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Abstract

In this paper we consider an optimal control problem governed by a system of nonlinear
hyperbolic partial differential equations with deviating argument, Darboux-type boundary
conditions and terminal state inequality constraints. The control variables are assumed to be
measurable and the state variables are assumed to belong to a Sobolev space. We derive an
integral representation of the increments of the functionals involved, and using separation
theorems of functional analysis, obtain necessary conditions for optimality in the form of a
Pontryagin maximum principle. The approach presented here applies equally well to other
nonlinear constrained distributed parameters with deviating argument.

1. Introduction

The optimal control of dynamic systems governed by partial differential equations
has been studied extensively in the literature (see [1], [2], [4], [7], [10], [17-19]).
However, in many applications such as transport processes, economic systems, pop-
ulation models, etc., the behavior of the state may depend upon its past history. Such
processes are usually represented by difference-differential equations. In addition, the
majority of thermal processes, and processes in which the signal is transmitted through
long electrical hydraulic lines, exhibit delays distributed along the entire length of the
spatial coordinate. Processes of this type are often described by partial differential
equations with delays. For specific examples of such systems with delays as well
as a rather complete list of references on the development of the theory of optimal
control of systems with time delays, we refer the reader to [3]. Other mathematical
models associated with the control of distributed parameter systems with simple time
delays, appearing in the state equations or boundary conditions have been studied in
the literature (see [5], [9], [10], [12], [14], [16]). We remark that the works reported
in these references exclude any type of constraints on the state variables.
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One of the first steps toward solving optimal control problems with a general de-
viating argument is to obtain necessary conditions for optimality. Such conditions
provide a source of numerical methods for computing the optimal control. In this
paper we present an approach to (first order) necessary conditions for optimality in
systems described by nonlinear partial differential equations with deviating argument,
including terminal state inequality constraints. We explain our approach using Dar-
boux hyperbolic partial differential equations, and obtain new results which in fact
generalize the results of [5], [10], [11].

The paper is organized as follows. In Section 2, we formulate the optimal control
problem and discuss the existence and uniqueness of the solution for the governing
state equations. In Section 3, the adjoint equations are introduced and the existence
of their solutions is established. In Section 4 we derive the increment formula for
the functionals and give bounds for the remainders. Section 5 includes our necessary
conditions. In Section 6, we consider more general objective functions and generalize
the results of Section 5. Finally, in Section 7, we derive, under further regularity
assumptions, a simplified version of results in Section 5.

2. Problem formulation

In this section we first describe the system and basic assumptions, and then formu-
late the optimal control problem. In the rectangle

G := {(x, t) G R2 \x0 < x < X, t0 < / < T},

we consider the system

z*,(x, t) = f{x, t, z{x, t), z(x, a(t)), zx(x, t), zx(x, ff(0),

zt(x,t),z,{x,o(t)),u(x,t)), for a.e. (x, t) G G (2.1)

z(x, /) = <f>(x, t), (x, t) € |>b, X] x [a(t0), T]

z(x0, t) = VKO, t € [to, T], (2.2)

where z(x, t) = (zx(x, t),..., zn(x, t)) is the state, u(x, t) = (w,(.x, t),..., um(x, t))
is the control and o(t) is an absolutely continuous function satisfying o(t) < t,
do(t)/dt > 0. The inverse of a(t) is denoted by y(t).

