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THE CANARY TREE 

ALAN H. MEKLER AND SAHARON SHELAH 

ABSTRACT. A canary tree is a tree of cardinality the continuum which has no 
uncountable branch, but gains a branch whenever a stationary set is destroyed (without 
adding reals). Canary trees are important in infinitary model theory. The existence of a 
canary tree is independent of ZFC + GCH. 

A canary tree is a tree of cardinality 2 °̂ which detects the destruction of stationary sets. 
(A stationary set is destroyed in an extension if it is non-stationary in the extension.) More 
exactly, T is a canary tree \f\T\ = 2^°, T has no uncountable branch, and in any extension 
of the universe in which no new reals are added and in which some stationary subset of UJ\ 
is destroyed, T has an uncountable branch. (We will give an equivalent characterization 
below which does not mention extensions of the universe.) The existence of a canary tree 
is most interesting under the assumption of CH (if 2 °̂ = 2Hl it is easy to see, as we will 
point out, that there is a canary tree.) The existence or non-existence of a canary tree has 
implications for the model theory of structures of cardinality Hi and for the descriptive 
set theory of Uiu\ ([4]). The canary tree is named after the miner's canary. 

In this paper, we will explain the significance of the existence of a canary tree in 
model theory and prove that the existence of a canary tree is independent from ZFC + 
CH. 

As is well known the standard way to destroy a stationary costationary subset of 
u\ is to force a club through its complement using as conditions closed subsets of 
the complement ([1]). More precisely if S is a stationary subset of UJ\ we can define 
Ts = {C : C a closed countable subset of 5}, where the order is end-extension. If S is 
costationary then Ts has no uncountable branch but when we force with Ts we add no 
reals but do add a branch through Ts. Such a branch is a club subset of uj\ which is 
contained in S. (In [1], the forcing to destroy a stationary costationary set E is exactly 
T^\£.) Notice that Ts detects the destruction of u\ \S in the sense that in any extension 
of the universe with no new reals and in which u\ \ S is non-stationary, Ts has a branch. 

These elementary observations imply that if 2 °̂ = 2^1 then there is a canary tree. 
The tree can be constructed by having disjoint copies of Ts sitting above a common root 
where S ranges through the stationary costationary subsets of UJ\. In fact any canary tree 
must almost contain the union of all the 7>, in the following weak sense. 
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THEOREM 1. Suppose T is a tree of 2K° with no uncountable branch. Then T is a 
canary tree if and only if for any stationary costationary set S there exists a sequence 
(Xa : a < u\) of maximal antichains ofTs and there is an order-preserving function 
f: \Ja<u Xa —• T. Furthermore (Xa : a < uj\) andf are such that: if a < /3 and s G Xa, 
t G Xp then either s and t are incomparable or s < t; ifè is a limit ordinal and t G X& 
then t = sup{s < t : s G Xp,fj < 8}; andf is continuous. (Note that these conditions 
imply that for all u G Ts there is 6 and f G l ^ such that u < t.) 

PROOF. First assume that for every stationary costationary set there is such a sequence 
of antichains and such a function. Suppose that E is a stationary set which is destroyed in 
an extension of the universe with no new reals. Let S = UJ\ \E and let/ and (Xa : a < UJ\ ) 
be as guaranteed. Let C be a club in the extension which is contained in S. Choose 
an increasing sequence (sa : a < UJ\ ) of elements of 7$ so that for all a, sa+\ is 
greater than some member of Xa and max sa G C. The choice of such a sequence 
is by induction. There is no problem at successor steps. At a limit ordinal <5, we can 
continue since supUa<^^a £ C and hence in S. Also since no new reals are added 
Ua<,5 sa U sup Ua<<$ sa £ Ts. Let b be the uncountable branch through Ts determined by 
(sa '. OL < uj\ ) . So in the extension/"(& n Ua<^, Xa) is an increasing uncountable subset 
ofr. 

