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Abstract
I is an important mineral for health, required for the production of key thyroid hormones, which are essential for cellular metabolism, growth
and physical development. Hence, adequate I is crucial at all stages of life, but imperative during pregnancy for fetal brain development and
during a child’s early life for neurodevelopment. Within Ireland, limited information exists on population I intakes and status. Therefore, the
purposes of the present analysis were to estimate dietary I intakes and to analyse urinary iodine (UI) status using the cross-sectional National
Adult Nutrition Survey 2008–2010 and the most recent Irish Total Diet Study. Median I intakes in the total population (n 1106) were adequate
with only 26% of the population being classified as below the estimated average requirement (EAR). Milk consumption was the major source
of I in the diet, contributing 45% to total intake. Likewise, median UI concentrations (107 µg/l) indicated ‘optimal’ I nutrition according to the
WHO cut-off points. In our cohort, 77% of women of childbearing age (18–50 years) did not meet the EAR recommendation set for pregnant
women. Although I is deemed to be sufficient in the majority of adult populations resident in Ireland, any changes to the current dairy
practices could significantly impact intake and status. Continued monitoring should be of priority to ensure that all subgroups of the
population are I sufficient.

Key words: Iodine: Dietary intakes: Status: Urinary iodine

I is an important mineral for health, required for the production of
key thyroid hormones thyroxine (T4) and triiodothyronine (T3).
These hormones are essential for cellular metabolism, growth and
physical development. Hence, adequate I is crucial at all stages of
life, but imperative during pregnancy for fetal brain development
and during a child’s early life for neurodevelopment(1). Moreover,
studies indicate that severe I deficiency in pregnancy is associated
with intellectual deficits(2), and mild I deficiency has been shown
to impair cognition in children(3).
Since the 1960s, the WHO has been at the forefront in the

campaign to eliminate iodine deficiency disorders (IDD)
globally(4). Salt iodisation has remained the main strategy for IDD
control, and over the last two decades the number of I-insufficient
countries has reduced from 110 in 1993 to thirty-two in 2012,
predominately because of these fortification programmes(5).
Although progress has been made, it is still estimated that 30% of
school-age children across the world have insufficient I intake(6).
Furthermore, because of a lack of data on population subgroups
vulnerable to I deficiency such as pregnant women, the extent of
I insufficiency within these subgroups is unknown. Moreover,
Europe accounts for eleven out of the thirty-two countries

with I deficiency, which is the largest from any one continent(5).
This may be because of the low number of national policies
on I fortification of salt in Europe, with only seventeen out of
forty European countries having implemented such programmes
by 2007(4).

Recent evidence has suggested that I deficiency has
re-appeared in the UK where it was thought to have been
eliminated. Concern has been raised by studies, which indicate
that mild I deficiency exists in UK schoolgirls(7) and pregnant
women(8). This would seem to be a potential major public health
issue, because of the recent findings that poor I intake in preg-
nancy predicts a lower IQ in children(8,9). It has been noted more
recently that only 58% of pregnant women in Europe are cov-
ered by national or pooled subnational surveys, and of those
countries twenty-one out of thirty-one have I intakes that are
deficient(10). Within Ireland, no current national-level population
information exists on both dietary I intakes and urinary iodine
(UI) status in adults. However, findings from a small Irish
pregnancy cohort have suggested borderline I deficiency within
this at-risk group, with 55% of pregnant women in summer and
23% in winter having UI levels<50 µg/l(11). There is no national

Abbreviations: EAR, estimated average requirement; LRNI, lower reference nutrient intake; NANS, National Adult Nutrition Survey; TUL, tolerable upper level;
UI, urinary iodine.
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programme for I food fortification in operation in Ireland, with
dairy products assumed to contribute most to dietary I intakes,
chiefly as a result of the inclusion of I in animal feed and because
of milk sterilisation practices.
The aim of the present study was to assess current dietary

I intake and I status in the adult population resident in Ireland,
using data from the national food consumption survey and total
diet study, supported by UI as a biomarker, to ascertain whether
there is a cause for concern in the adult population or any
subgroups of the population.

