
AIPS++: A New Astronomical Imaging Package 

Ray P. Norris 

Australia Telescope National Facility, CSIRO Radiophysics Laboratory, PO Box 76, 

Epping, NSW 2121, Australia. 

ABSTRACT. In this paper I describe a new software package ("AIPS++") being written 

by a consortium of seven astronomical institutions spread over four continents. I start by 

describing the background to the project, followed by a summary detailing what 

AIPS++ is and why it is being written in this way. Section 3 describes the challenge of 

running a globally distributed project spread over four continents. Finally I describe the 

current status and an estimated completion date. 

1 . Introduction 

Some ten years ago, NRAO developed the AIPS software for use with their newly 

completed VLA. Since that time, AIPS, which consists of some 600 000 lines o f code, 

has been installed at over 300 sites worldwide. It has been developed and modified by 

various astronomical institutions to cope with a range of instruments and techniques 

which were unthought o f at the time of its writing. However, AIPS is now showing its 

age, and is increasingly unable to cope with new computer technologies, new imaging 

techniques, and new instruments. The continuous additions and modification made 

throughout its lifetime are now making the code difficult to maintain. It has become 

clear that AIPS can no longer be modified piecemeal, but that instead we need to 

replace it by a new generation o f software, embracing modern software techniques while 

building on the experience provided by AIPS. 

Australia Telescope National Facility, CSIRO, Australia 

Berkeley-Illinois-Maryland Array, USA 

Herzberg Institute of Astrophysics, Canada 

National Radio Astronomy Observatory, USA 

Netherlands Foundation for Research in Astronomy, Netherlands 

Nuffield Radio Astronomy Labs., Jodrell Bank, UK 

Tata Institute for Fundamental Research, India 

Table I: The members oftheAIPS++ Consortium 

This new system is to be called AIPS++ (Astronomical Information Processing 

System). Because of the sophistication demanded by users and techniques, it was felt 

that no one institution had the resources to build this system. A consortium was 

therefore formed of seven institutions, listed in Table 1, each of which runs major radio-

astronomical facilities. 

247 

J.G. Robertson and W.J. Tango (eds.), Very High Angular Resolution Imaging, 247-256. 
© 1994 IAU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


248 

Each institution provides between one and seven programmers, making a total 

team of about 18 programmers at present, although this number will increase as we start 

writing higher-level applications. An essential part of this simultaneous development 

over geographically dispersed sites is that code needs to be kept in step at all sites. This 

is achieved by running an automatic job overnight which distributes code and 

documentation via Internet, and ensures that no site is more than a few hours out of step 

with the others. 

2. What will A I P S + + b e ? 

2.1. SCOPE 

The goal of the AIPS++ project is to provide an image processing and data reduction 

system for all mainstream radio-astronomy applications throughout the world. This will 

include both aperture-synthesis and single-dish applications, but will not initially target 

highly specialised applications such as pulsar search algorithms. Single-dish and 

aperture-synthesis software have traditionally been viewed as two separate packages. 

However, as newer aperture-synthesis instruments routinely provide auto-correlation 

data as well as cross-correlation data, and as single dishes acquire multi-beam feeds, the 

traditional distinctions between single-dish and multi-element radio-astronomical 

techniques are diminishing. It is therefore now appropriate to combine these into one 

software package. 

An additional goal of the project is to provide a platform for optical 

interferometry applications, although the actual writing of those applications will be left 

to practising optical interferometrists. The reasoning behind this decision is that optical 

interferometry uses many techniques common to those of radioastronomy, and so it is 

natural to include optical interferometry applications within AIPS++. A further reason 

is to encourage cross-fertilisation between the two disciplines. In the longer term, 

software may be written for other disciplines or wavelengths within AIPS++, but we do 

not intend to target them at this stage. 