Now suppose that T is a canary tree. Let S be a stationary costationary set. Since 
forcing with Ts destroys a stationary set there is b a rename for a branch of T. We 
will inductively define the sequence (Xa : a < uj\ ) of maximal antichains of Ts. Let 
0 denote be the root of T. Define Xo = {0}. In general, let Ya - T \ \Jp<aXf3 and let 
Da = {t G Ya ' t decides b\ a}. Let Xa be the set of minimal elements of Da. Since Da 

is dense, Xa is a maximal antichain. For t G Xa, choose s so that t\\-s = b\ a and let 
At) = s. 

It is possible to improve the theorem above to show that T is a canary tree if and only 
if for every stationary costationary set S there is an order preserving function from Ts to 
T ([4]). In fact when we show that it is consistent with GCH that there is a canary tree 
T, we will construct for every stationary costationary set S an order preserving function 
from Ts to T. It is also worth noting that we get an equivalent definition if we only 
demand that a canary tree have cardinality at most 2H°, since if T is a tree of cardinality 
less than 2K°, then forcing with Ts adds no new branch to T. 

1. The canary tree and Ehrenfeucht-Fraïssé games. A central idea in the 
Helsinki school's approach to finding an analogy at UJ\ of the theory of L^ is the 
notion of an Ehrenfeucht-Fraïssé game of length uj\ (see [3] for more details and further 
references). Given two models, 21 and 23, two players, an isomorphism player and a 
non-isomorphism player, alternately choose elements from % and ÎJ. In its primal form 
the game lasts uu\ moves and the isomorphism player wins if an isomorphism between the 
chosen substructures has been constructed. The analogue of Scott's theorem is the trivial 
result that two structures of cardinality Hi are isomorphic if and only if the isomorphism 
player has a winning strategy. In the search for an analogue of Scott height, trees with 
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no uncountable branches play the role of ordinals. More exactly suppose that T is a tree 
and 21 and 35 are structures. The game (7>(2l, 35) is defined as follows. At any stage the 
non-isomorphism player chooses an element from either 21 or 35 and a node of T which 
lies above the nodes this player has already chosen. The isomorphism player replies 
with an element of 35 if the non-isomorphism player has played an element of 21 and 
an element of 21 if the non-isomorphism player has played an element of 35. In either 
case the move must be such that the resulting sequence of moves from 21 and 35 form a 
partial isomorphism. The first player who is unable to move loses. In analogy with Scott 
height if 11 and 35 are non-isomorphic structures of cardinality Hi then there is a tree 
of cardinality at most 2K° with no uncountable branches such that the non-isomorphism 
player has a winning strategy in £r(2l, 35). (The tree T can be chosen to be minimal.) A 
defect in the analogy with Scott height is that the choice of the tree depends on the pair 
21,35 and cannot in general be chosen for 21 to work for all 35 ([2]). 

DEFINITION. Suppose 21 is a structure of cardinality Ki. A tree T is called a universal 
non-equivalence tree for 21 if T has no uncountable branch and for every non-isomorphic 
35 of cardinality Ki the non-isomorphism player has a winning strategy in £r(21,35). 

As we have mentioned there are structures for which there is no universal non-
equivalence tree of cardinality Ki. However for some natural structures such as free 
groups (or free abelian groups) or u\ -like dense linear orders the existence of a universal 
non-equivalence tree of cardinality 2 °̂ is equivalent to the existence of a canary tree. We 
will only explain the case of o;i-like dense linear orders, the case of groups is similar. 

Recall the classification of u\ -like dense linear orders with a left endpoint. Let 77 
represent the rational order type and for S Ç uj\ let 0(5) = 1 + r/ + Ha<ux

 ra, where 
ra = 1 + r\ if a E S and ra = 77 otherwise. It is known that any o;i-like dense linear 
order is isomorphic to some 0(5) and that for £, S Ç u\, 0(5) = 0(£) if and only if the 
symmetric difference of E and S is nonstationary. 

THEOREM 2. There is a universal non-equivalence tree of cardinality 2 °̂ for O(0) if 
and only if there is a canary tree. 