Let U be a compact, convex set in Km. A measurable function u : G -*• Km

is called an admissible control if u G U a.e. on G. We denote by £2 the class of
admissible controls. For each u e Q, a function z := z(u) in Wl

p(G), p G [1, oo],
is said to be a solution of (2.1)-(2.2) if it satisfies (2.1) a.e. on G and the boundary
conditions (2.2) everywhere in the corresponding domain of definition. We require
the following assumptions regarding the existence and uniqueness of the solution of
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(Ai) The functions (j>(x,t) and \f/(t) are absolutely continuous on their respective
domains with <f>x, <p, and ifr, belonging to Lp, for some p € [1, oo]. Furthermore,

(A2) The n-vector function f(x, t, z,, £ , z2, £2, z3, f3, M) defined on G x K6" x [/
is measurable on G for fixed (z,, £,, z2l £2, z3, £3), and is continuous on U for
fixed (*, f, z,,£,, z2,f2, z3, £3). Furthermore, for each u e £2, the function
s(*,f) := f(x,t,0, 0, 0, 0, 0, 0, u(x,t)) belongs to Lp(G,JSin) with p as in
(A,).

(A3) The components / of / = (/i , . . . , / „ ) are continuously differentiable functions
of (zi, fi, z2, f2, z3, £3) for fixed (x, t, u).

(A4) There is a function Ki(x, t, u), with K}(x, t, u(x, t)) e L<x>(G) for u G £2, such
that for / = 1 , . . . , n; j = 1, 2, 3,

< Kx(x,t,u),

where Z(*, r) := (z(x, t), z(x, a(t)), zx(x, t), zx(x, o(t)), z,(x, t), z,(x, a{t)).

Let u € £2 be given. To prove the existence of a unique solution z := z(u) to
(2.1)-(2.2), we first note that over the subrectangle [x0, X] x [t0, y(t0)], the functions
z{x,a(t)), zx(x,o(t)), and zt(x,o(t)) are known in terms of the boundary data
(l>(x,t). Thus we can (as in [1], [11]) prove the existence of a unique solution to
(2.1)-(2.2) over [x0, X] x [t0, y(t0)]. Next, using z(x, y(tQ)) as a boundary data, we
apply the same argument to extend the solution further to [x0, X] x [y (r0), y (y (to))],
and so on until the whole rectangle is covered. Thus for a given u e Q, the system
(2.1)-(2.2) has a unique solution z(x, t) := z(u)(x, t). Furthermore, the estimates of
Theorems (3.1)-(3.2) of [11] still hold in our case, as can be easily seen. See also [1],
Section 4.3.

Now let the performance of the control process be estimated at x = X, t = T by
the functionals

Jk(u) := gk(z(X,T)), k = 0,l,...,r. (2.3)

We are concerned with the following optimal control problem.

Find u G £2 and the corresponding z := z(u), from (2.1)-(2.2), such that

Jk(u) < 0, for k = 1,2,.. . , r, and J0(u) < J0(u) for all u e J2.

We will refer to such a u as an optimal control.
We require the following assumption regarding the values gk.

(A5) The functions gk : K" ->• R, k = 0, 1, . . . , r are twice continuously differenti-
able.
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3. The adjoint equations

Define

//<*>(*, t, z, f, zx, ft,, z,, ft, u, Xm, /*<*>, pm, q(k)) :=

X(k) • zk + n<» • z, + (pm + q<*>) • f(x, t, z, £, zx, ft,, z,, ft, «).

NOTATION. Let w € ft and z := z(«) be an admissible pair for problem (P). In
what follows, for simplicity of notation, we denote by Hik)(x, t), the value of H(k) at
(x, t, z(x,t), z(x,a(t)), zx(x,t), zx(x,cr(t)), %{x,t), z,{x,o(t)), u(x,t), Xm(x,
t), /xik)(x, t), pw(x, t), q(k)(x, t)). Similarly, H{k\x, y(t)) denotes the value of //<*>
at(jc, y(t),z(x,y(t)), z(x,t), zx{x,y(f)), zx(x,t), z,(x,y(t)), z,(x,t), u(x, y(t)),
X<k\x,y(t)), p,(k)(x,y(t)), qm(x,y(t)). Also note that i(k)(x, t) := X(k)(u)(x, t),
etc. We now define the adjoint equations (or the linear conjugate problem) by the
following system of linear partial differential equations and boundary conditions.