A potential problem that could be caused by aiming at such a wide range of 

targets is that the resulting code may be very bulky. For example, a user who is 

interested only in single-dish applications may not want to clutter up the disk with VLBI 

applications. The code will therefore be divided into sections (core, single-dish, 

aperture-synthesis, VLBI, and so on) so that a user or institution may load only a subset 

of the AIPS++ package. 

2.2. SPECIFICATIONS 

AEPS++ is designed around a set o f user specifications which have been assembled from 

specifications prepared by the astronomers at the consortium member institutions. 

These specifications are freely available by anonymous ftp (see Section 5), and we will 

always welcome comments on them. Broadly, AIPS++ will have the following features. 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


249 

What the user sees 

• It will contain (as a minimum) most of the present functionality of AIPS 

• It will take advantage of new computing technologies such as graphical user 

interfaces, distributed computing, and massively parallel machines 

• It will have a variety of user-friendly interfaces, including text input, a graphical 

user interface, and a dataflow interface (such as that found in Khoros and AVS) . 

• It will have on-line documentation as well as hard-copy documentation 

• It will be easy for users to write new tasks 

• It will be possible for users to enter algorithms (as in IDL and PV-Wave) at the user 

interface. For example, a user might write ImageA=ImageB/5 + SQRT(ImageC). 

• It will be distributed freely (using a gnu-style license) via anonymous ftp 

• Regional and international user groups will be set up to encourage dissemination of 

information and feedback to consortium members 

What the user doesn't see 

• It will use object oriented techniques to maximise maintainability and adaptability, 

and be written in C++ 

• It will use the X window system for display purposes 

• It will be portable to most Unix (strictly, Posix-compliant) systems 

• It will adhere to industry standards (Posix, X , C++, etc) 

• Code will be kept simple by taking advantage of operating system features 

• Wheels will be borrowed rather than re-invented where possible (e.g. Khoros, 

Interviews) 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


250 

2.3. WHO WILL WRITE THE APPLICATIONS? 

Fig 1. shows the three levels o f the AIPS++ software. At the centre is the core of 

AIPS++, containing efficient low-level software, written by computer science 

specialists. This core includes libraries, data structures, and the interface to the 

operating system. Surrounding the core are the "official applications", which constitute 

the bulk o f the code seen by most users, and which are distributed by the AJPS++ 

regional centres. These applications include all the essential astronomical and imaging 

tasks, such as tasks to edit, image, and display data, and conform strictly to standards of 

coding, documentation, and reliability. 

Finally, there exists a layer of "unofficial applications". These are applications 

freely written by users without having to conform to the standards of coding which are 

enforced for the officially distributed code. Use of these unofficial applications will be 

strictly at the user's own risk. However, such tasks which prove to be particularly useful 

or o f wide appeal may be adopted by the AIPS++ centre, recoded to the AIPS++ 

standards, and incorporated into the official layer. 

2.4. OBJECT-ORIENTED PROGRAMMING AND C++ 

AIPS++ will be written in the object-oriented language C++. It is not my intention here 

to give a tutorial on object-oriented programming or C++, but rather to give the casual 

reader some flavour o f what is involved in object-oriented techniques. 

Fig 1: The three layers ofAIPS++ software 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


251 

Traditional programming (function-oriented programming, or FOP) has relied 

on a functional approach, where emphasis is given to the functions (corresponding to 

verbs or subroutines) rather than the objects (nouns, common blocks, and data 

structures), which tend to be added as an afterthought. In object-oriented programming 

(or OOP), on the other hand, the design is built around the nouns rather than the verbs. 

FOP will generally produce a number of subroutines within which are embedded the 

objects (data structures). In OOP, a number of objects (or classes) are produced, within 

which are embedded instructions (the methods) which tell how to perform operations 

on them. 

In principle there is no particular reason why this should offer any benefit, but 

in practice it is found that object-oriented code is less complex, and carries fewer 

connections between modules. In FOP the number of connections between modules 

tends to increase as the factorial o f the number of modules, whereas in OOP there are 

far fewer interconnections. While FOP is appropriate for small or medium software 

projects, in large software projects it tends to lead to complex code which is difficult to 

maintain and adapt. 

