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1. Introduction

An irreducible curve in S4, projective 4-space, may arise as the complete
intersection of three given irreducible threefolds. At a simple point P on such
a curve there is an osculating solid, and we would like to have its equation.
This solid, necessarily containing the tangent line to the curve at P, belongs to
the net spanned by the tangent solids at P to the threefolds. We seek the appro-
priate linear combination of the known equations for these tangent solids.

Hesse (9, p. 283) solved the analogous problem in S3; he found the osculating
planes to an irreducible curve which is the complete intersection of two surfaces.
Salmon (10, p. 328) and Baker (3, p. 206) reproduce Hesse's solution. Later
Clebsch (5) found a surface cutting this curve at its contacts with its hyper-
osculating planes (see also (10), p. 330): for a canonical curve these stalls are
the Weierstrass points (3, pp. 186, 201).

The problem of finding the equation for the osculating solid in S4 was posed
recently by Edge (6), who remarks on page 277 that Hesse's methods only carry
one a certain distance towards its solution. Indeed, they do not yield a com-
plete solution in the simple case when each threefold is a general quadric.
Edge is, however, concerned with a special curve, the octavic intersection of
three quadrics with a common self-polar simplex. He finds the osculating
solids to this curve by expeditious use of the more amenable algebra (6, p. 278).

The general problem is solved in Section 2 of this paper. Precisely, we obtain
the equation for the osculating solid to a complete irreducible curve of inter-
section of three threefolds in S4 at a simple point whose osculating plane has
its statutory minimal 3-point contact. Edge's curve has simple points whose
osculating planes have 4-point contact (6, p. 279). These points come into
prominence when we harmonise his and our solutions. Our equation has certain
affinities with that of Clebsch's surface. This is because we, like Clebsch, need
differentials up to the third order: Hesse required only second order differ-
entials. When each threefold is a quadric their'intersection is a canonical curve
of genus 5, so it is a happy coincidence that our equation takes a particularly
neat form for this curve. Connected with the equation are three quartic three-
folds, and we briefly indicate their geometrical relation to the quadrics.
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Edge asked his question in the classical setting of complex projective geo-
metry, and we shall answer in the same setting. As is usual, the result is valid
in an S4 over any algebraically closed field of characteristic zero. So we present
our solution in a form that can be adapted easily to the more general setting,
and we briefly indicate the modifications necessary.

In Section 4 we examine a class of special curves of intersection in Sn: the
intersection of (n— 1) quadrics with a common self-polar simplex is one of these
curves. Each curve has special points where the osculating spaces have excep-
tionally high order of contact; the situation parallels that for Edge's curve.
We show, also, that Edge's method extends to yield the equation of the osculating
£„_! at a " non-special " point of such a curve.

2. Osculating solids to curves of intersection in S4

2.1. We take (JC0, xu x2, x3, x4) = x' as the coordinates of the S4.
Suppose that the irreducible curve C is the complete intersection of the

irreducible threefolds: f(x) = 0; g(x) = 0; h(x) = 0; whose respective orders
are p, q, r ^ 2. We mean by this that the intersection of the threef olds has a
single component, namely C, which occurs with multiplicity one; the threef olds
intersect simply along C. The order of C is pqr, and a special case of Noether's
Theorem states that the equations of the threef olds form a basis for the ideal of
C.

Let P be a simple point on C, and suppose that we know a coordinate vector
for P. Like Hesse, to aid our calculation we introduce an auxiliary linear form:
this is to be any linear form which takes the value 1 when we substitute the
vector of P for x. Suppose that £ a;x; is such a form, where here and through-

i

out Sections 2 and 3 the summations run over 0, 1,2, 3, 4. If desired, we may
choose all but one of the at to be zero, but we do not wish to specify the non-
zero at.

P is simple, so through it passes a single branch of C. We take affine (or
normalised) coordinates for this branch so that if £ is the vector of one of its
points then

I«^ = l- (1)

A minimal or irreducible parametrisation of the branch gives the £j as power
series in some complex parameter t. The sufficiently small / for which the series
converge give the points on the branch (3, p. 35; 11, pp. 187, 193; 13, pp. 96,
97).

2.2. The equation for the osculating solid to C at P will involve 5x5 deter-
minants some of whose entries are themselves 7x7 determinants. To ease our
manipulations it is essential to introduce some notation.