, t) - y{t)Hlk\x, y(t)), (x, t) e [x0, X] x [t0, a(T)]

Af + /tr
w = -H?\x, t), (x,t)€ [x0, X] x [a(T), T]

Px
k) = -H2

(k)(x, t) - y(t)H«\x, y(t)), (x, t) € [*0, X] x [to, a(T)]

t), (x,t)e[xo,X]x[cj(T),T]

q<» = -H«\x, t) - y{t)H*\x, y(t)), (x, t) € [*0, X] x [t0, a(T)]

t), (x,t)€[xo,X]x[a(T),T]

Xm(X, t) = ix(k)(x, T)=0, r e [r0, T], x e [x0, X] (3.4)

pm(X, t) = qik\x, T) = gkl(z(X, T))/2, t e [to, T], x e [JC0, X]. (3.5)

We have the following result.

THEOREM 3.1. Let u e ft and let z be the corresponding solution of (2.1)-(2.2).
Then there exist solutions X(k\ fXm, pik\ qw in [L^G)]" with Xm, p(k) absolutely
continuous with respect to x, and jx(k), qik) absolutely continuous with respect to t,
satisfying (3.1)-(3.5).

PROOF. We first consider the system in the subrectangle [x0, X] x [o{T), T]:
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, 0,
)

p(k\X, t) = q(k\x, T) = {gkz(HX, T)). (3.7)

This system is equivalent to a system of two-dimensional Volterra integral equa-
tions. To see this, let 6(k\x, t) := p(k)(x, t) + q(k)(x, t) and formally integrate (3.6)
as follows.

,r)= {' Xf(a,t)da,
Jx

!X«\x, 0 = -J [Af (x, p) + fz(x, tfe^ix, j8)] dp,

p<*\x, t) = {gkz(HX, T)) + j J [x(k)(a, P) + +/(«, £ ) V V P)\ dadp

- f fZi{a,t^e(k\a,t)da,
Jx

qm(x, t) = \gh(z(X, T))- [ f Xf\a, p)dctdp - f fZx(x, pf>>(*, P)dp.
JT JX JT

Thus 9(k) satisfies the integral equation 16 = 9, where

/ Ma,P) 9(a, P) dadp

Jt

+ J fl(x,P)r9(x,p)dp + j fz,(a,t)r9(a,t)da.

The integral equation 16 = 9 can be shown to have a unique solution 9 e [L
(see [1]). Having 9{k\ we can find from (3.6) ix(k\ pik) andqm in terms of A(t) and 9(k)

for (JC, 0 e [x0, X] x [o(T), T]. Note therefore that Hf\x, y(t)) fi£\x, y(t)), and
H^i** Y(0), are known over the subrectangle [x0, X] x [a(a(7)), CT(7)]. Thus by
repeating the above argument the solution is extended to [x0, X] x [o(o(J)), CT(7)],

and so on until the whole rectangle is covered. This completes the proof of the
theorem.

REMARK 3.1. Note that since 6{k) := pm + q(k) is uniquely determined as the fixed
point of / , for different choices of A(i) we will get the same p( t ) + qw.
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4. The increment formula

In this section we derive integral representations for the increments Jk{u) -
Jk(u), k = 0, 1 , . . . , r, where u,u e fi. The corresponding states are denoted
by z := z(«) and z := z(u). To simplify the exposition, we use the notation

g2 :=
 d-f(z(X, T)),
az

Az := z — z,

f(x, t) := f{x, t, z(x, t), z(x, a(t)),..., u(x, t)),

K,if{x, t) := f(x, t, z{x, t), z(x, ait)), ...,%{x, a(t)), u(x, t)) - f(x, t).

Similar notation will be used when we write AujH
(k\x, t). We have

Jk(u) - Jk(u) = gkz • Az(X, T) + o(||z||)

= \gkz • Az(X, T) + \gkt • Az(X, T) + o(\\z\\)

fx

= / \gkz • Azx(x, T)dx + fl \gkl • Az,(X, t)dt + o(\\z\\).

