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NON-RESIDUES AND PRIMITIVE ROOTS
IN BEATTY SEQUENCES

WILLIAM D. BANKS AND IGOR E. SHPARLINSKI

We study multiplicative character sums taken on the values of a non-homogeneous
Beatty sequence

BaJI = {[an + 0\ : n = 1,2,3,.. .},

where a,P 6 K, and a is irrational. In particular, our bounds imply that for every
fixed e > 0, if p is sufficiently large and pll2+e ^ N ^ p, then among the first N
elements of Ba<p, there are N/2 + o(N) quadratic non-residues modulo p. When more
information is available about the Diophantine properties of a, then the error term
o(N) admits a sharper estimate.

1. INTRODUCTION

For two fixed real numbers a and /3, the corresponding non-homogeneous Beatty
sequence is the sequence of integers denned by

Baj = {\an + 0\ : n = 1 ,2 ,3 , . . .} .

Beatty sequences appear in a variety of apparently unrelated mathematical settings,
and because of their versatility, the arithmetic properties of these sequences have been
extensively explored in the literature; see, for example, [1, 3, 7, 12, 13, 18, 25] and the
references contained therein.

In this paper, we study sums of the form

where a is irrational, and % is a nontrivial multiplicative character modulo a prime
number p. Our main result is Theorem 4.1 in Section 4 below. In particular, our bounds
imply that for every fixed e > 0, if p is sufficiently large and pl/2+e ^ N ^ p, then
among the first iV elements of the Beatty sequence Ba$, there are JV/2 + o(N) quadratic
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434 W.D. Banks and I.E. Shparlinski [2]

non-residues modulo p. In the case that a is not Liouville (which includes all algebraic
irrationals and almost all real numbers), our results yield explicit bounds on the error
term.

For non-Liouville numbers a, we also obtain results about the uniform distribution
of primitive roots in Beatty sequences.

Various bounds on the size of the least quadratic non-residue modulo p in the se-
quence {[an\ : n — 1,2,3,... } have been given by Garaev [8] and by Preobrazhen-
skii [19, 20, 21]. For example, it has been shown in [8] that for any real number a > 0
and any prime p, there is a positive integer n < p(1+e~1/2)/4+<)(1) such that [cmj is a
quadratic non-residue modulo p. The bounds of [19, 20, 21] are stronger than those
of [8], but they require certain restrictions on the number a. These results have recently
been improved in [2] where it is shown that for any irrational a, [an + /3\ is a quadratic
nonresidue modulo p for N/2 + o(N) positive integers n < N, provided that N ^ pl/3+t

for some fixed <5 > 0.

We also remark that, by the result of Hildebrand [10], for any prime p there is a
positive integer a ^ p1/(4e'/2)+o(i) sucjj t n a t t>oth a and a + 1 are quadratic nonresidues
modulo p. Thus, in the case that a ^ 2, one can choose n = \a~1(a - /3)] to guarantee
that [an + /3J is either a or a + 1 and is thus a quadratic non-residue modulo p. In
particular, this observation eliminates the dependency on a in the bound of [8].

We remark that the methods of [8, 19, 20, 21] are much different from ours and
cannot be applied to bound the character sums that we consider. The method of [2]
applies to short character sums and gives stronger bounds on the size of the least quadratic
non-residue and on higher degree non-residues. For longer sums, however, the bounds of
the present paper are stronger and more explicit. The method we use can also be applied
to several other sums with Beatty sequences.

2. NOTATION

Throughout the paper, the implied constants in the symbols O, <£. and » may
depend on the real number a but are absolute otherwise. We recall that the notations
U = O(V), [ / « y , and V » U are all equivalent to the assertion that the inequality
\U\ ^ cV holds for some constant c > 0. We also use the symbol o(l) to denote a function
which tends to 0 and depends only on a. It is important to note that our bounds are
uniform with respect to all of the other parameters, in particular, with respect to /?.

In what follows, the letters A;, m, and n (with or without subscripts) always denote
non-negative integers.

The notation ||x|| denotes the distance from the real number x to the nearest integer;
in other words,

||x|| = min \x — n\.
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We also use {x} = x — [x\ to denote the fractional part of x, as usual.