As well as this primary difference, there are a number o f other elements of 

OOP as follows. 

Encapsulation. Each module is self-contained, so that it can be modified without 

affecting the rest of the package. This also enhances the reliability because each module 

can be thoroughly tested on its own. Maintenance is also improved by the consequently 

limited scope of variables. 

Inheritance. Objects can inherit properties of a more general class. For example, for the 

class of animals we can define a number of functions (eating, breathing, etc.) which can 

be inherited by another class (mammals) without having to rewrite the code. A further 

class (cows) could then be defined which would inherit the properties of animals and 

mammals, but would also have its own special functions defined (mooing). This 

approach reduces the volume o f code by eliminating redundancy, and consequently 

reduces the number of bugs. 

Polymorphism. Polymorphism is the ability of a function to choose the appropriate 

method depending on what it's operating upon. For example a "Draw" function might be 

defined to act on a class o f "Picture" objects, and it will then be defined for each type o f 

object ("Circle", "ContourMap", etc) inherited from Picture. When called, Draw will 

automatically pick the right function depending on the object, and new types of Picture 

can be added without changing the applications which use Draw. Thus the writer of an 

application who wants to draw an object on the screen doesn't have to worry about the 

internal details of the objects being drawn. This results in less complex and more 

understandable applications. 

Design Tools. A feature o f OOP is that the balance between design time and coding 

time is shifted far more towards design than in FOP, so that as much as half the time 

dedicated to the project may be spent in design rather than construction. This is very 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


252 

frustrating to those of us who expect to sit down and write code on day one of a project, 

but will hopefully result in a much better design. 

Finally, a disadvantage for many astronomers brought up on Fortran will be 

their unfamiliarity with object-oriented programming. However, undergraduates now in 

university are being taught C and C++ rather than Fortran, and so to the next generation 

of graduate students it will be the Fortran rather than the C++ which will be strange and 

unfamiliar. A Fortran interface will be provided to write tasks in Fortran, but this will 

clearly be less powerful than the C++ interface. 

3. Project structure 

3.1. PROJECT MANAGEMENT 

Management takes on an even more important role in a project spread over seven 

institutions than it does in other projects, and we have worked hard to represent interests 

o f all the institutions while trying to avoid "software designed by a committee". 

The management structure is shown in Fig. 2. Policy decisions are taken by a 

steering committee consisting of a representative from each institution, but the day-to-

day management is by a team consisting of a project manager, project scientist, and a 

project computer scientist, resident at the Project Office (currently at NRAO, 

Charlottesville, Virginia). Programmers at the individual sites report to the project 

manager, and are allocated "software contracts" which remove any ambiguity over what 

is expected from them and when it should be delivered. 

Project 

Astronomer 

Project Manager 

Project Computer 
- ' ' Scientist 

Centre 
Staff 

Remote 
site 

Remote 
site 

Figure 2 . Project Management Structure 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


253 

3.2. PROJECT COMMUNICATIONS 

Good communications are obviously important for this project, and take place at several 

levels. It should be stressed that we rely heavily on Internet for all our electronic 

communications, and it is doubtful whether a project like this would have been feasible 

a few years ago before the near-universal electronic access that we now enjoy. 

Much of the actual work is done at the individual institutions, except that 

several programmers spent a few months at Charlottesville in early 1992, where the 

initial problem analysis and design phases took place. Throughout the lifetime of the 

project, occasional exchanges of programmers between institutions will continue. Code 

and documentation written by programmers at any one institution is automatically 

transferred overnight to all other institutions, so that the code at each institution is never 

more than a few hours out of step with that at any other institution. 

Most of the business of the steering committee (and o f most o f the AIPS++ 

team) is by electronic mail, with only three or four face-to-face meetings each year, 

which are rotated around the participating institutions. In addition, we have recently 

started monthly telephone conferences, which are surprisingly successful for a multi-

continent project like this, although some members may respond rather sleepily to the 

early-morning brightness of others. 