Using the boundary conditions (3.4)-(3.5) along with integration by parts, we continue
as follows.

«\Mu) - Jk(u) = f q«\x, T) • Azx(x, T)dx

+ f pw(X,t)-Az,(X,t)dt+o(\\Az\\)

= j I (9»> • Azx + p w • Azxl) dxdt

+ I f (pM • Az, + p « • Az,,) dxdt

= j J (<7,(*> • Az, + p ^ • Az,,) dxdt

+ J f {px
k) + q(k)) • Azxldxdt +o(\\Az\\). (4.1)

Substitution from (3.2)-(3.3) into the first integral on the right-hand side of (4.1) yields
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fX ro(T)

= - / / H»\x, 0 + Y(t)Hg\x, Y(O) Azx(x, t) dxdt
Jxa Jto L J

- / / H«\x,t)AzAx,t)dxdt

/ H«\x, t) + y(t)H«\x, y(r)) Az,(x, t)dxdt

- / / H«)(x,t)Az,(x,t)dxdt

= - [ f [A™ (*• 0Azx(x, t) + // , t)Az,(x,

On making the change of variable x = y (f), t = <T(T), the second integral in the last
expression becomes

X rT

Noting that Az{x, t) = 0 for {x, t) € [x0, X] x [a(t0), t0], and hence Azx(x, t) =
Az,(x, 0 = 0 for (x, t) e [x0, X] x [a(t0), t0], we see that Azx(x, CT(T)) = Az,(x,
CT(T)) = 0 for T G [r0, y(to)]- Thus we conclude that

I I r<?r(t) • A z , + p '* ' • Az, l
J JG

«(JC, 0 • AZ,(JC, 0 + # * ( * , 0 • AZ,(JC, a (0) ] dxdt.

To simplify the second integral in (4.1), we write

Az,, = /(JC, f, Z(JC, 0 , • • •, «(*, 0) - / ( * , /, z(jf, 0 , • • •, «(*, 0)

= AB.fi/(*, 0 + / (x , r, Z(JC, 0 , • • •, z/(jf, a(/)), «(*, r))

- /(JC, f, z(x, 0 . • • •, z,(*, a(f)), «(•«. 0)-

If we apply the mean-value theorem, the last relation yields

Az,, = AuMf(x, t) + fz(x, t, Z(x, 0, II(JC, 0)AZ,
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where Z(x, t):= (z(x, t), z(x, o(t)), zx(x, a(t)), z,(x, t), z,(x, a{t))) andZ := Z +
9(x, t)(Z — Z) for some function 9(x, t), 0 < 9 < 1. Thus the second integral in
(4.1) takes the form

f f (PW + Rk) • &u,ufU, 0 dxdt +j f (p« + qm)J fz(x, t)AZ dxdt

+ / f (pik) + q(k))T\fz(x,t,Z(x,t),u(x,t))-fz(x,t)]AZdxdt.
J Jo l J

 (4.3

Substitution of (4.2)-(4.3) into (4.1) yields, for k = 0, 1 , . . . , r,

Jk(u) - Jk(u) =

f f Au,iH«c)(x,t)dxdt

+ f J \k<» • Azx + M«' • Az, + (pM + qM)T fj> Azl dxdt

+ 11 (p(k) + gm)J [/,(JC, t, Z(x, o, u(x, t)) - fz(x, o] AZdxdt

Note from (3.1)-(3.4) and (2.2) that the second integral in the above expression
vanishes. We have finally arrived at the integral representation

h(u) - Jk(u) =fj AUi&Hm(x, t)dxdt + r)k, (4.4)

where

is the remainder term, to be estimated below. To estimate r)k, we require the following
assumptions.