3. PRELIMINARIES

To describe the class of real numbers a for which our results apply, we need to recall

some familiar notions from the theory of Diophantine approximations.

For an irrational number a, we define its type r by the relation

€ R : lim inf q
q-*oo, <j€Z+

Using Dirichlet's approximation theorem, it is easy to see that r > 1 for every irrational
a. The celebrated theorems of Khinchin [11] and of Roth [22, 23] assert that r = 1 for
almost all real (in the sense of the Lebesgue measure) and all irrational algebraic numbers
a, respectively; see also [6, 24]. We remark that the number /x = r + 1 is called the
irrationality measure of a, or the Liouville-Roth constant.

The discrepancy D of a sequence of M (not necessarily distinct) real numbers
7i, • • •, 1M € [0,1) is defined by the relation

D — sup
M (1)

where the supremum is taken all subintervals I = (a, 6) of the interval [0,1), V(I, M) is
the cardinality of the set {1 ^ m < M : j m € I } , and | I | is the length of X.

It is well known (see [16, Example 2.1, Chapter 1]) that for every irrational a,
the sequence of fractional parts {{am + /3} : m = 1,2,... } is uniformly distributed
modulo 1:

LEMMA 3 . 1 . Let a be a fixed irrational number. Then, for all real numbers 0

and positive integers M, the discrepancy Da^{M) of the sequence of fractional parts

{{am + 0} : m=l,...,M}

satisfies the bound

DQ,0(M) = o(l) .

The following result is taken from [16, Theorem 3.2, Chapter 2]:

LEMMA 3 . 2 . Let a be a fixed irrational number of type r < oo. Then, for ail
reaJ numbers 0 and positive integers M, the discrepancy Da>p(M) of the sequence of

fractional parts

{{am + P} : m=l,...,M}

satisfies the bound
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We also need the following elementary statement:

LEMMA 3 . 3 . Let a be a fixed irrational number. Then, for every positive integer
M and real number 6 € (0, l], there exists a real number 7 such that

#{m^M : {am + 7} <<5} ̂ O.5M(5.

PROOF: Let e(x) = exp(27riz) for all x 6 R, and note that e(x) = e(y) if and
only if {x} = {y}. Since a is irrational, the numbers e(aro) have distinct arguments for
m = 1, . . . , M. Put L = \6~l], and let

Since { 1 , . . . , M} is the disjoint union of the sets 5,, j = 0, . . . , L — 1, by the pigeonhole
principle there exists an index j for which

Defining 7 = —j/L, we have for each m € 5;:

{am + 7} = — arg(e(am + 7)) = — ^arg(e(am)) - — J < - ^ 6,

which finishes the proof. 0

Finally, we assume the reader is familiar with the basic properties of multiplicative
characters (see, for example, [17]).

4. MAIN RESULT

As in Section 3, we use Datg(N) to denote the discrepancy of the sequence of frac-
tional parts

{{an + p} : n = l,...,N}.

THEOREM 4 . 1 . Let a be a fixed irrational number. Then, for all real numbers 0,
primes p, nontriviai multiplicative characters x (mod p), and positive integers N ^ p,
the following bound holds:

Sp(a, /?, X; N) « v^N1'2 + NDaJI{N).

PROOF: Let K < N be a positive integer, and let A be a real number in the interval
(0,1]. For every real number 7, let

./V7 = {l ^ n < TV : {an + 0 - 7} < 1 - A},

/C7 = { 1 O ^ K : {aJfc+7}< A},
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and put

From the definition (1), we immediately conclude that

By Lemma 3.3, we also have
#/C7 ^ 0.5 KA.

for some choice of 7 £ 1 . Fix 7 with this property, and put A/" = 7V7, A/"c

K. = /Cy.

(2)

(3)

and

We have for every k € K.:

Sp(a, p, x;N) = J2 X([a(n + k) O(k)

W
Therefore,

where

For any n & Af and A; € /C, we have

|a(n + fc) + P\ = a(n + k) + 0 - {a(n + k) + 0}

(4)

= {an + 0 - 7) + {ak + 7) - {an + 0 - 7} - {ak + 7}

= [an + 0 - 7J + [ak + 7J.