Methods

Study population

Data for this analysis were derived from the National Adult
Nutrition Survey (NANS), a cross-sectional food consumption
survey carried out between 2008 and 2010 in the Republic of
Ireland in a national sample of 1500 adults aged 18–90 years
(men: n 760; women: n 740). Ethics approval was obtained
from University College Cork Clinical Research Ethics Committee
of the Cork Teaching Hospitals and the Human Ethics
Research Committee of University College Dublin (ECM 3 (p)
4 September 2008). Written consent was obtained from all
participants in accordance with the Declaration of Helsinki.
A detailed description of the sampling procedures and the survey
methodologies has been previously published(12). In brief, the
sample was representative of the Irish adult population with
respect to age, sex, social class and urban/rural location com-
pared with the 2006 Irish census(13); the sample excluded preg-
nant and lactating women. The overall response rate of the survey
was 60%. In addition to food and beverage intake data, anthro-
pometric, socio-demographic, health and lifestyle, and physical
activity data were also collected along with blood and urine
samples for nutritional biochemistry analyses. For the purpose of
this study, only participants who provided dietary intake data in
addition to having biochemical data on I status were included
(n 1106).

Dietary assessment and updation of the iodine composition
of foods

Food and beverage intake data were collected using a
4-consecutive-day, semi-weighed food diary (semi-weighed
referring to foods weighed wherever possible), which included
at least 1 weekend day. Participants were asked to weigh
and record the type and amount of all food, beverages and
supplements consumed, and where applicable record recipes,
cooking method, brand and details of leftovers. Initial food
intake data were analysed using the food composition database
WISP© version 3.0 (Tinuviel Software), which uses data from
McCance and Widdowson’s ‘The Composition of Foods’ sixth
and fifth editions plus all nine supplemental volumes to
generate nutrient intake(14–24). Adjustments were made to the
food composition database to take account of recipes,
nutritional supplements, commonly consumed generic Irish
foods and new foods on the market. The database generated
from the food and beverage intake data comprised 133 050

rows of data. Each row of data described each food and
drink item along with its nutritional content consumed by all
NANS participants at every eating occasion throughout the
4 d. A total of 2552 food codes were consumed during the
survey, each food code was allocated to one of twenty-four
food groups.

The I composition of foods within the Irish food composition
database was deemed to be uncertain, as the majority of I data
were derived from the McCance and Widdowson composition
of foods. The latter data set, which is based on food available in
the UK, is unlikely to fully represent I occurrence in Ireland,
as I content of food varies greatly depending on the soil
where the food has been grown. In addition, the database has
not recently been systemically updated for I content, and
therefore was unlikely to provide a reliable basis for the
assessment of I intake. Therefore, work was carried out to
provide accurate estimates of the I composition of foods
consumed within NANS. First, an SPSS database was created
containing all NANS foods consumed, including recipes.
Each food item in this database was allocated a unique code
that linked to the original NANS database. Second, this database
was examined on a food code-by-food code basis, and
each food code was assigned an I concentration (µg/100 g)
on the basis of analytical data (88%) and other published
data sources (12%).

Information to update the I composition was obtained from a
number of sources; however, the majority of data came from the
Irish Total Diet Study (TDS, 88%), which was carried out by
the Food Safety Authority of Ireland (FSAI) on the basis of the
analytical analysis of I concentrations of foods on the Irish market
using Inductively Coupled Plasma MS(25). The methodology
used in the Irish TDS has been described in detail elsewhere(25);
however, in brief, for foodstuff analysed, a number of sub-samples
(typically five) were purchased. The selection of brands was based
on interrogation of the brand information in the Irish food
consumption databases. Sampling of the foods was conducted
by the FSAI in autumn of 2012, and a total of 141 samples
(comprising 1043 sub-samples) were analysed. Where required,
foods were prepared ready for consumption by the laboratory
before analysis. The mean I content of these foods was then
matched as appropriate and applied by a food code-by-food code
basis. The second information source related to specific branded
products, and was obtained from information on manufacturers’
websites, from nutrition panels on food labels or by directly
contacting manufacturers (9%). When information could not
be obtained from the above sources, online national nutrient
databanks were used – UK Food Standards Agency McCance and
Widdowson’s Composition of Foods Integrated Dataset(26),
Finland’s National Institute for Health and Wellbeing nutrient
database(27) and the Food Standards Australia New Zealand
database ‘NUTTAB’ (NUTrient TABles for use in Australia)(28)