(A6) There exists a nonnegative real-valued function M{x, t, u) defined on G x U
with M(x, t, u(x, 0) e L4(G) for u € £2; and for p € [1, oo), there exists a
constant AT2 > 0 such that

f 3 yi*
\f(X, t, ZU^,Z2, <2) Z3, ft, U) | < M(^, f, II) + K2 \

for all (A:, r, z,, ft, z2, ft, z3, ft, u) e G x K6" x £/.

If p = oo, then we require | / | < M(x, /, M) + ^ ( E L , U.I + Iftl)-
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(A7) The partial derivatives /Zj, fKi, i = 1, 2, 3, satisfy a Lipschitz condition with
respect to (z,, f i, z2, fc. ̂ 3. £s)-

Now let (x0, t0) be an interior point of G at a distance 8 > 0 from dG. For
0 < 6 < 80 denote by Gs the square

Gs := {(*, t) € G \ x0 < x < x0 + 8, t0 < t < t0 + 8}.

For M e f2 and v an arbitrary element of U, define the (admissible) control variation

\u(x,t), (x,t)eG\Gs,
us(x, t):= \ (4.5)

[v, (x,t)eGs.
We have the following.

LEMMA 4.1. Suppose that assumptions (Ai)-(A7) hold. Then there exists a constant
K3 independent of u,v and such that the remainder term r\k, 0 < k < r, in (4.4)
satisfies the estimate

\m\<K38
2B(u,v,8), (4.6)

where

B(u, v, 8) := j j | A ^ / O t , t)\2 dxdt + (j j \AUStif(x, t)\2 dxdt\

(jj \AUi,if(x,t)\4dxdt\

and B(u, v, 8) - • 0 as 8 -+ 0.

PROOF. The estimate (4.6) follows from the same line of analysis as in [1] or [11]. We
omit the details. Since, by (/46), | AUj,uf(x, t)\ e L4(G) and G is bounded, it follows
that B(M, v, 8) -> 0 as 8 -> 0.

From (4.4) and Lemma 4.1, we have therefore obtained the following integral
representation for the increment of J.

THEOREM 4.1. Suppose that assumptions (Ai)-(A6) hold. Then with u :— us defined
as in (4.5),

Mu6) -Jk(u) = J f Aus,uH«\x, t) dxdt + nk, (4.7)

where r)k satisfies (4.6).
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5. Necessary conditions

In this section we state and prove necessary conditions for optimality for problem
(P), in the form of a Pontryagin maximum principle. We begin by rewriting (4.7) as

o, t0) + o(S2), (5.1)

k — 0, 1 , . . . , r; for a.e. (*0, t0) e Int G.

This of course follows by standard arguments involving the Lebesgue differentiation
theorem (see [1] or [15]). Here Av!iH

<-k)(xo, t0) denotes the difference

H(k)(x0, t0, Z(JC0, h), v, X(k)(x0, t0), n
(k)(x0, t0), p

ik\x0, t0), q
m(x0, t0))

0, t0, Z(x0, t0), u(x0, h), ^k)(x0, to), ^(t)(*o, h), pik\x0, t0), q
m(x0, t0)).

Next let (x, t) e G, where G denotes the intersection of the interior of G and the
Lebesgue point of Avj := H{k), and define

ak(x, t; v, u) := AVtiH
w(x, t), 0<k<r

a(x, t; v, u) = (ao(x, t; v,u),..., ar(x, t; v, u)),

A := {a(x, t; v, u) e K1+r | v € U, u € £2, (x, t) € G j , (5.2)

B := {b = (bo,bu...,br) e K1+r | bk < Ofor k e / } . (5.3)

THEOREM 5.1. Let u e Q be an optimal control for problem (P), and suppose that
assumptions (A 1 )-(A7) are satisfied. Then the set B and the convex hull CH(A) of the
set A have no common points, that is, B 0 CH(A) = 0.