PROOF. Assume that T is a universal non-equivalence tree of cardinality 2 °̂ for O(0). 
Consider £, a stationary costationary set. Work now in an extension of the universe in 
which E is non-stationary and there are no new reals. In that universe, 0(£) = O(0). 
In that universe the isomorphism player can play the isomorphism against the winning 
strategy of the non-isomorphism player in ^(O(0) , 0(£)V At each stage, both players 
will have a move. So the game will last uj\ moves and the non-isomorphism player will 
have chosen an uncountable branch through T. Hence T is a canary tree. 

Now suppose that T is a canary tree. Let T = T+2 {i.e., a chain of length 2 is added to 
the end of every maximal branch of T). We claim that T' is a universal non-equivalence 
tree for O(0). Suppose E is a stationary set. The case where E is in the club filter is an 
easier version of the following argument. Assume that S is stationary where S = u\ \E. 
To fix notation let O(0) = 1 + 77 + Er« and 0(£) = 1 + 77 + £ fia. Let (Xa : a < u\ ) 
and/: Ts —• T be as in Theorem 1. Let X = \Ja<UJl Xa. The winning strategy for the 
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non-isomorphism player consists of choosing an increasing sequence sa G X, playing 
f(sa) as the move in the tree T and guaranteeing that at every limit ordinal 6 if A is the 
subset of O(0) which has been played (by either player) and B is the subset of O(F) which 
has been played then sup \Ja<6 sa = sup{/3 : a Erp,a E A} = sup{/3 : b G \i^b G B). 
The non-isomorphism player continues this way as long as possible. When there are no 
more moves following this recipe sup Ua<<5 ^a is a n ordinal in E. In that case B has a 
least upper bound but A doesn't. So the non-isomorphism player only needs two more 
moves to win the game. • 

The above argument also shows that if there is a canary tree then the u\ -like dense 
linear orders share a universal non-equivalence tree of cardinality 2^°. 

2. Independence results. 

THEOREM 3. It is consistent with GCH that there is no canary tree. 

PROOF. Begin with a model of GCH and add K2 Cohen subsets to u\. In the extension 
GCH continues to hold. Suppose T is a tree of cardinality Hi which has no uncountable 
branch. Since the forcing to add K2 Cohen subsets of u\ satisfies the K2-C.C, T belongs 
to the extension of the universe by Ki of the subsets. By first adding all but one of the 
subsets we can work in V[X] where X is a Cohen subset of u\ and T is in V. Note that X 
is a stationary costationary subset of UJ\ . Let P be the forcing for adding a Cohen generic 
subset of UJ\ and let Q be the P-name for Tx. It is easy to see that P * Q is essentially 
UJ\-closed. Hence forcing with P * Q doesn't add a branch through T. So neither does 
forcing with Tx over V[X]. But forcing with Tx destroys a stationary set, namely, u\\X.m 

It remains to prove the consistency of GCH together with the existence of a canary 
tree. The proof has two main steps, we first force a very large subtree of <UJ{UJ\ . At limit 
ordinals we will forbid at most one branch from extending. Having created the tree we 
will then iteratively force order preserving maps of 7^ into the tree as S varies over all 
stationary costationary sets. 

THEOREM 4. It is consistent with GCH that there is a canary tree. 

PROOF. Assume that GCH holds in the ground model. To begin define Q0 to be 

{f: limC^O —• <u'ujx : dom/ is countable and for all « G dom (f)J(è) G 66}. 

If Go is Co-generic, we can identify Go with U/GG0
 r S e / - Let G = {s G <UJx co\ : for all 8 < 

£(s),s\6 £ Go}. It is easy to see that in V[Go], 6 has no uncountable branch and that 
V[Go] has no new reals. (In fact forcing with Qo is the same as adding a Cohen subset of 
LJ\, so the claims above follow.) 