(3%). In relation to recipes, I data for each ingredient were
obtained, and the proportion of each ingredient of the recipe was
calculated. I concentration data were related back to actual foods
and recipes as eaten in the NANS to calculate I intakes. To assess
the impact of season on I intakes, for milk (whole, semi-skimmed
and skimmed varieties), an I value based on season consumed
obtained from the Irish TDS data set was used.
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Sampling and analysis of urinary iodine concentrations

Participants within NANS provided a first morning void urine
sample. Urine samples were collected by a fieldworker at
designated centres within the survey area or in the participants’
homes if unable to travel. Samples were collected during all
months and seasons of the survey period. A total of 20-ml urine
was collected in a sterile tube, kept chilled and transported to
the laboratory within 5 h of collection for further processing.
Samples were stored at −20°C until required for further analysis.
Samples were processed at the biological laboratories in
University College Dublin and University College Cork. UI
concentration was measured by a multiplate persulphate
digestion method followed by the Sandell–Kolthoff colori-
metry(29). Samples were analysed blind, and quality control was
provided by repeat analysis of stored batches of pooled urine
samples covering a wide range of values. Intra- and inter-assay
CV were ≤12·8%.

Statistical analysis

All statistical analyses were performed using SPSS software
(IBM SPSS Statistics 20). The distributions of all dietary variables
and biomarkers were positively skewed; therefore, the data
were presented as medians and interquartile ranges. Baseline
subject characteristics were determined using descriptive
analysis. Intake was compared across sex and demographic
groups by using either an independent t test analysis or one-
factor ANOVA with Scheffé post hoc tests. A two-factor ANOVA
with Scheffé post hoc tests was used to assess the impact of sex
and age on I status. Differences between the percentage
contributions of food groups contributing to total dietary I were
compared across sex using an independent t test. The ANOVA
polynomial test was conducted to identify linear trends in
biomarkers across consumption categories with respect to UI.
Dietary I intake was assessed against national and international

reference values, including the UK lower reference nutrient intake
(LRNI)(30), the adequate intake (AI) established by the European
Food Safety Authority (EFSA)(31), the estimated average require-
ment (EAR) established by the US Institute of Medicine (IOM)(32)

and tolerable upper level (TUL) for adults derived by the EU
Scientific Committee on Food (SCF)(33). The prevalence of the
populations not meeting these recommendations was assessed
excluding participants classified as under-reporters of energy
intake (31%), identified as having a ratio of energy intake:BMR
of <1·05(34). The WHO cut-off points were applied to classify
I nutrition – median UI <100μg/l defines a population that has
I deficiency(2).
To examine the effect of season and milk consumption on

I intake and status, specific categories were created as follows:
season was classified into four categories (January–March;
April–June; July–September; October–December). Consumers of
milk were divided into tertiles on the basis of their average daily
intake of whole, semi-skimmed and skimmed milk. In addition,
non-consumers were also analysed; these were participants who
recorded no consumption of milk during the survey. A one-factor
ANOVA with Scheffé post hoc tests was used to assess I intake
and urine I excretion across season and milk consumption

categories described above. For all statistical analyses, continuous
variables were log transformed to normalise their distribution, and
P< 0·05 was considered statistically significant.

Results

Study population characteristics

Of the 1500 adults recruited within NANS, 75% provided a urine
sample along with dietary data (n 1121). Of these, fifteen
participants had to be excluded as UI values were below the
assay detection limit of <15 µg/l, and therefore not classified as a
reliable UI concentration, leaving a total of 1106 Irish adults to be
included in the present study. The participants were representa-
tive of the Irish adult population in terms of age, sex, social class
and location(12,13). In total, 71% of males and 56% of females
were classified as overweight/obese, and 19% of the participants
were current smokers. Furthermore, 33% of the cohort consumed
at least one nutritional supplement, with more females (36%)
consuming nutritional supplements than males (29%, P= 0·008)
(online Supplementary Table S1).