If v(x) is a form then vt(x) denotes its partial derivative with respect to xh

and Vi;(x) is the column 5-vector whose (i+ l)th entry is vt(x) for i = 0,1, 2, 3, 4.
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We write F(x) for the Hessian matrix (/,/*)), with G(x) and H{x) similarly
defined.

Using, as previously, dashes to denote transpose we define

(F(x)
det

Vg(x), Vh(x)\

0,
(2)

and J^(x) are obtained by cyclic change of/, g, h. Notice that the form
has degree 3p+2q+2r—10.

F, v, v{, Vv will denote the results of substituting £, for x in F(x), v(x), vt{x),
Wv(x) respectively: G and Hhave the obvious meanings. In particular we have

and
/ = g = h = 0, (3).

Vv/t)'

• (4)

We write (a0, au a2, a3, aA) = a'. The determinant of the matrix obtained
by removing the (/+ l)th row from the 5 x 4 matrix (V/, V#, Vh, a) will be denoted

2.3. In this subsection we collect various formulae necessary to our compu-
tation. They hold for f on the branch. We differentiate (with respect to 0
(1) and (3) to obtain

(5)

(6)

• = 0. (7)

a'dc, = (V/)'d£ = (yg)'dZ = (VhYdS = 0.

Two further differentiations of (5) give successively

and
T,fid%+

Euler's Theorem for homogeneous functions gives

When we differentiate (8) and use (5) we find that

£'d(V/) = 0.
E.M.S.—18/4—F

(8)

(9)

(10)

(11)
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Finally we have
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Fd<; = d(Vf).

There are analogues of (5)-(12) for g and h.

(12)

2.4. P is simple, so (Vf, Vg, Vh) has rank 3 when t — 0 (see Section 2.1).
From (1) and (8) we infer that (Vf, Vg, V/z, a) has rank 4 at P. Hence there is an i
for which | Vf, Vgr, V/J, a \t is non-zero at i>. But | V/, Vg, Vh, a |{ is a power
series in r, so for all sufficiently small t this | Vf, Vg, V//, a |{ is non-zero and its
reciprocal is a convergent power series in t. From now on we confine our
attention to the £, corresponding to such /: for these £ the rank of (V/, Vg, Vh, a)
is 4. We deduce from (5) that

d^ = ( - IJK | V/, Vg, Vh, a \, for i = 0, 1, 2, 3, 4, (13)

where K is the product of dt with a convergent power series in t, and is indepen-
dent of i. A differentiation gives, when we make an obvious extension of our
notation,

d2i( = (-l)'rfK| V/, Vg, Vh, a | , + ( - 1 ) ' K | d(Vf), Vg, Vh, a |,

+ ( - 1)'K | Vf, d(Vg), Vh,a\M~ 1)'« I V/, Vg, d(Vft), a |t. (14)

2.5. We can now obtain an expression for ^/jd2^-. A Laplace expansion
i

of the determinant by its last 4 columns and rows taken with (13) shows that

UJ
«, = ic2det

(v/y
(Vg)'
(Vh)'

Vf, Vg, Vh, a

(15)

Subtract from the 6th column of the determinant (p— 1) *f, times the (J+ l)th
column for 1 = 0, 1, 2, 3, 4. By (1), (8) and (9) the new 6th column has zero
for all its entries apart from the last which is — {p — 1) ~1. Thus the determinant
has value

(p-iy'det (Vf)'
(Vg)'

\(Vh)'

Vg, Vh, a)

Repeating the procedure on the rows we find from (4) and (6) that

, = K2tF. (16)

There are similar formulae for g and h. This is true in particular when t = 0.
By Section 2.1 the vector ^ is then the given one for P. We obtain
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Lemma 1. If I; is the vector ofP, then at P

i i

where K is a constant times dt.