We also remark that, since N ^ p, we have

- 7 j = s (modp)}=O(l)

uniformly for all s € Z. Therefore, applying the Cauchy inequality, we derive that

p

= TV
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The inner sum takes only two possible values (see [17, Exercise 5.54]):

3=1

_ fp - 1 if [ak + 7J = [at + 7J (mod p ) ; \
I - 1 otherwise. J

Since K ^ p, the congruence [ak + 7J = [at + 7J (mod p) occurs for at most O(#K)
pairs k, £ e /C; therefore, it follows that

|W|2 « iV((#/C)2 + p • # £ ) « pAT • #/C.

Substituting this bound in (4), and using (2) and (3), we obtain

Sp(a, /?, x;N)<£\IJFK + K + NA + NDaJI{N), (5)

We now choose

K = W'N1'2} and A = ^
JV1/2'

and the theorem follows. D

Combining Theorem 4.1 with Lemma 3.1, we immediately obtain:

COROLLARY 4 . 2 . Let a be a fixed irrational number. Then, for all real numbers
f3, primes p, nontrivial multiplicative characters \ (mod p), and positive integers N < p
with Np~l/2 -4 00, the following bound holds:

Sp(a,/3,X;N) = o(N).

Similarly, combining Theorem 4.1 with Lemma 3.2, we obtain:

COROLLARY 4 . 3 . Let a be a fixed irrational number of type r < 00. Then, for
all real numbers 0, primes p, nontrivial multiplicative characters x (mod p), and positive
integers N ^ p, the following bound holds:

Sp{a, 0, x; N) < p1/4W1/2 + jyi-i

In the preceding statement, if r < 4, then the term iV1"1/1"1"^1) is smaller than
pi/4^1/2. therefore:

COROLLARY 4 . 4 . Let a be a fixed irrational number of type r < 4. Then, for
all real numbers 0, primes p, nontrivial multiplicative characters x (mod p), and positive
integers N < p, the following bound holds:

Clearly, since the bounds of Theorem 4.1 and of Corollaries 4.2, 4.3 and 4.4 are

uniform with respect to /?, one can extend them to the values of N > p simply by

splitting the entire range into intervals of length at most p.

https://doi.org/10.1017/S0004972700035449 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035449


[7] Non-residues and primitive roots 439

5. N O N - R E S I D U E S A N D P R I M I T I V E R O O T S

Here, we record some applications of the results of Section 4.

Let Qa,p(N, p) denote the number of quadratic non-residues modulo p among the first

N elements of the Beatty sequence Baj. Using Corollaries 4.2, 4.3 and 4.4, respectively,

with the Legendre symbol, we immediately obtain:

COROLLARY 5 . 1 . Let a be a fixed irrational number. Then, for all real numbers

/?, primes p, and positive integers N < p, such that Np~1^2 —>• oo, the following estimate

holds:

) = j

COROLLARY 5 . 2 . Let a be a fixed irrational number of type r < oo. Then, for
all real numbers /?, primes p, and positive integers N ^ p, the following estimate holds:

COROLLARY 5 . 3 . Let a be a fixed irrational number of type r < 4. Then, for
all real numbers 0, primes p, and positive integers N ^ p, the following estimate holds:

)

It is well known that the characteristic function of the set of primitive roots modulo
p can be expressed via multiplicative characters modulo p (see, for example, [17, Exer-
cise 5.14]). Let Tatp(N,p) denote the number of primitive roots modulo p in the first
N elements of the Beatty sequence Baj. We also denote by <p(k) the Euler function of
integer k ^ 1. From Corollaries 4.3 and 4.4, respectively, using standard arguments, we
immediately obtain:

COROLLARY 5 . 4 . Let a be a fixed irrational number of type r < oo. Then, for
all real numbers 0, primes p, and positive integers N ^ p, the following estimate holds:

TaP(N,p) = N*{P ~ 1} + O(p1/4tf1/2+o(1) + JV1-1/^1)).
P

COROLLARY 5 . 5 . Let a be a fixed irrational number of type r < 4. Then, for
all real numbers (3, primes p, and positive integers N ^ p, the following estimate holds:

Ta0(N,p) =

6. OTHER SUMS

The methods of Section 4 can also be used to estimate character and exponential
sums such as
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where f{X) is a polynomial with integer coefficients, and F(X) is a polynomial with real
coefficients (and known Diophantine properties).