Iodine intake in the total adult population

Median intakes and inter-quartile ranges of total I split by sex
and age group across demographic and lifestyle characteristics
are presented in Table 1. Overall intake across all age groups
was significantly higher in males (141 µg/d) compared with
females (104 µg/d) (P< 0·001). For females, a significant
(P< 0·05) increase in I intake was observed across age groups
with younger females (18–35 years) having the lowest intake
(95 µg/d) and females ≥65 years having the highest intake
(123 µg/d). No significant difference was observed across male
age groups. Significantly higher I intake was observed in
supplement users (142 µg/d) compared with non-supplement
users (114 µg/d); however, this difference appears to be driven
by female supplement users, as a significant difference was only
noted between female supplement users and non-supplement
users (Table 1).

The percentages of Irish adults meeting dietary recommen-
dations pertaining to the UK’s LRNI (<70 µg/d), EFSA’s AI
(150 µg/d) in addition to the IOM EAR (95 µg/d), and SCF TUL
(>600 µg/d) for adults are described in Table 2. The results
show that overall 12% of the population did not meet the LRNI,
with 8% of men and 15% of women showing intakes below the
LRNI. Furthermore, 26% of the population did not meet the
EAR; when split by sex, this relates to 17% of males and 34% of
females. The EAR for pregnant women was 160 µg/d, and when
applied to the 18–50 years age group within this population,
77% did not meet this recommendation (data not shown).
Overall, less than 1% of the population exceed the TUL for I.

The percentage contributions of twenty-two food groups to
mean daily I intake were assessed, and this analysis was based
on average intakes; hence, mean daily intakes are reported
within Table 3. In the total population, the main sources of I
were ‘whole milk’ and ‘low-fat, skimmed and fortified milks’
providing 40% of I intake. When split by sex, these food groups
combined provided 43% of I intakes in males and 37% in
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females, respectively, with males obtaining slightly more I from
the food group ‘whole milk’ compared with females (P< 0·001).
Other food groups that contributed 5–7% towards I intake
across both sexes were ‘fish and fish dishes’, ‘beverages’
(inclusive of alcoholic and non-alcoholic beverages) and ‘egg
and egg dishes’.

Iodine status in the Irish adult population

The median concentration of UI in the total population was
107 µg/l, with a lower median status observed in females (101µg/l)
compared with that of the male population (116µg/l). In both
sexes, I status appeared to decline across age groups; however,
this was not significant (Table 4). WHO cut-off points classifying

I nutrition into different degrees of public health significance were
used to characterise the findings of this study; overall, the
Irish population met criteria for optimal I nutrition (i.e. median UI
100–199µg/l), with a median concentration of 107µg/l(35).

Influence of milk consumption and season on iodine intake
and status

I intake and status were examined across quartiles of milk
consumption (Fig. 1). A significant positive relationship was
observed, whereby an increase in milk consumption related to a
significant stepwise increase in both dietary intakes of I and also in
UI concentrations (P<0·001). The I content of milk can vary by
season because of differences in animal husbandry with animals

Table 1. Median intakes and interquartile ranges of total iodine (µg/d) split by sex and age group across demographic and lifestyle characteristics*
(Medians and interquartile ranges (IQR))

Total population (n 1106) Men (n 543) Women (n 563)

Median IQR Median IQR Median IQR P†

All (18–90 years) 121·3 82·6, 184·6 141·0 96·8, 209·1 103·5 72·6, 162·7 <0·001
Age groups (years)

18–35 122·8 80·7, 186·6 154·0 97·5, 217·5 94·9a 70·7, 144·5 <0·001
36–50 115·5 78·8, 174·4 132·1 92·8, 226·3 100·9a,b 68·9, 156·6 0·047
51–64 122·2 86·8, 185·5 134·7 95·7, 196·3 113·8a,b 80·5, 171·0 0·182
≥65 127·9 93·2, 194·2 130·2 105·3, 194·8 123·2b 84·8, 194·2 0·461

