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Abstract

In Part 1, we have considered the dynamics of topographically confined glaciers, which may
undergo surge cycles when the bed becomes temperate. In this Part 2, we consider the ice dis-
charge over a flatbed, which would self-organize into alternating stream/ridge pairs of wet/frozen
beds. The meltwater drainage, no longer curbed by the bed trough, would counter the conductive
cooling to render a minimum bed strength at some intermediate width, toward which the stream
would evolve over centennial timescale. At this stationary state, the stream width is roughly twice
the geometric mean of the stream height and length, which is commensurate with its observed
width. Over a flatbed, streams invariably interact, and we deduce that the neighboring ones
would exhibit compensating cycles of maximum velocity and stagnation over the centennial
timescale. This deduction is consistent with observed time variation of Ross ice streams B and
C (ISB/C), which is thus a manifestation of the natural cycle. Moreover, the model uncovers
an overlooked mechanism of the ISC stagnation: as ISB widens following its reactivation, it
narrows ISC to augment the loss of the meltwater, leading to its stagnation. This stagnation is
preceded by ice thickening hence opposite to the thinning-induced surge termination.

1. Introduction

In Part 1 (Ou, 2021), we have considered the dynamics of a glacier confined in a topographic
trough, which may exhibit cyclic surges when the bed becomes temperate. We establish that a
prognostic model of the phenomenon must entail global momentum balance and subglacial
hydrology in its closure. The requirement is met by the undrained plastic bed (UPB) formu-
lated by Tulaczyk and others (2000) and numerical calculations employing UPB have pro-
duced realistic surge cycles (Bougamont and others, 2011; Robel and others, 2013). Since
these models have fixed glacier margins, they cannot address the free-boundary problem of
the ice streams, as they have intended. Bougamont and others (2011), for example, liken
the simulated surge cycle to the time variability of the Ross ice streams, including the recent
stagnation of Ice Stream C (ISC, also named after Kamb). Although observed streams do
exhibit time variation, it differs qualitatively from surge cycles characterized by short surge fol-
lowed by long period of lull (Meier and Post, 1969; Shabtaie and others, 1988). Robel and
others (2013) note in addition that the observed stream width lies near the stability boundary
between cyclic and steady regimes, which however serves no prognostic purpose unless the
stream width can be internally constrained.

In contrast to topography-confined glaciers, there is no apparent spatial linkage of Ross ice
streams to the bed topography (Retzlaff and others, 1993; Bennett, 2003), so as a more relevant
approach, numerical calculations have been carried out over a flatbed, which show that the ice
discharge would self-organize into alternating fast/slow bands, but they remain inadequate in
addressing the ice stream problem, as noted next. Hindmarsh (2009), for example, shows that
thermal instability due to the strain heating would speed the local flow and draw in the adja-
cent ice, and the accompanying cold advection would curb the thermal instability to result in
alternating warm/cold bands. Since his fast flow remains a viscous creep, it only slightly per-
turbs the global momentum balance, whose inclusion has nonetheless lessened the resolution
dependence of the solution. His model, however, is deficient in simulating Ross ice streams
characterized by fast sliding motion (Joughin and others, 2002), which would strongly perturb
the global momentum balance, so the inclusion of the latter in a model is critical. Indeed,
without such balance, the sliding streams are only one to two gridpoints wide (Payne and
Dongelmans, 1997; Hulton and Mineter, 2000), a narrowness that is thus an artifact of the
model resolution, and the singular stress at the stream edge obviously cannot be accommo-
dated by the global momentum balance.

Remedying the above shortfall, Brinkerhoff and Johnson (2015) have included the global
momentum balance in their model, which shows that the streams attain finite widths, thus
removing the singular stress at their margins. In addition, the streams exhibit surge cycle,
much like that observed for a topography-confined glacier when it is sufficiently wide (Part 1).
The modeled variability, thus, is due to the thermal switch considered in Part 1 (Ou, 2021),
and the stream width is essentially that divides the cyclic-surge and steady-sliding regimes. In
other words, the additional degree of freedom associated with the unknown stream width can
be countered by the Hopf bifurcation when the unstable stationary state vaults into a stable
limit cycle (Robel and others, 2013). Being a thermal-induced surge cycle, however, it cannot
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explain the observed variability, as alluded to earlier; then their neg-
lect of the meltwater dispersal cannot be justified over a flatbed. Since
the stream is predicated on a wet bed, one expects the efficiency of
the meltwater drainage to play a key role in regulating its width.