To complete the proof we need to force embeddings of 7^ into G as S ranges over 
stationary sets. Suppose that we are in an extension of the universe which includes a 
generic set for QQ and has no new reals. Fix a stationary set S. An element t of G is called 
an S-node if for every limit ordinal a £ S, if a < l(t) then t \ a ^ aa. Notice that any 
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S-node has successors of arbitrary height which are 5-nodes, since if s is an S-node of 
height a and 6 is a limit ordinal greater than a, then any extension of s^(S) of length at 
most 6 is an S-node. The poset P(S) will consist of pairs (g, X) where X is a countable 
subset of <UJl UJ\ such that each element of X is of successor length and g is a partial order 
preserving map from Ts to the S-nodes of G whose domain is a countable subtree of 7$. 
Further (g, X) has the following properties. 

1. if c G dom(g) and t G X then t £ g(c) 
2. if co < c\ < - • • is an increasing sequence of elements of dom(g) then \Jn<ug(cn) 

GG. 

If (g,X) is a condition let o(g,X) be the sup{£(f) : t e Xort <E rge(g)}. Let 
dom (g, X) = domg. A condition (/z, Y) extends (g, X) if 

l.gQK 
2. if c G dom (A) \ dom(g), then l(h(c)) > o(g,X), 
3. X Ç Y. 

CLAIM 4.1. The poset P(S) is proper. 

Suppose K is some suitably large cardinal, TV -< (H(«), G, <*), where <* is a well-
ordering of the model, TV is countable, and P(S) G N. We need to show that for every 
p £ NP\ P(S) there is an N-generic extension. Let 6 = ND u\. Let / be the Qo-generic 
function and t =f(è). There are two cases to consider. Either there is a successor ordinal 
a < 6 so that a > o(p) and t \ a G N or not. Let p = (g, X). If such an ordinal a exists let 
p_i = (g,XU{rf a}), otherwise let/7_i =p. Now define a sequence /?_i,/?o, . . . , /?„ , . . . 
of increasingly stronger conditions so that (for n > 0) pn is in the nth dense subset of 
P(S) which is an element of N. Let/?n = (gw,Xn) and q = (h,Y) where /* = U«<a;gn and 
F = Un<u; ̂ n • To finish the proof it suffices to see that q G P(S). The only point that needs 
to be checked is to verify that if Co < c\ < • • • G dom (h) then \Jn<UJ h(cn) G S. If there is 
m such that cn G dom (gm) for all n, then we are done. Otherwise, by the second property 
of being an extension, sup{l(h(cn) : n < UJ} > sup{tf(gm, Xm) : m < LU}. However 
for all a < è there is a dense set D such that (g, X) G D implies o(g, X) > a. As D is 
definable using parameters from TV, D G TV. Furthermore since the sequence of conditions 
meets every dense set in TV, sup{6>(gm, Xm) : m < u} > 5. Finally each h(cn) G TV, so 
£(/z(cn)) < è for all w. These facts give the equation, sup{£(/i(cn) : n < UJ} = 6. (In 
the remainder of the paper we will try to point out where a density argument is needed 
but we will not give it in such detail.) By the choice of p-\ and the property 1 of the 
definition of P(S), t J \Jn<UJ h(cn). m 

Our forcing will be an iteration with countable support of length cj2- AS usual we will 
let P( be the forcing up to stage / and will force with <2/> a P/-name for a poset. We have 
already defined QQ. For / greater than 0, we take 5/ a /Vname for a stationary costationary 
set and let Qt be the Prname for P(5/). By Claim 4.2, forcing with PU2 adds no reals. 
Also since each Qt is forced to have cardinality LJ\, if we enumerate the Si properly every 
stationary costationary set in the final forcing extension will occur as the interpretation 
of some St. 
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CLAIM 4.2. For all i < OJI, forcing with Pi adds no new reals. 

