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Seidel (1959) established various boundary properties of holomorphic func-
tions with spiral asymptotic paths. Especially, Theorem 4 which is the fundamental
result of the paper; was generalized by Faust (1962), using essentially the same
method that was employed by Seidel.

In this paper, by tracing the proof of Theorem 4 in Seidel (1959) and the proof
of Theorem in Faust (1962) more minutely in some parts, we shall prove a theorem
(Theorem 1) concerning the boundary behavior of holomorphic functions in the
unit disc. Further, as applications of this theorem, we shall prove some results
about spiral functions and annular functions.

1. Definitions and Notations

In the following, we denote the unit disc {z; | z | < 1} by D, the unit circle
{z; | z | = 1} by C and the finite w-plane by W.

Let T be a point of C. We denote by L(T; a) the segment terminating at T and
making an angle a (0 < a < n) with the positive tangent of C at T. We denote by
A(T; a, /?, 3) a Stolz angle having the vertex at T, bounded by two segments L(x; a),
L(T; P) (0 < a < fi < n) and lying in the set {z; | z | > <5}, where 3, 0 < 6 < I, is
sufficiently near to 1. In some cases, we use for A(r;a.,f},3) the short notation
A(T;OC,P) without specifying 3, or the shorter notation A(T) without specifying
«J,8.

Let/(z) be a function defined in D and assuming values in W. We denote by
Q(r;a,/(,a)(/)tne cluster set of/(z) in A(T; a,/?,<5), i.e., the set of points w of W such
that there exists a sequence {zn}, zn -> T, zn e A(T; a, /?, <5), satisfying f(zn) -* w.
We denote by EAA(f) the set of points T e C such that

for some pair of two Stolz angles A(T) and A'(T).
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[2] Boundary behaviour of holomorphic functions 37

Let/(z) be holomorphic in D. The set of all values weW such that the equation
/(z) = w has infinitely many solutions in a Stolz angle A(T) having the vertex at
zeC is called the range of/(z) in A(T), and is denoted by RA(X)(f)- The angular
range A(/, T) of /(z) at T e C is defined to be

A(r)

where the intersection is taken over all Stolz angles A(T). In case the complement
of A(/, T) with respect to W consists of at most one point, T is said to be an
angular Picard point of/(z).

Let/(z) be holomorphic in D. We shall call a point t e C a Fatou point of/(z)
with a Fatou value oo, if /(z) tends uniformly to oo in every Stolz angle having
the vertex at T.

Suppose a set P <= C and a point T = e'e e C are given. For a number co > 0,
we denote an arc {eie'.; 9-co< 9'< 9 + a>} by F(O>,T). Let y(j,(o,P) be the
largest of the lengths of arcs contained in r(co, T) and not intersecting with P. The
set P is of porosity at T, if

1
lim —y(r, to, P) > 0.
w->0

The set P is o/ porosity on C if it is so at each T e P. A set which is a countable sum
of sets of porosity on C is said to be of a-porosity on C (for this definition, see)
Dolzhenko (1967)). A set of er-porosity on C is of the first Baire category on C.
A set of o--porosity on C has no points of density with respect to outer measure
(i.e., no points of outer density), hence is of measure 0 [see Saks (1964; page 129,
Theorem 10.2)]. But there exists a set, which is of measure 0 and not of
o--porosity on C [see Collingwood and Lohwater (1966; page 75)].

Let z', z" be two points in D. We shall denote by p(z',z") the non-Euclidean
(hyperbolic) distance between these two points:

1, 1 +«
-, u =

z' - z"
1 - z' • z"

For a number e, 0 < e < 1, and a point z', z 'eD, we shall denote by D(z',e)
the open circular disc {z; | z - z ' | < e ( l - | z ' | ) and shall denote by £>*(z',e) the
open non-Euclidean circular disc with non-Euclidean center z' and non-Euclidean

.. 1, l+eradius - log .

Let /(z) be holomorphic in D. For a sequence {zn} of points in D, we shall
denote the function

by / ( z ; z j .
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2. The main result

[3]

In this section, we shall prove some lemmas required for the proof of Theorem 1
and finally prove Theorem 1 which is the main result in this paper.

LEMMA 1. [See Dolzhenko (1967; Theorem 1)] Let w = / ( z ) be an arbit-
rary function defined in D and assuming values in W. Then the set E*Jj) is of
a-porosity on C.