Kyrke-Smith and others (2015) have included the meltwater
dispersal in their model, and to counter the unknown stream
width, they posit a constraint on the viscous closure of the
water film by the strain heating. The constraint, however, involves
an arbitrary parameter (their Λ∞) limiting the weakness of the
bed, and a stationary state is attainable only when this constraint
is less severe. Then, when the streams do settle into this stationary
state, there is no longer time variability, so the model cannot
address the observed temporal variation, including the stagnation
of ISC.

With the above, we discern the needed expansion of the theor-
etical framework presented in Part 1 (Ou, 2021) to address the ice
stream problem, as expounded next. First of all, without the topo-
graphic trough confining the glacial mass flux, we must allow
inflowing ice flux from the adjacent ridge (termed ‘entrainment’),
which indeed is comparable to the upper-glacier catchment in
observations (Shabtaie and others, 1988). The accompanying
cold advection is the facilitator of the self-organized stream/
ridge pair, which thus must be considered a single physical entity.
Second, without the topographic constriction, an undrained sub-
strate is no longer tenable, and the efficiency of the meltwater
drainage necessarily regulates the stream width defined by a wet
bed. Finally, the closure must allow interaction of the streams
over a flatbed, which should not be stymied by extraneous con-
straints. These expansions notwithstanding, we are seeking a min-
imal model to address the genesis and interaction of the flatbed
ice streams. The striving for simplicity uncluttered by unwar-
ranted sophistication should aid the understanding of the govern-
ing physics.

Since we are concerned with the physical closure of the whole
stream/ridge system, it differs in scope from recent studies addres-
sing the migrating stream boundary due to local concentration of
the shear stress hence strain heating (Jacobson and Raymond,
1998; Schoof, 2012). As such concentration is caused by the
weak stream bed (Echelmeyer and others, 1994; Harrison and
others, 1998), which in turn is a consequence of the substream
hydrological balance, the latter must be considered in assessing
the stream behavior. Inferring the boundary migration from the
englacial heat balance alone by fixed or diagnosed internal vari-
ables offers no prognosis of the boundary motion or stability
(Jacobson and Raymond, 1998; Haseloff and others, 2018). In
fact, the margin need not move if the heightened shear heating
is countered by the advective cooling, the latter sometimes
neglected in the aforementioned models. As we shall see later
(Section 2.2), the relative warmth near the stream margin has
only minor effect on the stream-wide hydrological balance, so it
is neglected in our minimal model.

This Part 2 is organized as follows: In Section 2, we consider
an isolated stream/ridge pair and derive its stationary state. In
Section 3, we consider the interaction between neighboring
pairs and examine their equilibrium configuration, which will
be compared with observations. We provide additional discussion
in Section 4 and summarize the paper in Section 5.

2. Isolated stream/ridge

We first consider an isolated stream/ridge pair shown in Figure 1,
which depicts the middle section between the ice divide and ter-
minus where the driving stress is broadly peaked to endow the
primary stream behavior (Bindschadler and others, 2001). The
state variables pertain to this middle section, and the longitudinal
dimension enters only through the stream half-length that defines

the upper-glacier catchment distance and the longitudinal surface
slope. All symbols and their prescribed values (referred to as
‘standard’ for convenience) are listed in Appendix. Both the
stream and bed conditions are shown with the external variables
boxed while internal ones unboxed, and they are denoted as sub-
scripts 0 and 1, respectively, for the ridge and stream.

