Proceedings of the Edinburgh Mathematical Society (1992) 36, 165-168 (C)

CONGRUENCE PERMUTABLE EXTENSIONS OF DISTRIBUTIVE DOUBLE *p*-ALGEBRAS*

by R. BEAZER and J. SICHLER

(Received 20th October 1991)

Every distributive double p-algebra L is shown to have a congruence permutable extension K such that every congruence of L has a unique extension to K.

1990 Mathematics subject classifications: Primary 06D15; Secondary 08A30.

1. Introduction

It is well-known that any distributive lattice L can be embedded into a distributive relatively complemented lattice K in such a way that every congruence of L has exactly one extension to K (see [4]). Furthermore, Katriňák [5] has shown that any distributive p-algebra L can be embedded into a distributive p-algebra K whose dense filter is relatively complemented in such a way that every congruence of L has exactly one extension to K. However, a distributive lattice is congruence permitable if and only if it is relatively complemented and Berman [2] has shown that a distributive p-algebra is congruence permutable if and only if its dense filter is relatively complemented. Consequently, every distributive lattice L and every distributive p-algebra L has a congruence permutable extension K such that every congruence of L has exactly one extension to K. In this note we obtain an analogous result for distributive double p-algebras, using Priestley duality.

2. Preliminaries

Although we assume some acquaintance with Priestley duality for distributive (0, 1)-lattices, we begin by reviewing some notation and terminology and the restriction of Priestley duality to distributive double *p*-algebras.

Let (X, τ, \leq) be an ordered topological space and let $Y \subseteq X$. The set Y is said to be decreasing (increasing) if $(Y]_X = Y([Y]_X = Y)$, where

$$(Y]_{x} = \{x \in X : x \leq y \text{ for some } y \in Y\}$$

and $[Y]_X$ is defined dually.

Both authors gratefully acknowledge the support of the NSERC.

R. BEAZER AND J. SICHLER

We will write $\operatorname{Max}_X(Y)$ for $[Y]_X \cap \operatorname{Max}(X)$ and $\operatorname{Min}_X(Y)$ for $(Y]_X \cap \operatorname{Min}(X)$, where $\operatorname{Max}(X)$ and $\operatorname{Min}(X)$ denote the set of maximal elements and minimal elements of X, respectively. We also define $\operatorname{Ext}_X(Y) = \operatorname{Max}_X(Y) \cup \operatorname{Min}_X(Y)$, $\operatorname{Ext}(X) = \operatorname{Ext}_X(X)$, $\operatorname{Mid}(X) = X \setminus \operatorname{Ext}(X)$ and, when $Y = \{x\}$, we write $\operatorname{Max}_X(x)$ for $\operatorname{Max}_X(Y)$ and $\operatorname{Min}_X(x)$ for $\operatorname{Min}_X(Y)$.

 (X, τ, \leq) is called a *Priestley space* if it is compact and *totally order disconnected*; in the sense that, for every $x, y \in X$ with $x \leq y$, there exists a clopen decreasing set $Y \subseteq X$ such that $y \in Y$ and $x \notin Y$. In such spaces, the sets $Max_X(x)$ and $Min_X(x)$ are non-empty, for any $x \in X$, and the following separation property holds:

(s) For any closed Y, $Z \subseteq X$ with $Y \cap (Z]_X = \phi$ there exists a clopen decreasing set D such that $(Z]_X \subseteq D$ and $Y \cap D = \phi$.

If \mathscr{P} is the category of all Priestley spaces and continuous order preserving mappings and \mathscr{D} is the category of all distributive (0, 1)-lattices and (0, 1)-lattice homomorphisms then Priestley ([6, 7]) has shown that there exist contravariant functors D and P from \mathscr{P} into \mathscr{D} and \mathscr{D} into \mathscr{P} , respectively, such that the composite functors $P \circ D$ and $D \circ P$ are naturally equivalent to the identity functors on their domains. Furthermore, a morphism f in \mathscr{P} is subjective if and only if D(f) is an embedding.

Recall now that a distributive double p-algebra is an algebra $(L; \lor, \land, *, *, 0, 1)$ in which $(L; \lor, \land, 0, 1)$ is a distributive (0, 1)-lattice and, for $a \in L$, a^* is characterized by $x \leq a^* \Leftrightarrow a \land x = 0$ and a^+ is characterized in a dual fashion. Priestley [8] has described the duals of distributive double p-algebras as follows:

- (1) For an object $X = (X, \tau, \leq)$ in $\mathcal{P}, D(X)$ is a double *p*-algebra if and only if $[Y]_X$ is clopen for every clopen decreasing set $Y \subseteq X$ and $(Y]_X$ is clopen for every clopen increasing set $Y \subseteq X$.
- (2) For a morphism $f:(X,\tau,\leq)\to(X',\tau',\leq')$ in \mathscr{P} , D(f) is a double *p*-algebra homomorphism if and only if $f(\operatorname{Max}_X(x)) = \operatorname{Max}_{X'}(f(x))$ and $f(\operatorname{Min}_X(x)) = \operatorname{Min}_{X'}(f(x))$, for every $x \in X$.