LEMMA 2. Let P be a subset of C and P* be the set of points xeC at which P
is not of porosity. Suppose that three positive constants a, fi and 5' satisfying
0 < a < P < n and 0 < 8' < 1 are given.

Let x be a point of P*. If we choose suitable positive numbers e and 5, then
for any zo> \zo\ > 8, on the radius terminating at r, there exists a point T ' E P
depending on z0 such that

PROOF. Without loss of generality, we may assume that x — 1.

Fix a number £, 0 < e < 1. Let z0 be a point on the radius terminating at 1.
We denote by e'* = e'*(Zo) (or e'* = ef*(2o)) the point of C at which the segment
Lf/*; a) (or Lie1*; /?)), tangent to the disc D(zo,e) from right (or left), terminates.
If we choose a number e, 0 < e < 1, satisfying
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(1)

Boundary behaviour of holomorphic functions

e < cos (a) I in the case a < /? ̂  —I

e < cos(a), e < - cos(/?) fin the case a < — < /?)

39

£ < — COS (/?)

then we have from easy estimations,

I in the case — g a < /?) ,

(2)
= (-

— £ — COS (/?)

and hence we have

(3) (z 0 ) - <t>(z0) =
- a) - £(sin(a)

sin (a) • sin(P)

Here, if we choose a number £, 0 < e < I, satisfying (1) and

sin(7?-a) > <;(sin(a) + sin(/?)),

and we choose a number 3", 0 < 3" < I, sufficiently near to I, then we obtain
from (3)

for any z0 satisfying | z0 | > 3", on the radius

terminating at 1, where K is a positive

_ constant independent of z0.

Further, we choose a number 3, 3" < 3 < 1, such that

D(zo,e) c {z ; \z\ > 3'}, i.e., | z o | (1 + c)-c> 3'

for any z0 satisfying | z o | > 3, on the radius terminating at 1.

Now, we suppose that Lemma 2 were false for £ and 3 chosen above. Then,
there exists a sequence {zn}, \zn\ > 3 (n = 1,2, 3, ), z,-> I (n -» oo), on the

radius terminating at 1, such that

(5) the arc {e'e; <f>(zn) < 0 < i^(zn)} contains no point of P.

For this sequence {zn}, we have from (4)

(6) lACO ~ <Kzn) ;

Here, if we set
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(oH ?= max( |^(z . ) | , \4>(zn)\),

we have from (2)

and from (5), (6)

(8) y(1,a).,P) £ ^(z.) - flz.) >K(\-\zn\).

Thus, we have by (7) and (8)

w^0 a> ~ „_>„, (on 2/min(sin(a),sin

This shows that the set P is of porosity at T = 1, and this contradicts the assump-
tion 1 eP*.

LEMMA 3. [See Dragosh (1972; Lemma 3.)] A family {gn(z)} of meromor-
phic functions in D is not normal at z = 0 if and only if, for each sequence

{ep}, 0 < £ p < 1, Urn ep = 0,
p-»0C

{gn(z)} contains a subsequence {gnp{
z)} sucn tliat ine image of \z\ < sp under

gn (z) covers the Riemann sphere Q with the possible exception of two sets each
having spherical diameter less than ep.

LEMMA 4. Let z' be a point in D and e be a number satisfying 0 < £ < ^.

Then, we have

PROOF.Consider the linear transformation z = (t + z')/(l + z' • t) from
j t | < 1 to | z\ < LJThen, since £>*(z',e) is the image of the set {/; | /1 < e} by
z - (t + z')/(l + z' • r), any z, ze D*(z',e), satisfies the inequality

\z - z =
,1+f.,l'-' —

This fact proves Lemma 4.

LEMMA 5. Let f{z) be holomorphic in D. Let {zn} be a sequence of points
in D satisfying l im , , ^ \ zn\ = 1. Suppose that the family {/(z; zn)} for this
sequence {zn} is not normal at z = 0. Then, for each sequence {ep}, 0 <ep<$,
limp_00£p = 0, there exists a subsequence {znp} in the sequence {zn}, such that
the image of D(znp,yj3 • ep) under f(z) covers the Riemann sphere Q with the
possible exception of two sets each having spherical diameter less than ep.
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[6] Boundary behaviour of holomorphic functions 41

REMARK 1. Since / (z) is holomorphic in D, there is always an exceptional
set containing oo and having spherical diameter less than ep.