Social class
Professional/managerial/technical 130·5 86·1, 186·3 140·2 94·7, 205·9 116·9 78·4, 170·2 0·018
Non-manual skilled 118·7 78·3, 177·8 142·7 93·9, 213·0 103·5 70·4, 161·4 0·031
Manual skilled 109·6 83·6, 187·5 121·0 89·5, 200·1 102·3 76·7, 169·3 0·152
Semi-skilled/unskilled/students 120·0 82·9, 190·2 152·6 98·7, 221·2 91·1 66·7, 140·9 0·021

Location
Open country/small town (<9999)‡ 110·6 76·3, 166·9 131·3 94·0, 201·2 96·0a 68·3, 144·0 <0·001
Large town (>10 000) 122·4 81·9, 183·5 143·0 98·3, 210·8 101·7a,b 71·3, 157·1 <0·001
City (Dublin/Cork) 134·5 85·7, 198·0 145·0 97·3, 218·2 119·7b 81·8, 186·3 0·035

BMI
Normal weight 124·1 84·6, 181·4 157·3 105·4, 209·2 109·5 72·4, 156·6 0·035
Overweight 126·1 84·3, 202·3 135·8 92·7, 216·1 116·8 76·8, 185·5 0·005
Obese 111·2 80·5, 168·2 127·0 90·6, 177·9 92·1 69·9, 156·2 0·129

Smoking status
Smoker 107·8 71·6, 167·7 143·5 94·7, 191·3 84·5 58·7, 125·9 0·038
Non-smoker 124·0 85·7, 189·2 140·3 97·3, 213·8 113·0 76·6, 168·3 <0·001

Supplement user
Yes 141·5a 95·8, 213·7 153·9 113·1, 238·4 128·5a 84·7, 195·1 0·095
No 113·7b 79·1, 170·2 133·1 92·2, 202·0 94·5b 67·9, 140·8 <0·001

a,b Median values with unlike superscript letters are significantly different between groups (P<0·05).
* Differences across demographics were assessed by ANOVA or independent t test. This refers to comparisons within a demographic/lifestyle characteristic, for one sex (such as,

for example, between age groups for women, or between supplement users and non-users for the total population).
† Differences between sexes were assessed by an independent t test.
‡ Refers to number of inhabitants.

Table 2. Percentage of Irish adults (18–90 years) not meeting recommended iodine intakes

% population below
LRNI of 70 µg/d*

% population below
EAR of 95 µg/d†

% population below
AI of 150 µg/d‡

% population above
TUL of 600 µg/d§

Total population
All 11·5 25·5 55·0 0·4
Men 7·7 17·1 45·4 0·6
Women 15·2 33·9 64·7 0·0

LRNI, lower reference nutrient intake; EAR, estimated average requirement; AI, adequate intake; TUL, tolerable upper level.
* Department of Health(30).
† Institute of Medicine(32).
‡ European Food Safety Authority(31).
§ Scientific Committee on Food(33).
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fed on pasture rather than on concentrates resulting in winter milk
having a higher I content compared with summer. Therefore, the
influence on intake and status was examined and is shown in
Fig. 2. As expected, because of the adjustment of I content of milk
by month surveyed, significant differences were observed, with
participants surveyed in winter having higher I status. A stepwise
increase can be seen with the highest intakes observed in January
to March (202µg/d) and lowest intakes between July and
September (103µg/d; P=0·002). A similar pattern can be observed
when UI are examined by season, with significantly higher
concentrations being observed between January and March
(152µg/l) and lowest UI concentrations between July and
September (108µg/l), respectively. Furthermore, when UI was spilt
by season, the percentage of the population defined as deficient
by the WHO cut-off points was 50% during summer (April–
September) compared with 43% during winter (October–March).
Stepwise regression analysis conducted to investigate the relation-
ship of both dietary I intakes and UI concentrations with milk

Table 3. Percentage contribution of food groups to intakes of iodine split
by sex
(Mean values and standard deviations)

