JA, Kipnis V, Buckman DW et al. (2010) Stat Med 29, 2857–2868.
- 6. Irish Universities Nutrition Alliance. National Pre-School Nutrition Survey Summary Report. www.iuna.net: Ireland: IUNA; 2012.