2.6. We may evaluate ^ / jd 3 ^ by the same method. A Laplace expansion
i

gives from (13), (14) and the argument of Section 2.5

fiJd%dij= -KdidF+K2(A+B + D), (17)Y

.4 = det
(v/y
(Vg)'
(Vh)'

d(Vf), Vg, Vh, a

= det
(V/)'

(Vh)'
la'

Vf, d(Vg), Vh, a

= det
(v/y
(Vg)'
(Vh)'

.a'

Vf, Vg, d(Vh), a

By (5) and (12) the 6th column of A is a linear combination of the preceding
ones, so A = 0. If we repeat the procedure of Section 2.5 on B and D, and use
(11) in addition to (1), (8) and (9) we obtain

det
i. j \(Vh)'

d(Vg), Vh\

(Vh)'

Vg, d(Vh)\

02
• (18)

2.7. In order to deal with the second term in (18) we introduce some more
notation. We write

d e t \(Vg)'
\ \vh)'

vh\
+ d e t \(Vg)'

\(Vh)'

Vg Vh\

0,
(19)

(#0, Fu F2, &3, PJ. (20)
Iff(x) is a quadratic then ^t = J^ and V& = VJ5": this is seen by taking a
Laplace expansion of SF by the last two rows and columns. This explains our
choice of notation. V^ and V^C are obtained similarly.
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2.8. Writing (18) in the form

it follows, by (6), (7), (16), that

£/,d3€, = 3KdKSF + K2(VSF+iV&-)'dt. (21)

The analogues of (16) and (21) for g and h, and an appeal to (13), show that

• c W — * = * °> °' °' ° \ (22)
\V^ + iV^, VJf + | V ^ , V/, Vg, V/i, a/

But from the analogues of (19) and (20) for ^ we have £'V^ = 2(p + r-
so from (10) we have <!;'(W+iV^) = 2>(p+q+r—Ayg. The same relationship
holds for Jf. Subtract from the first row of the determinant in (22)

Qp+3q+3r-l2)-%

times the (i + l)th row for / = 0, 1, 2, 3, 4. Using (1), (8) and putting / = 0 we
find

Lemma 2. If t, is the vector of P, then at P

, V/, Vg, Vh).

2.9. Lemmas 1, 2 are the only results we shall need subsequently. They
are true when the ground field K is an arbitrary algebraically closed field of
characteristic zero. We indicate the modifications necessary for their proof in
this setting.

Instead of a branch of C through P we consider the single linear place with
centre P (17, p. 193; 13, p. 140). We take a minimal parametrisation £, of this
place satisfying (1), but now the £, are formal power series in an indeterminate /.
We introduce a second indeterminate dt to obtain differentials. Our formal
calculations proceed as before, but we must modify the first paragraph of
Section 2.4 which depends on convergence. £, is a generic point of C (11, pp. 61,
187), and so is simple. Thus (V/, Vg, Vh, a) has rank 4. By our hypothesis for P
there is an i such that the " constant term " of the power series | V/, Wg, Vh, a |{
is non-zero. The inverse of this series is thus another power series. Equation
(13) now follows, and hence so do all the numbered equations. Each of these
equations is one in which all the terms are power series in t times a power of
dt. By taking the terms of zero order in tin (16) and (22) we obtain Lemmas 1, 2,
where £ now stands for the centre of the place, P.

2.10. The osculating spaces to C at P are those of the branch or place.
Suppose that the osculating plane at P(£) has 3-point contact: the curve is not
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planar by Section 2.1. Then the osculating solid at P is spanned by £, dE,, d2t,,
d3£. This follows from (3, p. 199) however we regard the series (see also (11),
p. 182). Any solid through £, and dt; has the form

(1V/+ n Vg + vVh)'x = 0. (23)

We obtain two independent equations for (X, n, v) when we require this solid to
contain d2£, and d3^. By Lemma 1 the first of these is

K\1& + n& + v3^C) = 0. (24)

Hence K is non-zero. From (23) and Lemma 2 we deduce

Theorem 1. Suppose that C is an irreducible curve which is the complete
intersection of the primals f(x) = 0; g{x) = 0; h(x) = 0; in an S4 over an
algebraically closed field of characteristic zero. Suppose that the threefolds have
respective orders p,q,r^. 2, so that C has order pqr. Let Pbe a simple point on C
with coordinate t;, and suppose that the osculating plane at P has 3-point contact.
THEN, with the definitions (4) and (20) above, the osculating solid at P has
equation

{V/.det (W+iV0, V^f + iV^f, Vf Vg, V/i)

+ Vg.det(y^+iV^, V ^ + iV^ , Vf, Vg, V/i)

+ V/i.det (VJS' + i ^ , W + i W , Vf, Vg, Vh)}'x = 0.
It is, perhaps, pertinent to point out that the result is true if p = 1 but

q, r ^ 2, provided we put #" = 0. The osculating solid is just the prime
Ax) = 0'.