PROOF. Suppose, on the contrary, that there is an element c 6 Kl+r such that c 6
B D CH(A). Then by the definition of the convex hull, there are points (JC,, tt) € G
and v, G U, and 9t,i = 1, . . . , £ , such that

J2=l- (5-4)
;=i

Moreover, since c e B, its components c; satisfy

t
OiOjiXj, ti\ Vj, u) < 0 for ; € / . (5.5)1 = 1

Below, using the set of parameters {*,, ?,; vt, 0,}, 1 < / < I, we construct a special
variation us of the optimal control u which is admissible, satisfies Jk(us) < 0 for
k = 1 , . . . , r, and /o("a) < Jo(u). This contradiction proves the theorem.
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If (xp, tp) is an isolated point of the set {*,, f,}, 1 < / < £, that is, if (xp, tp) ^ (*,-, r,-)
for /?,-, we set Gjp) := {(x, ( ) e G U p < j : < x p + S9P, tp < t < tp + 8}. If

( x P l , t P l ) = ••• = ( x P v , t P v ) , 1 < p i < ••• < p v < t,

then for m = 1 , . . . , v set

I m—1 m I

(x, r) € G | JCPI + « J^flp, < JC < *„ + S £ f l B , h, $ x < 'P. + S •
1=1 1=1 J

We note that in either case, the measure (area) of G\p) is S29P. We choose S > 0
sufficiently small so that the rectangles G\p) are pairwise disjoint. For each i =
1 , . . . ,£, we now set

(0 f«(* , r ) , for (JC, 0 e G\G,-

[«,-, farOcOeG,-,

and define the convex combination «i(jr, r) := ^f=1 Q^ipc, t), (x, t) e G. By
the convexity of the set U, us(x, t) e £2. Now a modification of the proof of Lemma
4.3.2 of [1] shows that the estimate (4.6) still holds for the control variation given
above and we have as in (5.1),

i

h(««) - /*(«) = J2eJa"(.Xj,tjWj,u)S2 + o(.S2) k = 0, 1 , . . . , r. (5.6)
y=i

From the definition of the set / and (5.5), it now follows that for small enough S,

Jk(us)< Jk(u)<0, k = l,...,r,

J0(us) < J0(u).

This contradicts the optimality of u and the proof is complete.

REMARK 5.1. The basic idea of the above proof is well-known (see [8], [13]).

Next we state our necessary condition in the form of a pointwise maximum principle.
In the following theorem / denotes the set of inactive constraint indices defined above.

THEOREM 5.2. Let u e £2 be an optimal control for problem (P), and suppose

that assumptions (A!)-(A7) are satisfied. Then there exist a nonzero vector x =
(Xo, Xi, • • •, Xr) e K1+rwith

Xk>0 fork el; Xk = 0 for k € {0, 1 , . . . , r)\I,
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and a set of multipliers (k, /x, p,q) in L^G, D&4") such that the maximum principle

H(x, t) < H(x, t; v) for all v € U and for a.e. (x, t) G G (5.7)

holds, where

H(x, t, z, f, zx, £,, z,, £,, u, X, n, p, q) :=

kzx + fiz,(p + q)f(x, t, z, f, zx, Zx, z,, i;,, u)

and

ix + ix, = -Hz(x, t) - y(t)H((x, y{t)), (x, t) e [x0, X] x [t0, a(T)]

ix + p., = -H,(x,t), (x,t)e[xo,X]x[a(T),T]

px = -HZi(x,t)-y(t)H(,(x,Y(t)), (x,t)e[x0,X]x[t0,o-(t)]

px = -Hz,(x, t), (x, t) e [x0, X] x [a{T), T]

q, = -HZx{x, t) - y{t)HKXx, y(t)), (x, t) e [x0, X] x [t0, a(t)]

q, = -HZx(x, t), {x, t) G [xo, X] x [a(T), T]

i O, te[to,T]; p,(x,T) = O, x€[x0, X] (5.11)

p(X, t) = \ J^Xk^i(z(X, 7)), t € [to, T] (5.12)

k^
L(HX,T)), x€[xo,X]. (5.13)

dz

PROOF. Since the convex sets B and the convex hull CH(A) have empty inter-
sections, by the standard separation theorems, there exists a nonzero vector x =
(Xo.Xi. •••.*,•)€ K1+r such that

X - b < 0 for all b e B ; X " > 0 f o r a l l a e A . (5.14)

By the definition of the set B, the first inequality in (5.14) yields

Xk > 0 for k G / ; xt = 0 for k G (0, 1 , . . . , r)\I.