If $D(\mathbf{X})$ is a double *p*-algebra then **X** is called a *dp*-space and in such spaces Max(X) and Min(X) are closed. If D(f) is a double *p*-algebra homomorphism than f is called a *dp*-map.

Finally, we recall from [3], the following facts. If $X = (X, \tau, \leq)$ is a *dp*-space, L = D(X)and Y is a *closed c-set*, i.e. Y is a closed subset of X satisfying $Ext_X(Y) \subseteq Y$, then the binary relation $\Theta_L(Y)$ defined on L by

$$U \equiv V(\Theta_L(Y)) \Leftrightarrow U \cap Y = V \cap Y$$

is a congruence and the map $Y \mapsto \Theta_L(Y)$ is a 1-1 correspondence between the lattice of closed *c*-sets of X and the congruence lattice of the distributive double *p*-algebra *L*.

3. The construction

Our decision to employ Priestley duality to achieve our goal was motivated partly by the following result.

166

A distributive double p-algrbra has permutable congruences if and only if there is no 4-element chain in its dp-space.

This and other characterizations of congruence permutable distributive double *p*-algebras may be found in [1].

Theorem. Every distributive double p-algebra L has a congruence permutable extension K such that every congruence of L has exactly one extension to K.

Proof. Let $P = (X, \tau, \leq)$ be the Priestley dual of the distributive double *p*-algebra *L* and let $Q = (X, \tau, \leq)$ where \leq is the binary relation defined on *X* by

$$u \leq v \Leftrightarrow \{u, v\} \cap \operatorname{Ext}(P) \neq \phi \quad \text{and} \quad u \leq v.$$

Clearly \leq is a partial ordering of X, Max(Q) = Max(P) and Min(Q) = Min(P), so that Ext(Q) = Ext(P). Furthermore, Mid(Q) is an unordered copy of Mid(P), $Max_Q(x) = Max_P(x)$ and $Min_Q(x) = Min_P(x)$, for every $x \in X$. Observe that there is no 4-element chain in Q and that the identity mapping $f: Q \rightarrow P$ is continuous, preserves order and, subject only to our showing that Q is a *dp*-space, has the properties necessary for it to qualify as a *dp*-map. We proceed by showing that Q is, indeed, a *dp*-space. Clearly, Q is compact. With the intention of proving that Q is totally order disconnected, suppose that $x, y \in X$ and $x \preceq y$.

Let us assume that $x \leq y$. Then there exists a clopen \leq -decreasing set $C \subseteq X$ such that $y \in C$ and $x \notin C$. However, the set $C = f^{-1}(C)$ is clopen and \leq -decreasing because f is continuous and order preserving.

In the event that $x \leq y$ and $x \not\leq y$, we have x < y and it follows from the definition of \leq that $x, y \in \operatorname{Mid}(Q) = \operatorname{Mid}(P)$. Since $y \notin \operatorname{Max}(P)$, we have $(y]_P \cap \operatorname{Max}(P) = \phi$ and so that separation property (s) guarantees the existence of a clopen \leq -decreasing set A_0 such that $y \in A_0$ and $A_0 \cap \operatorname{Max}(P) = \phi$. Also, since $y \notin \operatorname{Min}(P)$, the closed set $\{x\} \cup \operatorname{Min}(P)$ has empty intersection with $[y]_P$ and the dual of the separation property (s) guarantees the existence of a clopen \leq -increasing set A_1 such that $y \in A_1$ and $A_1 \cap (\{x\} \cup \operatorname{Min}(P)) = \phi$. Then set $A = A_0 \cap A_1$ is, therefore, a clopen convex subset of $\operatorname{Mid}(P)$ having the property that $y \in A$ and $x \notin A$. The set A also has these properties with respect to Q, since f preserves order and is continuous. Furthermore, since $x \notin \operatorname{Min}(P)$, we can use the separation property (s) to obtain a clopen \leq -decreasing set B such that $x \notin B$ and $\operatorname{Min}(P) \subseteq B$. Again, B is clopen and \leq -decreasing. We claim that $C = A \cup B$ fulfills our needs. Obviously, C is clopen, $y \in C$ and $x \notin C$. To show that C is \leq -decreasing, suppose that $z \leq c \in C$ and $z \neq c$. If $c \in B$ then $z \in B \subseteq C$, since B is \leq -decreasing, whereas if $c \in A$ then $c \in \operatorname{Mid}(Q)$ and so $z \in \operatorname{Min}(Q) \subseteq B \subseteq C$. Thus, Q is a Priestly space.