Our equation is of degree 6(p+q+r)—26 in the ^. Edge suggests (6, p. 279)
that the degree should be 10(p+q + r — 5), but he gives no indication of why this
should be so. Our result implies that pqr(6p + 6q + 6r — 26) osculating solids
to C pass through a general point x: to see this interpret the equation of the
osculating solid as a restriction on £ with x fixed. We indicate an alternative
derivation of this result for a general nonsingular C. Edge's factor (p+q + r—5)
appears in a formula for the genus. By (12, p. 191) the rank of C is

pqr(p+q + r-3),
so its genus D is (12, p. 190) given by

2(D-1) = pqr(p + q + r-3)-2pqr = pqr(p + q + r-5). (25)

The number of osculating solids to C through x equals the number of sets of a
linear series g\qr that have four coincident members, where the series is cut on C
by the solids through x. This number is (4, p. 10; 12, p. 389)

4{pqr+3(D-l)},
which by (25) is pqr{4 + 6(p+q + r-5)} or pqr(6p + 6q+6r-26). Thus the
equation of the osculating solid at ^ has degree 6(j>+q+r) — 26 in the ££ this
corrects the l0(p+q+r-5) of (6).
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3. The intersection of three quadrics in SA

3.1. Suppose that each threefold is a quadric and that

/(x) = x'Ax, g(x) = x'Bx, h(x) = x'Cx. (26)

C is then an octavic of genus 5, the canonical model for curves of genus 5.
Each point £, of C is nonsingular or simple (11, p. 279; 13, p. 188). From (4)
we find that

= 27 det

Vc
e, cz\

say. (27)

SB and <6 are similarly defined as 2 1(S and 2 7 ^" respectively. Recalling from
Section 2.7 that VlF and V^" now coincide we obtain

Theorem 2. Suppose that the point t, of 54 satisfies

where the quadrics intersect in a canonical curve C of genus 5. Define

ssl =

Then, if the osculating plane to C at I; has 3-point contact, the equation of the
osculating solid to C at t, is

+ B.

+ C. = 0.
^v<=0) Si, Si, S3, S

3.2. We make a few comments about the relationship of the quadrics to
the quartic primal

Bx, Cx\
= 0. (28)det \x B

\x'C

A point x lies on the quartic if and only if there are y, fi, v not all zero such that

Ay + fiBx + vCx = 0; x'By = x'Cy = 0. (29)

Certainly each of the 5 vertices of the common self-polar simplex of the quadrics
g and h lies on the quartic—we restrict our attention to the general case. For

https://doi.org/10.1017/S0013091500010130 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010130


OSCULATING PRIMES TO CURVES OF INTERSECTION 333

at each vertex x the vectors Bx, Cx are dependent. Moreover, each such x is a
singular point on the quartic: each term in the sum obtained on differentiating
the left-hand side of (28) has either its last two rows or its last two columns
dependent.

Suppose x is on the quartic distinct from these points. Then from (29)
y # 0 and gives a point in the polar plane n of x with respect to the pencil of
quadrics determined by g and ft. Further, the polar solid of y with respect t o /
contains n. From (29) we obtain

y'Ay = 0, (30)

so y is on/. Hence n meets / i n a singular conic, and y is a vertex. Conversely,
suppose that x is a point whose polar plane n with respect to the pencil g, h has
a singular section with/. Let y be a vertex of the section. Then y is conjugate
to each point of it with respect to / , and (29) follows. Hence x lies on the
quartic.

Suppose, now, that x is a common point of C and the quartic. The points
x and y do not coincide: if they did then by (29) the tangent solids to the
quadrics at x would meet in a plane, and x would not be simple on C. Since x
is in n it is conjugate to y with respect to / Hence xy is the tangent line to C
at x and lies on / . Conversely, suppose that the tangent line to C a t a point x
lies on/. This line lies in n, which thus has a singular section with/. Thus x
is on the quartic. We conclude that there are 4x8 = 32 points of C whose
tangent lines are lines onf. Our quartic determines these points. The number
of tangents to C which lie on / can be obtained also from a formula given by
Baker (1, p. 23). He uses the Cayley-Brill formula to deduce that a non-
singular curve with order n and genus D which lies on a quadric has 2(n+2D—2)
of its tangents on the quadric. Taking n = 8 and D = 5 for C gives 32. I am
indebted to the referee for this reference, and for other helpful remarks.