% consumers
of food groups All Men Women P*

Food groups
Whole milk 60 20·3 24·4 16·4 <0·001
Low-fat, skimmed

and fortified milks
51 19·6 18·2 20·9 0·072

Fish and fish dishes 53 6·4 6·5 6·3 0·779
Beverages 100 6·2 6·2 6·2 0·967
Eggs and egg dishes 51 5·9 6·0 5·8 0·710
Breakfast cereals 75 4·3 4·5 4·1 0·535
Yogurts 44 4·6 3·7 5·5 <0·001
Meat and meat

products
98 4·1 4·4 3·7 0·005

Grains, rice, pasta
and savouries

71 3·3 3·6 2·9 0·067

Chocolate
Confectionery

49 3·1 2·5 3·6 <0·001

Creams, ice-creams
and desserts

47 3·4 3·0 3·8 0·032

Other milk and milk-
based beverages

13 2·6 1·7 3·5 0·001

Cheeses 65 2·7 2·7 2·7 0·089
Biscuits, cakes and

pastries
77 2·2 2·2 2·2 0·860

Nutritional
supplements

33 2·6 1·9 3·2 0·046

Fruits and fruit
dishes

82 1·6 1·5 1·7 0·253

Soups, sauces and
miscellaneous foods

85 1·5 1·4 1·6 0·143

Vegetables and veg
dishes

97 1·4 1·2 1·6 0·020

Bread and rolls 99 1·3 1·4 1·3 0·264
Potatoes and potato

dishes
93 1·3 1·3 1·3 0·758

Butter, spreading
fats and oils

89 1·2 1·3 1·1 0·121

Sugars, preserves
and savoury snacks

81 0·4 0·4 0·4 0·447

Non-chocolate
confectionery

23 0·1 0·1 0·1 0·103

Nuts, seeds, herbs and
spices

23 0·1 0·0 0·1 0·037

Total (%) 100 100 100
Daily I intake (µg/d)
Mean 149 170 129
SD 109 128 84

* Differences between sexes were assessed by an independent t test.
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intake and season found a significant relationship with both
(P<0·001; data not shown).

Discussion

The findings of the present study suggest that the majority of
adults resident in Ireland are I sufficient, with 26% of the
population having dietary intakes below the EAR. In addition,
UI concentrations indicate optimal I nutrition in the same
population. Milk consumption is the major food source of I
within Ireland, and this study showed a significant relationship

between milk consumption and both estimated dietary intake
and UI status. These findings further suggest that I sufficiency in
the adult population resident in Ireland is largely reliant on one
single food source (i.e. milk). This study also highlights the
influence of season on I intake and status reflecting the seasonal
change of I content in milk, with the Irish population having the
lowest I intake and status during the summer months. Although
adults resident in Ireland can be classified as I sufficient, certain
groups within the population may be at risk of marginal
deficiencies. Young females were reported to have the lowest
intakes and statuses of I, which may lead to concerns that
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Fig. 1. The relationship between quartiles of milk consumption and dietary intakes of iodine (░; µg/d) and urinary iodine (■; µg/l). Milk intakes used to calculate
consumption groups refer to consumption of whole, semi-skimmed and skimmed milks; non-consumers recorded no consumption of milk (0 g/d), low consumers (61 g/
d), medium consumers (174 g/d) and high consumers (418 g/d). In each graph, differences between consumption groups were assessed using ANOVA with Scheffé
post hoc test. a,b,c,d Mean values with unlike letters were significantly different (P< 0·001).
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pregnant women may not be getting AI during the critical
period of fetal development.
Median intakes of I of 141 µg/d in males and 104 µg/d in