The proof is by induction on /. The case / = 1 is easy. For successor ordinals the proof 
can be done along the same lines as Claim 4.1, or by a modification of the limit ordinal 
case which we do below. Suppose now that i is a limit ordinal and r is a P;-name for a 
real. Consider any condition/?. We must show that/? has an extension which determines 
all the values of r. Choose a countable N so that N < (H(K), G, <*) and p, P/, f G N. 
Let p = P-\jPoiPii • • • be a sequence of increasingly stronger conditions in N so that/?n 

is in the nth dense subset of P; which is an element of N. Let è = N DUJ\. There is an 
obvious upper bound q for the sequence. Of course q is not a condition. We would like 
to extend q to a condition q' by choosing some t G 68, letting qf(0) = q(0)^(è, t) and 
letting q'(j) - q(i) for i > 0. Choose t G 68 so that tX u £ N. By a density argument we 
can show that for all / and n, ifpn X i |(- c G dom/?, then there are m, g, X and s G N so 
that pm X i \{-pn(i) = (g? ^0 and g(c) = s. It is straightforward to see that t is as desired. 
(See the proof of Claim 4.3 for a similar but more detailed argument.) • 

Let GU2 be PU2 -generic. We have shown that in V[GWJ, for every stationary set S 
there is an order preserving map from Ts to G. To finish the proof we must establish the 
following claim. 

CLAIM 4.3. In V[G^2], 6 has no uncountable branch. 

Suppose that b is forced (for simplicity) by the empty condition to be an uncountable 
branch of <UXUJ\ . We will show that there is a dense set of conditions which forces that b 
is not a branch of G. Hence S has no uncountable branch. Fix a condition/? G P. Choose 
a countable TV so that N -< (H(/c), G, <*) and/?, PU2,b G N. Let/? = /?_i,/?o,/?i,.. .be a 
sequence of increasingly stronger conditions in N so that/?n is in the nth dense subset of 
PU2 which is an element of N. Let 6 = N D u)\. The sequence (pn : n < u) determines a 
value for b X 6. Let this value be t. There is an obvious upper bound q for the sequence. 
Of course q is not a condition. We would like to extend q to a condition q' by letting 
^(O) = q(0)^(6, t) and letting q'{i) = q(i) for i > 0. We will show by induction on / that 
q' X i is a condition in P,-. 

The case / = 1 and limit cases are easy. So we can assume that / G N and 
q'Xi G P/. Since forcing with P; adds no new reals and TV is an elementary submodel 
of (H(K), G, <*), for all n there is m and (gn,Xn) so that pmXi |(-/?„(/) = (gn,Xn). 
Hence g'ï / H-g'O") = (/*, F), where /i = Un<^£« a nd Y = \Jn<u}Xn. Suppose now that 
Co < c\ < - • • G dom(/z). We need to show that q'Xi \\-\Jn<UJh(Cn) G G. If there is 
some m so that cn G dom(gm) for all n, then we are done as in Claim 4.1. Otherwise 
£{Un<ujh(cn)) = ^ and we only need to show that \Jn<U! h(cn) ^ t. 

Notice that for all a < 6, q' X i \\-({Jn<UJh(cnyj X a is an 5/-node. We will show that 

there is a < è so that then q'X i |f- tX a is not an Srnode. This will complete the proof. 
Let G = {/? G Nr\PU2 : there is n so that/?n extends /?}. By the choice of the sequence, 

G is Af-generic. Note that by Claim 4.1 and the iteration lemma for proper forcing (or 
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by a direct argument similar to Claim 4.1), ||-p 5/ is costationary. Hence for all / G N, 

N[G] \= Sf is costationary and N[G] (= {a : bG \ a G aa} is a club. Hence 

N[G] |= there is a limit ordinal a so that bG\ a eaa and a £sf. 

By the forcing theorem there is some n so that/?„ I /1(- r ï a G a a and a fiSj. So we have 
shown #' f / \\-1 \ a is not an 5/-node, which was our goal. • 

Note in the proof above it was necessary to force the embeddings. The forcing Q0 is 
the same as adding a Cohen subset of UJ\ . So if we add two Cohen subsets of u\ and use 
one to construct the tree, then, by the proof of Theorem 3 the other one gives a stationary 
set which can be destroyed without adding an uncountable branch. 
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