3.3. To obtain Edge's curve we take A = I5, B = diag. (a0, ay, a2, a3, a4)
and C — B2, where the at are distinct and non-zero (6, p. 277). Suppose that
the osculating plane at ^ on C has 3-point contact. After some tedious manipu-
lation we find from Theorem 2 that the osculating solid at £ has equation

MiSitzU I { E affi-(°-a,) I «foa}2fo] = 0, (31)
v ' J

where a = 2 , <*]•
j

One way of carrying out the calculation is as follows. Each of si, 39, c€,
consists of a diagonal matrix bordered by monomials. Taking a double
Laplace expansion by its last two rows and columns shows that s& is a linear
combination of the products £ff* with i # j . The same is true for 3S and #.
Thus all three Jacobians in Theorem 2 have £, for a factor along the (i+ l)th
(or d/d^th) row. This shows that each Jacobian has a factor ^0^i^2^3^4-
The residues have three rows of constants and two of linear combinations of
the £j. Hence what is in { }2 must be quadratic in these squares. When one
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performs this procedure in detail the outcome is (31), once an insignificant
numerical factor is removed.

We deduce from (31) that the osculating planes to C at its intersections with
primes of the simplex of reference have more than 3-point contact. Edge knew
this in advance (6, p. 279; 7, p. 486). For the other points of C he was able to
find the osculating solids without the unnecessary factor ^i^i^i-

4. Some special curves of intersection in Sn

4.1. We consider n— 1 primals of order m given by

XaF)xr = 0, 7 = 0 , 1 , . . . , n-2. (32)
i

Summations now run over 0, 1, 2, . . . ,« . We assume that each (n—l)-square
submatrix of the (n — l )x (n+l ) matrix with jiih entry a\J) is nonsingular.
Then any common point of the primals has at most one coordinate zero, and
so at such a point the primals have independent tangent Sn-t. Their inter-
section C is thus an irreducible nonsingular curve of order w""1. Regarding,
for the moment, (a(0), a(1), ..., a(n~2)) as coordinates of an 5n_2 the condition
implies that no n — 1 of (a\0), a\l), ..., a\"~2)) are coprimal. Hence there is a
unique rational normal (n — 2)-ic through these n+1 points, which may be
taken as (1, t, t2, ..., t"~2) by an appropriate choice of the reference system
(cf. (8), p. 261). Thus C is determined by

]>>/*? = 0, j = 0, 1, ..., n-2, (33)
i

where the at are distinct, since we may take any n — 1 independent members of
the linear system determined by the primals of (32) as a base for C. When
m = 2 the curve C is the intersection of quadrics with a common self-polar
simplex. This curve occurs in (2, p. 185): for n = 4 it is Edge's curve, for
n = 5 it is the image by the Klein representation of the tangents to an inflexional
curve of the Kummer surface (2, pp. 230, 231).

Denote by Xt that vertex of the simplex of reference whose /th coordinate
is 1, and let n( be the opposite face. C meets 7r£ in mn~l points. If P is a point
on C not in 7t( then the line XtP has m— 1 further intersections with C: they
are obtained by replacing the ith coordinate in a vector for P by p times this
coordinate where p # 1 is an mth root of unity. If, on the other hand, W is in
both C and 7tf these (m— 1) further intersections on WXt coincide with W: the
tangent line to C at W is WX( having contact of order m. The osculating plane
at W is the limiting position of the plane Xt WP as P approaches W along C.
This plane meets C in m intersections at W and m intersections on XtP. Each
of the*intersections has W as its limiting position, so the osculating plane has
2m-point contact. Continuing in the same fashion—the osculating solid is the
limit of the join of the osculating plane to P—we find that the osculating Sr

at W has mr-point contact. This parallels (7, pp. 486, 487). In the notation of
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(3, p. 199) the indices lu l2, ...,/„ of the branch of C through W are 0, m-2,
2(m -1 ) - 1 , 3(m -1 ) - 1 , . . . , ( « - l)(w -1 ) - 1 respectively.