PROOF. From Lemma 3, we can see that for each sequence {ep}, 0 < ep < %,
limp-^Sp = 0, there exists a subsequence {zBp} in the sequence {z j such that the
image of D*(znp,ep) under/(z) covers the Riemann sphere £1 with the possible
exception of two sets each having spherical diameter less than ep.

On the other hand, from Lemma 4, we have

for each pair (znp,ep), and hence the image of D*(znp,ep) under/(z) is contained
in the image of D(znp,s/3 • ep) under/(z). Thus, the image of D(znp,s/3 • ep) under
/(z) covers the Riemann sphere Q with the possible exception of two sets each
having spherical diameter less than ep. This fact proves Lemma 5.

Now, we can prove Theorem I.

THEOREM 1. Let f(z) be holomorphic in D. Let £ ( / ) be the set of points x

on C such that for each point x e £ ( / ) , there exists a sequence {zB}>lim,,-,oo|z,l| = 1 ,
on the radius terminating at x, for which

p(zn,zn+1)<M (n = 1,2, 3, •••)

where M = M(x) is a positive constant which may depend on x, and

lim/(zj = oo.
rt-*0O

Then, except for a set of a-porosity on C, every point of £ ( / ) is either a
Fatou point off(z) with a Fatou value oo or an angular Picard point of/(z).

PROOF. Let x be any point of £ ( / ) . We take a sequence {zn}, l imn_x | zn | = 1,
on the radius terminating at T, for which

p(zn,zn+1)< M (n = 1,2,3,"-)

and

lim/(zn) = oo.
n-*oo

Considering the family {/(z; zn)} for this sequence {zn}, the following three
mutually exclusive cases can be considered:

1. The family {/(z; zn)} is normal in D;
2. The family {/(z; zn)} is not normal in D, but is normal at z = 0;
3. The family {/(z; zn)} is not normal at z = 0.
Faust (1962; pages 99-100) showed that

l im/(rr ) = oo,
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for each T at which the case 2 happens. And hence, for each T at which the case 2
happens, we can choose* a sequence {z,|}, lim,,-,^ | z,|| = 1, on the radius termina-
ting at T, for which

lim p{z\, zl+1) = 0
FI-+OO

and

lim /(zj) = oo.
n-* oo

For this sequence {z,,1}, we have the following three mutually exclusive cases:

1'. The family {/(z; z,,1)} is normal in D;
2'. The family {/(z; zn')} is not normal in D, but is normal at z = 0;
3'. The family {/(z; z,|)} is not normal at z = 0.
Thus, for each point T e £(/) , one of the following three cases happens:
1". There exists a sequence {z2}, lim,,-.^ | z2) = 1, on the radius terminating

at T, for which

p(z2,z2
n+1)<M'

where M' = M'(r) is a positive constant which may depend on T, and

lim f(z2) = oo,
n-»oo

such that the family {/(z; z2)} is normal in D. The set of these points T of £(/)
will be denoted by G(/).

2". There exists a sequence {z^}, lim,,.,^ \z3
H\ = 1, on the radius terminating

at T, for which

lim p(zl, z'+1) = 0,
«-*<*>

and
lim f(zl) = oo,

such that the family {/(z; z,?)} is not normal in D, but is normal at z = 0. The set
of these points T of £(/) will be denoted by / /( /) .

3". There exists a sequence {z^}, 'im,,-..*, | z*| = I, on the radius terminating
at T, such that the family {/(z; z*)} is not normal at z = 0. The set of these points
T of £(/) will be denoted by J(f).

First, according to Seidel (1959; pages 167-168) and Faust (1962; page 99],

(9) every point zeG(f) is a Fatou point of/(z) with a Fatou value oo.

Next, according to Seidel (1959; page 169), at each point xeH(f), there
exists a positive number cT, 0 < cT < rc/2, such that f(z) tends uniformly to oo as
z -* T in every Stolz angle
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[8] Boundary behaviour of holomorphic functions 43

A IT, y - ct + e, y + ct - s J, with 0 < e < ct

and the complement of

with respect to W consists of at most one point for every e, 0 < e < n/2-cT, and
every 5, 0 < 5 < 1. Thus, we see that H{f) is contained in £A4(/), and hence

(10) / / ( / ) is of (T-porosity on C.