Here, we focus on estimates for slightly different sums of the form:

am(a, /?, a, g; N) = £ e{ag^m+»/m),

where gcd(og,m) = 1. If the multiplicative order of g modulo m exceeds m1//2, these
sums can be estimated nontrivially as follows:

THEOREM 6 . 1 . Let a be a fixed irrational number. Then, for all real num-
bers P, integers a,g,m with gcd(ag,m) = 1, and positive integers N < t, where t is the
multiplicative order of g modulo m, the following bound holds:

am(a, p, X; N) < m^N1'2 + NDa<0(N).

P R O O F : Choosing 7 and the sets 7V7, A/"̂ , /C7 as in the proof of Theorem 4.1, we
obtain in the same way the estimate:

W
am(a,/3>X;N) = — + O{K

where

W =

As in the proof of Theorem 4.1, since N < t (and gcd(a, m) = 1), we have

# { n 6 M : ag[an+ff-^ = s (mod m)} = 0(1)

uniformly for all s € Z. Therefore, using the Cauchy inequality, we derive that

The inner sum vanishes unless

5l°*+7j = 5la<+7j ( m o d m ) >

in which case it is equal to m. Since K ^t, the congruence (6) is equivalent to

[ah + 7J = [al + 7J (mod t),
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which occurs for at most O(#/C) pairs k,£ € /C; thus, it follows that

\W\2 <c mN • #/C.

Continuing our calculations as in the proof of Theorem 4.1, we obtain the stated result. D

The bound of Theorem 6.1 is nontrivial only if t ^ N ^ m1 ' 2 . However, in the
case that m = p is prime, our methods can be combined with recent results of Bourgain,
Glibichuk and Konyagin [4] (see also [5]) to obtain a nontrivial estimate for any integer g
whose multiplicative order t modulo p satisfies the inequality t > p6 for some fixed S > 0.

THEOREM 6 . 2 . Let a be a fixed irrational number. For any fixed 5 > 0, there
exists a constant 77 > 0 such that for aJJ reai numbers /?, integers a, g and a prime p with
gcd(a<?,p) = 1, and positive integers ps < N $J t, where t is the multiplicative order of g
modulo p, the following bound holds:

op(ct,/3,x; N) < Np~v + NDa<l){N).

PROOF: The proof is identical to that of Theorem 6.1, except that we now write

2

fceic

k,leK. la

By a result of [4], the inner sum is O(Np~K) for some constant K > 0 that depends only
on 6, unless (6) holds (with m = p), in which case it is equal O(N). Since K ^ t, the
congruence (6) is equivalent to [ak + 7J = [a£ + 7J (mod t), which occurs for at most

pairs k, t 6 /C; thus, it follows that

« N((#lC)2Np-K

After optimising the choice of K and A, we obtain the announced result. U

Since the bounds of Theorems 6.1 and 6.2 are uniform with respect to /?, one can
extend these results to numbers N > t simply by splitting the entire range into intervals
of length at most t. If m = p is prime and the multiplicative order of t modulo p is large
enough (starting with t > p^4 + l 5) , one can also use results from [9, 14, 15] to derive
more explicit bounds on the sums <Jm(ct, /?, a,g; N). Finally, it is clear that Theorems 6.1
and 6.2 can be used to derive analogues of Corollaries 4.2, 4.3 and 4.4.

7. R E M A R K S

Unfortunately, we cannot get an analogue of Corollary 5.1 for primitive roots as the

additional term of size iV0^) prevents a direct application of Corollary 4.2; one requires
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a sharper bound than simply o(N). It would be interesting to see whether Corollary 4.2

can be sharpened sufficiently to provide such a result, or else a proof that a stronger

bound is not possible over the entire class of Liouville numbers; we pose this question as

an open problem to the reader.

Finally, we remark that, using our method, one can obtain asymptotic formulas for

the average values of various arithmetic functions taken on a Beatty sequence.

REFERENCES

[1] A.G. Abercrombie, 'Beatty sequences and multiplicative number theory', Ada Arith. 70
(1995), 195-207.

[2] W. Banks and I.E. Shparlinski, 'Short character sums with Beatty sequences', Math. Res.
Lett, (to appear).