The primes of Sn through a general point Q cut on C a linear series g1~^-i.
The same calculation as in Section 2.10 shows that the number of sets of this
series that have n coincident members is

[

The genus D of C is given by

2(D-l) = / n n - 1 [ ( « - l ) ( m - l ) - 2 ] . (34)

The join of Q to the osculating 5n_2 at a W counts as

/l + /2 + ... + /n_1 = ^L=l>[(«_i)( I B_i)_2] (35)

towards this number (3, p. 200). Hence there are through Q m"~1[(n— \)m— 1]
primes with n-point contact (at least) with C and not so related to the W. We
shall show below that there are precisely this number of osculating primes
through P whose corresponding osculating 5n_2 have (n— l)-point contact.
Further, each W contributes

Z1 + Z2 + ... + Z n = ^ - ) [ « ( m - l ) - 2 ] (36)

towards the number of hyperosculating Sn-1 to C. Thus the Wtogether contri-
bute all the (3, p. 200; 12, p. 388) (n + \)\nf~i +n(D-1)] hyperosculating Sn_!
of C. The W are thus the only exceptional points of C: the situation echoes that
for Edge's curve.

4.2. Let P be a point on C whose osculating Sn-2 has (n— l)-point contact.
We find the osculating Sn-i at P be a generalisation and slight modification of
Edge's method.

We define

f(6) = (0-ao)(9-a1)...(9-an); s r = £ - ^ - , (37)
' J Kai)

where dashes now denote derivatives. We then have

sr = 0, r = 0, 1, ..., n - 1 ; sn = l; sn+l = £ ax = a, say. (38)
i

To see this consider the partial fractions for 9r+1/f(0). Regarding (33) as in-
dependent linear equations for the xj" we see from (38) that the points £, on
C are given by

f'(adZT = P + a,q, i=.0, 1, .... n, (39)

for arbitrary p, q. A differentiation gives

tdq. (40)
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Using (40) and a straightforward induction argument we easily obtain, for the
points of C not in any of the nh

= 0,1 n; (41)

where Cr is a constant, and Fr(9; p, q) is a polynomial in 6 of degree ^ r
whose coefficients are sums of products of powers of differentials of p and q.

Take, now, £, to be the coordinate vector of P. The osculating Sn^t at P is
spanned by £, d£, d2^,..., dH~l£. But by (38), (39) and (41) we see that these all
lie in the prime

y-2iT~lxt = 0. (42)

From (38) and (39) we have

so the osculating £„_! is

(43)

E { I affi-(a-ad ^ ay ^ J } - 2 ^ " 1 ^ = 0. (44)
•• j J

This has degree m(n— 1) — 1 in the £t, so this times m"~l is the number of such
osculating Sn _ t which pass through a general point x; as we claimed in Section 1.

In a recent letter Edge informs me that he has verified a variant of this
equation for the quadric case m = 2.

5. Concluding remarks
We may consider in 5n an irreducible curve which is the complete inter-

section of ( H - 1 ) general primals f('\x) = 0 for / = 1, 2, ..., (n-1). The
methods of Section 2 together with a little extra determinantal theory give in
succession the osculating plane and solid at a point ^ of the curve. We may
take the obvious extension of the notation of Section 2. If the tangent line at £
has 2-point contact then we find that the osculating plane there has its dual plane
coordinates 7r,y. given by

=det
f (2) f(

p-C-i) /.(»-D

If this plane has 3-point contact at £ then we find that the dual solid coordinates
<ul7 of the osculating solid at £ are given by

4 i det I
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where Lkl is the determinant of the matrix obtained by removing kth and /th
rows of

f(2) f<2)
J i J j

Wn-1) Wn-1)
\J i J j

These are the natural generalisations to SB of Hesse's and our results as far
as algebraic method is concerned. But there is another natural, and more
important, geometric extension: we should like to have the equation of the
osculating SB_ t at a point on the general curve of intersection of (n — 1) primals
in Sn. This problem presents formidable algebraic difficulties even when n = 5.
Fourth-order differentials are involved, and it is they that cause trouble.

The same difficulties occur in S^ when attempting to find a primal cutting
our curve C in its points of hyperosculation. These complications remain in
the particular case of the octavic intersection of three quadrics. The points of
hyperosculation are then the 120 Weierstrass points. There ought to be a
combinantal primal of the net of quadrics through C which cuts C in these
points. It remains to find such a primal of degree 15.
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