Further, we shall prove that except for a set of c-porosity on C, every point
of the set J(f) is an angular Picard point of/(z).

Let {a,} (or {Pj}) be a sequence of all rational numbers satisfying

0 < a, < n (or 0 < /?,• < 7t),

and {Sk} be a sequence of all rational numbers satisfying 0 < Sk < 1. Let
{Qp}^=\ denote a basis, which consists of closed discs on W.

We denote by P(f) the set of points xeC which are not angular Picard points
of/(z). Then, at each xeP(j'), there exist two disjoint closed discs Qu Q2 on W
and two Stolz angles A^T) , A2(T) such that /(z) omits a value from Qv in
AV(T)(V = 1,2). Here, for positive integers /i,/Wi>./2»Pi»P2> ^i an(^ ?̂> w e denote
by

the set of points xeP(f) such that/(z) omits a value from QPv in the Stolz angle
A(T,xlv,pjv,Sky) (v = 1,2). Then, we have

P(f)= U PViJ^iiJi.P

We denote by

P*('|,'Wlv/2./>l<P2.ki.

the set of points r e C a t which

is not of porosity. Then, at each point of the set

p('i>i2JiJ2'PuP2>kuk2

the set

P(ii,'2J

is of porosity, and hence the set
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is of porosity, too. Thus, we see that the set

(11) P(ii,i2JiJ2,PuP2,k1,k2)(f)-P*(ii>i2,jl,j2,pl,p2,kl,k2)(f)

is a set of porosity on C.

Now, we shall show presently that

(12)

for any combination (ii,i2,j i,j2, plt p2,ki,k2). If (12) is proved, then we shall
have

- P*Oi,hJiJz,PuPi,kltk2) (/))) n J(f)

<= U (P(iiJi,Ji,J2,Pi,P2,ki,k2)(f)

- P*(iui2Ji,J2,PuPi,kt,k2)(f)).

With (11), this fact will show that P(f)nj(f) is a set of <r-porosity on C, and
hence

except for a set of <r-porosity on C, every point
of the set J(f) is an angular Picard point of /(z).

Thus, since £ ( / ) = G(f) U / / ( / ) U J(f), we obtain the conclusion of
Theorem 1 from (9), (10) and (13).

Now, it remains to show (12). Suppose that

and let T be a point of the set

^*('i . 'Wi .A, Pi,P2, ku

For each v = 1,2, we put a = aiv, /? = pjr, 8 = 6kv in Lemma 2. Then, from
Lemma 2, by the fact

T e P*(iiti2,ji,j2, Pi, P2> kuk2)(f),

we can choose suitable positive numbers ev, <5V (v = 1,2), such that for any z0,
| z01 > 8V, on the radius terminating at T, there exists a point

T' = T'(zo)eP(ij,/2,;1,j2,p1,p2,/c,,/c2)(/)

satisfying
A(T'; a^fijM = D(zo,ev) (v = 1,2).

Thus, if we set £3 = min(£1,e2) and 53 = max(^1,^2), /(z) omits two values
Wi(zo)> ^2(^0). wY(z0)eQPv (v = 1,2) in Z>(zo,e3) with each z0, | z0 | > ̂ 3>

 o n the
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radius terminating at T. And there is a positive constant tj, independent of VV^ZQ),
W2(zo)> °°> s u c n t n a t

(14) X(wi(zo), oo) > »7, x(w2(z0>, °o) > >/> xOx^o), w2(z0)) > >/,

where x(wi, w2) denotes the spherical metric between wl and w2. Thus,/(z) omits
three values w^z0), w2(z0), oo satisfying (14), in D(zo,e3) with each z0, | z01 > <53,
on the radius terminating at T. But, since xeJ(f), there exists a sequence
{z*}, Iimll_00|z*| = 1, on the radius terminating at T, such that the family
{/(z; z*)} is not normal at z = 0. This contradicts the fact obtained from Lemma
5. Hence, we get (12), i.e.,

3. Some applications

Let £(/) be a continuous, complex-valued function for 0 ̂  t < oo with the
properties:

0 < | £0)1 < 1, lim | CO) | = 1, I'm arg(C(O) = oo.