According to the definition of the set A, the second inequality in (5.14) yields

Xk&v,aHk(.xo, t0) > 0 f o r a l l veU, a . e . ( JC 0 , t0) G G. (5.15)
jt=i
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Define
r r

A{X, I) . = / ^ XtA \ x , I), £K-*> 1) .= ^ Xkh'' \X, I),
*=0 k=O

p(x,t):=2_/XkPw(x,t), q(x,t):=
k=0 k=0

k=0

where //( t ) 's are as in Section 3. We see that relations (5.8)-(5.13) follow from (3.1)-
(3.6). The minimum condition (5.7) follows immediately from (5.15) and the facts
that H is continuous on U and that almost all (x, t) 6 G are regular points of H. This
completes the proof.

6. More general objective functions

Suppose that the cost functional Jk are given by

Mu) := gk(z(X, T)) + j I Fk(x, t, z(x, t), zx(x, t), z,(x, t), u(x, t)) dxdt

fx fr
+ Pk(x,z(x,T))dx+ Qk(t,z(X,t))dt. (6.1)

In this case we replace assumption (A4) by the following.

(A4) The functions gk : K" - • K are twice continuously differentiable. The func-
tions Fk(x, t, zx, z2, Z 3 , i i ) : G x l 3 " x [ / - ^ l are measurable on G for fixed
(zi, z2, z3, u), continuous on U for fixed (x, t, zit z2, z3), and twice continuously
differentiable on K3" for fixed (x, t, u). The functions Pk(x, z) : [x0, X] x K" -+
K are measurable on [x0, X] for fixed z and twice continuously differentiable on
K" for fixed x. The functions Qk(t, z) : [t0, T] x K" -^ K are measurable on
[t0, T] for fixed z and twice continuously differentiable on K" for fixed t. Fur-
thermore, there is a function K'(x, t, u) with K'{x, t, u(x, t)) e L^G), such
that for/ = l,...,n;j = 1,2, 3,

\FZj(x,t,z,zs,z,,u)\ < K'(x,t,u{x,t)).

In this case, the Hamiltonian function H(k) is modified to

H(k\x,t,Z,u,X,fj,,p,q) :=

zx + tx{k)z, + (p<*> + <?<*>) f{x, t, Z, u) + Fk(x, t, z, z,, zt, «), (6.2)
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where, as before, Z := (z, £, zx, £*, z,, £,).
By minor modifications of developments in Sections 3-5, we obtain the following

result, the details of proof of which are omitted.

THEOREM 6.1. Let it e Q. be an optimal control for problem (P) with Jk defined as in
(6.1). Suppose that assumptions (Ai)-(A2), (A'4), and (A6)-(A7) are satisfied. Then
there exist a nonzero vector x = (xo, X\»• • •. Xr) € K1+r with

Xk>0 fork el; ** = 0 for k e {0, 1 , . . . ,r]\I,

and a set of multipliers (X, /x, p, q) e L^iG, K4") such that the maximum principle

H(x, t) < H(x, t; v), for all v e U, a.e. {x, t) e G

holds, where H is defined as in (6.2) and X, /z, p, q satisfy (5.8)-(5.1l), along with
the boundary conditions

p(X, t) = YjXk [5^(2^. T))l + ̂ 7 ^ X ' <»' l e Co, T]

q(x, T) = YjXk [^(2(^. r)) + ^7<5^' r ) ) ] ' x

7. A special case

Under further regularity assumptions we derive a simplified version of Theorem 5.2
in this section. We require the following assumptions.