[3] A.V. Begunts, 'An analogue of the Dirichlet divisor problem', Moscow Univ. Math. Bull.
59 (2004), 37-41.

[4] J. Bourgain, A.A. Glibichuk and S.V. Konyagin, 'Estimates for the number of sums and
products and for exponential sums in fields of prime order', J. Lond. Math. Soc. (to
appear).

[5] J. Bourgain and S.V. Konyagin, 'Estimates for the number of sums and products and for
exponential sums over subgroups in fields of prime order', C. R. Math. Acad. Sci. Paris
337 (2003), 75-80.

[6] Y. Bugeaud, Approximation by algebraic numbers (Cambridge University Press, Cam-
bridge, 2004).

[7] A.S. Praenkel and R. Holzman, 'Gap problems for integer part and fractional part se-
quences', J. Number Theory 50 (1995), 66-86.

[8] M.Z. Garaev, 'A note on the least quadratic non-residue of the integer-sequences', Bull.
Austral. Math. Soc. 68 (2003), 1-11.

[9] D.R. Heath-Brown and S.V. Konyagin, 'New bounds for Gauss sums derived from kth

powers, and for Heilbronn's exponential sum', Quart. J. Math. 51 (2000), 221-235.
[10] A. Hildebrand, 'On the least pair of consecutive quadratic non-residues', Mich. Math. J.

34 (1987), 57-62.
[11] A.Y. Khinchin, 'Zur metrischen Theorie der diophantischen Approximationen', Math. Z.

24 (1926), 706-714.
[12] T. Komatsu, 'A certain power series associated with a Beatty sequence', Ada Arith. 76

(1996), 109-129.
[13] T. Komatsu, 'The fractional part of nd + <p and Beatty sequences', J. Theor. Nombres

Bordeaux 7 (1995), 387-406.
[14] S.V. Konyagin, 'Bounds of exponential sums over subgroups and Gauss sums', (in Rus-

sian), in Proc. ^th Intern. Conf. Modern Problems of Number Theory and Its Applications
(Moscow Lomonosov State Univ., Moscow, 2002), pp. 86-114.

[15] S.V. Konyagin and I.E. Shparlinski, Character sums with exponential functions and their
applications (Cambridge Univ. Press, Cambridge, 1999).

[16] L. Kuipers and H. Niederreiter, Uniform distribution of sequences (Wiley-Interscience,
New York, London, Sydney, 1974).

https://doi.org/10.1017/S0004972700035449 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035449


[11] Non-residues and primitive roots 443

[17] R. Lidl and H. Niederreiter, Finite fields (Cambridge University Press, Cambridge, 1997).
[18] K. O'Bryant, 'A generating function technique for Beatty sequences and other step se-

quences', J. Number Theory 94 (2002), 299-319.
[19] S.N. PreobrazhenskiT, 'On the least quadratic non-residue in an arithmetic sequence',

Moscow Univ. Math. Bull. 56 (2001), 44-46.
[20] S.N. PreobrazhenskiT, 'On power non-residues modulo a prime number in a special integer

sequence', Moscow Univ. Math. Bull. 56 (2001), 41-42.
[21] S.N. Preobrazhenskii, 'On the least power non-residue in an integer sequence', Moscow

Univ. Math. Bull. 59 (2004), 33-35.
[22] K.F. Roth, 'Rational approximations to algebraic numbers', Mathematika 2 (1955), 1-20.
[23] K.F. Roth, 'Corrigendum to "Rational approximations to algebraic numbers'", Mathe-

matika 2 (1955), 168.
[24] W.M. Schmidt, Diophantine approximation (Springer-Verlag, Berlin, 1980).
[25] R. Tijdeman, 'Exact covers of balanced sequences and Fraenkel's conjecture', in Algebraic

number theory and Diophantine analysis (Graz, 1998) (de Gruyter, Berlin, 2000), pp.
467-483.

Department of Mathematics Department of Computing
University of Missouri Macquarie University
Columbia, MO 65211 Sydney, NSW 2109
United States of america Australia
e-mail: bbanks@math.missouri.edu e-mail: igor@ics.mq.edu.au

https://doi.org/10.1017/S0004972700035449 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035449