A simple curve in D denned by z = £(0 is called a spiral and is denoted by S.
Here, for any value of t, starting with the point £(r) on a spiral S, describe the
curve z = £(!) in the sense of increasing t and let t' denote the first value of t for
which

We shall introduce the following measure for the tightness of a spiral S [see
Seidel (1959; page 160)]:

fi(S) = li

A function/(z) holomorphic in D is called a spiral function in D relative to a
spiral S:z = f(t), 0 ̂  r < oo, if

lim/(«/)) = oo.
I-* oo

A sequence {./,,) of Jordan curves Jn in D which satisfy:
1. Jn is contained in the interior of Jn + 1 ,
2. Min| z\ -» 1 as n -> oo,

is called an annular sequence in D. Here, let T be any point of C and xn be the
first intersection point of the radius terminating at T with Jn. We shall introduce
the following measure for the tightness of an annular sequence {./„}:

ft(V«}) = sup limp(TB,Tn+I),
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where supteC means the supremum for all r e C. A function/(z) holomorphic in
D is called an annular function in D relative to {/„} [see Bagemihl and Erdos
(1964)]; if there exists an annular sequence {/„} in D satisfying

Minj/(z)| —> oo as n —> oo.
zeJn

THEOREM 2. Letf(z) be a spiral function in D relative to a spiral S satisfying

oo.

Then, except for a set of a-porosity on C, every point of C is either a Fatou
point with a Fatou value oo or an angular Picard point off(z).

REMARK 2. This is an improvement of Seidel (1959; Theorem 5).

PROOF. From the assumption /I(S) < oo, for each point T of C, we can find a
sequence {zn}, limn_oo|zn| = 1, on the radius terminating at T, for which

p(zn,zn+i)<M (n = 1,2,3,"-)

where M is a positive constant, and

l im/(zn) = oo.

Hence, Theorem 2 is easily obtained from Theorem 1.

COROLLARY l.Let f(z) be a spiral function in D relative to a spiral S
satisfying

7(S) oo.

Then, almost all points of C are angular Picard points off(z).

PROOF. By Lusin-Privaloff's theorem [see Tsuji (1959; Theorem VIII.28)],
the set of Fatou points having a Fatou value °° is of measure 0. A set of
cr-porosity on C is also of measure 0. Hence, Corollary 1 is easily obtained from
Theorem 2.

THEOREM 3. Let f(z) he an annular function in D relative to an annular
sequence {./„} satisfying

fi({Jn})< oo.

Then, except for a set of a-porosity on C, every point of C is either a Fatou
point having a Fatou value oo or an angular Picard point off(z).

PROOF. Theorem 3 follows from Theorem 1 by the same reason as Theorem 2.

REMARK 3. Since/(z) is holomorphic in D, there exists an asymptotic path
along which/(z) tends to oo. Hence, we can deduce Theorem 3 also from Theorem

https://doi.org/10.1017/S144678870001689X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001689X


[ 12] Boundary behaviour of holomorphic functions 47

2, if we make a spiral S satisfying ji(S) < oo from this asymptotic path and {Jn}
satisfying £({./„}) < oo.

COROLLARY 2. Let f(z) be an annular function in D relative to an annular
sequence {./„} satisfying

fi({Jn}) < oo.

Then, almost, all points of C are angular Picard points off(z).

PROOF. Corollary 2 follows from Theorem 3 by the same reason as Corollary 1.

REMARK 4. At an angular Picard point T of C, the complement of A(/, T)

with respect to W may not be empty. In fact, there exists an annular function w(z)
in D relative to an annular sequence {Jn} satisfying

) < oo,
such that

A(/, T) ^ 0 at every point T of C.

See the example in Barth and Schneider (1969), where a sequence {«„} satisfying

- • log — < M (M is a constant)
2 1 — sn+1

has to been chosen.
Further, by the same reason as Remark 3, this example give the analogous

example concerning Corollary 1.

THEOREM 4. There exists' a spiral function (or an annular function) *P(z)
in D, whose maximum modulus tends to oo as slowly as one wishes, with the
property that almost all points of C are angular Picard points of

REMARK 5. This is an improvement of Seidel (1959; Theorem 7).

PROOF. It is evident that the function »P(z) in Seidel (1959; pages 165-166)
satisfies our condition.
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