Next, we show that $[D]_Q$ is clopen, for any clopen \leq -decreasing set $D \subseteq X$. Since D is \leq -decreasing, we have $\operatorname{Min}_Q(D) = D \cap \operatorname{Min}(Q)$. Moreover, because $m \leq x$ is equivalent to $m \leq x$, for any $m \in \operatorname{Min}(Q) = \operatorname{Min}(P)$, we have $\operatorname{Min}_P(D) = \operatorname{Min}_Q(D) = D \cap \operatorname{Min}(P) = M$. This relation between the two orders also implies that $[M]_P = [M]_Q$. However, $[D]_Q = [M]_Q$, since D is \leq -decreasing. Therefore $[M]_P = [D]_Q$. Now, $M \subseteq D$ implies that $\{x\} \cap M = \phi$, for any $x \notin D$. Since M is closed and \leq -decreasing, the separation property (s) ensures the existence of a clopen \leq -decreasing set E_x such that $M \subseteq E_x$ and $x \notin E_x$.

R. BEAZER AND J. SICHLER

Now, $\bigcup \{X \setminus E_x : x \in X \setminus D\} \supseteq X \setminus D$ and $X \setminus D$ is compact, since D is open. Therefore there is a finite $F \subseteq X \setminus D$ such that $\bigcup \{X \setminus E_x : x \in F\} \supseteq X \setminus D$. The set $E = \bigcap \{E_x : x \in F\}$ is clopen, \leq -decreasing and satisfies $M \subseteq E \subseteq D$. Clearly, $M \subseteq \operatorname{Min}_P(E) \subseteq \operatorname{Min}_P(D) = M$ so that $\operatorname{Min}_P(E) = M$ and therefore $[M]_P = [E]_P$, since E is \leq -decreasing. It follows now that $[D]_Q = [E]_P$ which is clopen, since E is clopen and P is a dp-space. This, together with a dual argument, completes the proof of the fact that Q is a dp-space. Summarizing, thus far, K = D(Q) is a congruence permutable extension of L.

Finally, observe that a subset of X is a closed c-set in P if and only if it is a closed cset in Q, since ordered pairs involving extremal elements are the same in either dp-space, and so $\Theta_{\kappa}(C)$ is the unique extension of $\Theta_{\Gamma}(C)$ to K, for any clopen c-set C.

Corollary. The congruence lattice of any distributive double p-algebra is isomorphic to the congruence lattice of some congruence permutable distributive double p-algebra.

Concluding remarks. Recall that an algebra is *congruence regular* if each of its congruences is uniquely determined by any one of its classes. Varlet [9] has shown that the congruence regular distributive double *p*-algebras are precisely those having no 3-element chain in their dp-spaces. It is an open question as to whether or not the congruence lattice of an arbitrary distributive double *p*-algebra is isomorphic to the congruence lattice of some congruence regular distributive double *p*-algebra.

REFERENCES

1. M. E. ADAMS and R. BEAZER, Congruence properties of distributive double *p*-algebras, Czechoslovak Math. J. 41 (1991), 216–231.

2. J. BERMAN, Congruence relations of pseudocomplemented distributive lattices, Algebra Universalis 3 (1973), 288-293.

3. B. A. DAVEY, Subdirectly irreducible distributive double *p*-algebras, Algebra Universalis 8 (1978), 73-88.

4. G. GRÄTZER, Lattice Theory: First Concepts and Distributive Lattices (Freeman, San Francisco, California, 1971).

5. T. KATRIŇÁK, Congruence lattices of distributive p-algebras, Algebra Universalis 7 (1977), 265–271.

6. H. A. PRIESTLEY, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.

7. H. A. PRIESTLEY, Ordered topological spaces and the representation of distributive lattices, *Proc. London Math. Soc.* 24 (1972), 507-530.

8. H. A. PRIESTLEY, Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 36-90.

9. J. VARLET, A regular variety of type (2, 2, 1, 1, 0, 0), Algebra Universalis 2 (1972), 218-223.

DEPARTMENT OF MATHEMATICS University of Glasgow Glasgow G12 8QW Scotland DEPARTMENT OF MATHEMATICS University of Manitoba Winnipeg, Manitoba Canada R3T 2N2