females in the present study were found to be comparable with
other European countries(36). In the UK National Diet and
Nutrition Survey, slightly higher I intakes were reported with
males consuming 192 µg/d and females 143 µg/d(37). These
intake differences may explain the higher percentage of the
population not meeting the LRNI within the present study (8%
males, 15% females) compared with the UK (2% males; 6%
females)(38). In the USA, results from a total diet study indicated
I intakes of 192–284 µg/d in men aged 25–65 years and
138–197 µg/d in women aged 25–65 years(39); these higher
intakes to some extent could be attributed to the higher
availability of iodised salt within America(40). At present, in
Ireland, no practice exists in relation to mandatory or voluntary
iodised salt fortification. Across many European countries, milk
appears to be the major food source of I. In the UK, milk
contributes 33% to intakes, in Germany 42% and in Denmark
44%(36,38,41). An equivalent contribution was observed within
the present study with milk contributing to 40% of intakes.
A difference in sex was noted, with males showing a slightly
higher contribution from milk (43%) compared with females
(37%), due to overall higher milk intakes in males. Other food
sources that contributed >7% to intakes were ‘fish and fish
dishes’, ‘beverages’ and ‘egg and egg dishes’. Similar food
group contributors to I intake were noted in the UK, although
‘fish and fish dishes’ and ‘beer and lager’ contributed slightly
more to UK intakes(38). These differences in the contribution of
food sources to I may relate to differences in I content of food
or indeed the slight difference in food intake patterns that exist
between both countries.
The median UI concentration in the present study was 107 µg/l

for the adult population resident in Ireland, indicating that adults
are I sufficient; however, population subgroups with borderline
status may exist. Previous reports from Ireland suggested the
possibility of I insufficiency during pregnancy(11,42). Recently, in
the UK, I has re-emerged as a public health issue(43). Although
thought to be I sufficient for many years(44), current evidence
has suggested that I deficiency exists in subgroups of the
population(7,8). Vanderpump et al.(7) reported that 51% of UK
schoolgirls aged 14–15 years attending secondary school in nine
UK centres surveyed were deemed to have mild I deficiency,
16% moderate deficiency and 1% severe deficiency. In the
present study, somewhat similar findings were observed in the
overall population.
In terms of public health nutrition policy, I deficiency is of

greatest importance in women of childbearing age and young
children. I is a component of the thyroid hormones T4 and T3,
which play a central role in brain development of the fetus in the
early stages of pregnancy. Reports from both Australia and the UK
indicate that poor I intake in pregnancy predicts a lower IQ in
children(8,9). In the Avon Longitudinal Study of Parents and
Children, the associations between maternal I status in the first
trimester and child IQ at age 8 years and reading ability at
age 9 years were assessed in 1040 women and infant pairs. After
adjustment for confounders, children of I-deficient women were
more likely to have scores in the lowest quartile for verbal IQ and

reading accuracy and reading comprehension(8). This longitudinal
study and others highlight the importance of sufficient I during
pregnancy. The EAR for pregnant women is currently 160 µg/d(32),
and when this cut-off point was applied to women of childbearing
age (18–50 years) in our cohort, 77% had intakes below this
recommendation. In addition, UI status within this subgroup was
104µg/l, which would be considered insufficient on the basis of
the WHO cut-off points for pregnant women. These data suggest
that a potential problem may exist within this at-risk group of
young females, and these findings should be validated as targeted
public health messages may be required.

Within the present study, milk consumption was found to have
a positive relationship with both I intake and UI concentration.
The high content of I in milk is partly due to sterilisation practices,
which use iodised cleansing solutions in addition to the intro-
duction of I-enriched salt licks to dairy cows. Since the 1960s,
I deficiency has been vastly reduced because of these indirect
methods, and I is thought to be sufficient in the Irish diet. Across
intakes of milk, a significant stepwise increase was observed in
both I intake and urine I concentrations. This relationship
highlights the importance of milk as the main food source of I in
Ireland. An equivalent relationship with milk consumption in a
Danish population has also been reported(36). Although the
majority of Irish adults consume milk (approximately 97%), the
recent increase in milk alternatives on the Irish market should be
considered. Although only 2·4% of adults were consumers of
these products in the present study, a recent study in the UK has
indicated that these unfortified milk-alternative drinks are not a
suitable substitute in terms of I content, and consumers of milk
alternatives may be at risk of I deficiency(45).