(A8) For a given optimal pair (M, Z) and the corresponding multipliers X, /x, p, and q,
the (generalized) partial derivatives

dxf=l

exist for i = 1, 2, . . . , n.

9/y • dfj \
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Under (As), the adjoint equations (5.9)-(5.1O) can be differentiated as follows.

Px, = -A, - [(fax, 0 + HO fax, Y(0)) (p + q)\ ,

Px, = -£ / - [fax, Oip + q)\ , (x, t) e [jf0, X] x [o(J), T]

q» = -K - [(£(*, t) + noL(x, yit))) (p + q)\,

(x,t)€[xo,X]x[to,a(T)]

Px, = ~K - [fax, O(P + q)\ , ix, t) e [x0, X] x [a(D, T].

Setting 9 := p + q, and J4? := 0 • f, we derive from the above equations and (5.8)
that

6xt = Mix, t) + yj%(x, y(t)) - (Mx(x, t)

- (Hz,(x, t) + y(t)J%,(x, y(r)))(, (x, t) e [x0, X] x [t0, a(T)]

ext = Mix, t) - (MM, O)X - (Mix, o ) t , (x, t) e [x0, x] x [a(D, n

Regarding the boundary conditions for 0, we have from (5.11)-(5.13) that

6x(x, T) = px(x, T) + qx(x, T) = px(x, T)

= -fox, T) - fax, T)0(x, T) = -fax, T)0{x, T), x € [xo, X]

= -Mix,T).

Similarly

6,iX, t) = - (fax, t) + y(0 ft,{X, yiO)) iP + q)

= -HZx{X, t) - y(t)Hix(X, y(0), t e [to, o(T)},

and

9,(X, t) = -fax, t)9(X, 0 = -MX(X, t) t e [a(T), T].

Finally,

Summarizing the above developments, we have the following results.
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THEOREM 7.1. Let it e £2 be an optimal controlfor problem (P). Suppose that assump-
tions ( J4 I ) - (A 8 ) are satisfied. Then there exist a nonzero vector x = (Xo. Xi> • • • > Xr) £
(R1+r with

Xk>0 fork el; Xk = O for f e {0, 1 , . . . , r)\I

and a unique 0 e LOO(G, DS") such that

Sf(x, t, Z{x, t), u(x, t), §(x, 0) < JV(.x, t, Z(x, t), v, §(x, t))

for all v e U and a.e. (x, t) e G,

where

jnx,t,Z,u,6):=0-f(x,t,Z,u),

Gx, = Mix, t) + y(t)J%(x,y(t)) - (J%x(x, t) + yiO^x, Y(0))x

- (MM, 0 + Y(0M,(x, Y(t)))t, (x, t) e [x0, X] x [t0, a(T)]

ext = Mix, t) - (Mx(x, O)^ - (M,(x, O)f, (x, t) e [x0, X] x [a(D, T]

§x(x, T) = -M,(,x, T), x € [jtb, X]

0,(X, t) = -MX(X, t) - y(t)MAX, y(t)), t e [t0, o{T)]

0,(X,t) = -J%,(X,t), te[o{T),T]

k=o "z

REMARK 7.1. A very special case of problem (P) is considered in [9] and a result
similar to Theorem 7.1 is established. Specifically, in [9], / is a scalar function,
controls are assumed piecewise continuous, there are no terminal state constraints,
g{z) = z, and a simple delay problem is considered.

Conclusion

In this paper we have presented an approach to (first order) necessary conditions,
in the form of a Pontryagin maximum principle, for constrained controlled processes
with distributed parameters and deviating argument. The approach presented here
applies equally well to other nonlinear constrained distributed parameter systems with
deviating argument.
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