4. Current status of the Project 

The construction of AIPS++ started on 1 January 1992, and a system will be completed 

by the end of 1994 which will largely replace the main functionality of AIPS. 

1 Jan 92 Project started 

Q1&2 92 Programmers assemble at Charlottesville for 
"indoctrination" 

Q3&4 92 Design basic math classes, tools, kernel 

Construct of code/documentation distribution system 

Select o f CASE tools 

Q1&2 93 Finalise kernel design 

Complete database system, prototype user 

interface, on-line help, simple imaging tools. 

Construct prototype to take FITS files, 

FFT and image them 

Mid 93 Start construction o f major applications 

Construct V L B A applications 

End 93 First major subsystems available for "friendly" users 

Mid 94 Operational single-dish system 

1994 Design and construct more applications 

1 Jan 1995 Release AIPS++ to general users 

Cease AIPS support 

Table 2. The AIPS++ Timetable 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


254 

Thereafter, additional applications will continue to be added to AIPS++ over its 

estimated ten to fifteen-year lifetime. Table 2 gives a brief summary of the milestones 

in the development cycle of AIPS++. 

5. Conclusion 

AIPS++ is an ambitious project, tackling not only an unfamiliar software methodology, 

but also the challenge of managing a large project distributed over seven astronomical 

institutions spread over four continents. We do not expect the path to completion to be 

smooth, but signs so far give us cause for optimism that we will achieve our goal. If 

AIPS++ is the success that we hope, then it will be interesting to see the extent to which 

this type of collaborative project becomes more common in the astronomical 

community. Such collaborative projects not only have the potential to reach goals that 

are beyond the scope of any one institution, but also have the potential to achieve cross-

fertilisation between both disciplines and institutions. 

For further information on the AIPS++ project, all code and documentation is 

available by anonymous ftp from aips2.cv.nrao.edu. Of particular interest is the project 

book, stored as /pub/aips++/docs/Pbook.ps. 

D i s c u s s i o n : 

Armstrong: 

What hooks for optical aperture seynthesis will be part of AIPS-I—f? Will it be able 

to deal with data consisting of closure phases and squared visibility amplitudes? 

Norns: 

That is certainly our intention, although right now the emphasis is on radio-

astronomical applications. We would welcome input on what needs to be done 

in such areas as the imaging model. 

Bedding: 

How confident are you that AIPS-I—h will be able to adapt to and take advantage 

of future hardware advances? 

Norns: 

My (personal) estimate of a lifetime of 10-15 years for A I P S + - f is based on past 

experience which says that 10-15 years is the time it takes for hardware to evolve 

sufficiently to make existing software obsolete. So, we are building A I P S + + to cope 

with the hardware which either exists now or we can guess will be available soon, 

but I don't have enough confidence in my crystal ball to predict it will be able to 

cope with the hardware available in 10 to 15 years time. 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


255 

ten Brummelaar: 

Will data abstraction, operator overlaying and other aspects of O O P S be available 

to the user via the script language? 

Ν orris: 

We are currently discussing this. Many users will want to adopt a functional ap-

proach in the script language, and we will support this. However, some users will 

certainly want to access the power of O O P and we will investigate ways to make 

this possible. 

Marson: 

Given that C + + programmers spend as much time designing the code as writing 

it, will it still be possible to whip up a quick and dirty program in A I P S + + ? 

Ν orris: 

Yes - one of the main aims of AIPS H—h is to make it easy for users to write their 

own tasks, and incorporate their own experimental algorithms. Users who wish to 

write their own tasks will find a suite of tools available, and in those tools resides 

the investment of time spent in the design, so users will find it fairly easy to 'whip 

up a quick and dirty program'. 

https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697


https://doi.org/10.1017/S0074180900107697 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900107697