In Ireland, I concentration in milk varies depending on
season, with higher I concentrations being recorded during
winter(25). This fluctuation within the I content of milk can
be observed in UI concentrations of the population, with
participants surveyed in winter having significantly higher UI
concentrations (152 µg/l) compared with participants surveyed
during summer months (108 µg/l). This seasonal difference can
be explained by the use of salt licks and cow fodder fortified
with I used during winter months. In the present study, a clear
pattern across season can be observed – both I intake and UI
showed a decline when approaching summer and then
increased again in winter. These results highlight the fact that
within the Irish population milk is the predominant food source
of I, and any changes in the I content of milk may have a major
impact in the adequacy levels of the population, which may
have negative public health implications. EFSA has recom-
mended a reduction of the maximum permitted levels for I in
complete feed, from 5 to 2mg/kg; this recommendation was
made after a risk assessment concluded that for certain groups
of the population the TUL was being exceeded(46). These
calculations, however, were based on European-level data. In
the present study, only 0·1% of the population were found to
exceed the TUL, which indicates that this is not a concern in
Ireland, and this has also been noted within the UK(38).

Many countries around the globe have introduced salt
fortification as a means to maintain sufficient I status in their
populations. Salt is one of the main vehicles used for fortifica-
tion, with the WHO recommending an I concentration of
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14–65mg/kg of salt(47). Within parts of Europe and across the
world, fortification has been a mandatory or voluntary policy
for many years, with Switzerland being the first country to
introduce such a policy in 1922(4). Switzerland as well as other
countries who introduced mandatory I fortification are classified
as I sufficient and have maintained this status for many years(4).
More recently, mandatory I fortification has been established in
other parts of the world. In 2009, Australia and New Zealand
introduced mandatory addition of iodised salt to all yeast-
leavened bread (excluding organic bread)(48). Since fortifica-
tion, reports have shown that in 8–10-year-old New Zealand
children, median UI concentrations have nearly doubled, with
an increase from 66 to 113 µg/l. This represents a decrease in
the percentage of children classified as moderately deficient
from 28 to 12%. Feasibility of food fortification with I would
have to be carefully considered in the Irish context. In addition,
a suitable food vehicle would have to be identified. However, in
the first instance, continued monitoring is required, especially in
at-risk groups such as pregnant women to assess whether I
intakes are insufficient within this group.
The present study has many strengths. It is based on a

nationally representative sample of the adult population
resident in Ireland, and it combined detailed dietary data
(collected to brand level), with recent analytically determined
I values for foods consumed in Ireland, including seasonal
values for Irish milk. Furthermore, as iodised salt is rarely
consumed within Ireland, this study gives a realistic estimation
of dietary I intakes. This study is somewhat unique in that
it does not rely on standard food composition tables. The
I content of almost 90% of all foods was derived from the Irish
TDS, all of which are based on direct chemical analysis of
recent food purchases, cooked or otherwise, as are the national
norms. Nevertheless, it should be noted that only a limited
number of food composite samples analysed for I content were
available for matching with a wide range of survey food codes,
which is a limitation. We also acknowledge that some variability
in I values from specific branded products from manufacturers
may exist because of the permitted tolerances for nutrient
values, while rounding of values should also be considered(49).
In addition to detail dietary data, urine samples were also
collected from the same cohort, which is a strength of the
present study. However, the latter were collected as spot urine
samples, which are not the preferred method to estimate
I concentrations; duplicate spot urine samples have been
suggested as a potential better marker to assess the variability of
I using statistical modelling to reduce within-individual variation
and is better suited for comparison with thresholds(5,50). Diurnal
variation in UI concentrations have been reported, with
lower concentrations noted in morning samples(51). Therefore,
it is important to recognise that, owing to a diurnal effect, the
present study’s UI concentrations may be higher.
In conclusion, this is the first study presenting nationally

representative data for both estimated dietary I intakes and UI
concentration for adults resident in Ireland. It shows that
I intake and UI concentrations in the majority of adults are
sufficient, with milk providing the major contribution to dietary
I intake. The lowest intakes and statuses were observed
for women of child-bearing age, for whom the possibility of risk

of marginal deficiency exists. Data on I intake and status
of pregnant women and children should be collected to
investigate I adequacy in these important subgroups of the
population. Our analysis also identifies I as a unique nutrient,
whereby dietary intakes are directly influenced by seasonal
changes in agricultural practices. Hence, any change in animal
husbandry (e.g. lowering animal feed maximum residue level)
could potentially have serious effects on population I status and
should be carefully considered, as milk has been found to be
the single most important dietary contributor.
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