The external parameters are the constant accumulation ȧ and
the geothermal flux ġ, the latter specifies the ice height h0 when
the bed becomes temperate to initiate the streams (Part 1). This
height combined with the stream half-length l then specifies the
driving stress τ0 and the longitudinal creep u0 over the ridge out-
side its interacting zone with the stream. The internal variables are
the height h1, the half-width w1, the mean basal stress τb and slid-
ing velocity u1 of the stream, as well as the inflow vi supplied over
the catchment width w0 of the ridge.

As drawn on the till surface, the stream boundary is defined by
a basal stress equaling the driving stress, which thus separates the
free slip from the non-slip beds. The substream basal stress is
approximately half the effective pressure N (Tulaczyk and others,
2000), a difference between the overburden (pi) and the water
pressure (pw). Because of the narrowness of the shear zone, we
have equated the mean and the centerline basal stresses, as
denoted by τb. Since the finite water pressure and the outward
meltwater flux at the stream boundary can only be depleted by
freezing over a finite distance, the stream boundary contains no
discontinuity in the temperature (at the pressure-melting point),
the basal stress (at the driving stress), the longitudinal velocity
(∼0) or bed condition (wet).

The external parameters are justifiable as the ice-sheet proper-
ties unaffected by the streams. The internal stream variables, other
than its width, are the same as those of Part 1 (Ou, 2021), which
represent minimal descriptors of the stream. The addition of the
inflow velocity and the catchment width as internal variables are
necessitated by the mass coupling of the stream/ridge, which how-
ever can be closed by the viscous flow law and the mass balance
over the ridge. Therefore, compared with Part 1 (Ou, 2021), Part 2
indeed has just one additional degree of freedom associated with
the stream width, whose determination is the original aim of this
study.

Figure 1 illustrates the essence of the self-organization: as the
ice sheet thickens, the increasing sequestration of the geothermal
heat would warm the bed to the pressure-melting point to trigger
the sliding motion (Part 1); the ensuing surface lowering would
induce an inward flow from the adjacent ridge and the accom-
panying cold advection would freeze the ridge bed, resulting in
self-organized stream/ridge pairs of wet/frozen beds. This contrast
in the bed condition is well-observed over the Siple coast (Bentley
and others, 1998; Kamb, 2001), which thus can be the outcome of
the self-organization rather than a precondition that differentiates
the disparate flow, as suggested by some authors (Blankenship
and others, 2001).

2.1 Mass coupling

The ice entrainment from the ridge into the stream would couple
the mass balances of the two, which are discussed successively
below. For simplicity, we assume the surface displacement to be
sufficiently slow that steady-state mass balance holds. Over the
ridge, the longitudinal driving stress is

t0 = righ
2
0/l, (1)

and, applying a linear flow law (see Part 1: Ou, 2021), the vertical-
averaged longitudinal creep is (van der Veen, 2013, Eqn (5.30))

u0 = h0t0/(3n), (2)
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where ν is the ice viscosity (Doake and Wolff, 1985). The lowering
of the stream surface would induce an inward stress τi of

ti = righ
2
0h/w0, (3)

where w0 is the catchment width over the ridge and

h ; (h0 − h1)/h0 ≪ 1 (4)

is the fractional surface depression of the stream, assumed small at
the outset for simplicity. Since this depression is explicitly calcu-
lated in the model, this approximation will be checked a posteriori
for consistency. The inward stress would drive a vertical-averaged
inward flow:

vi = h0ti/(3n), (5)

accompanied by a mass flux

qi = h0vi. (6)

Because of the assumed steady-state mass balance, this influx
is supplied by the accumulation over the catchment width of
the ridge minus the longitudinal flux divergence, or

qi = w0(ȧ− h0u0/l) � w0ȧ. (7)

We have neglected the longitudinal flux divergence as it is
more than an order smaller than the accumulation for the stand-
ard case (Appendix). Combining Eqns (3)–(7), we link the two
internal variables η and w0:

h = ȧ
u0

w2
0

h0l
. (8)

Physically, a greater depression implies a greater inflow, which
needs to be supplied by the accumulation over a wider catchment
zone. Based on the functional form of this equation, we define the

width scale

[w] ; (h0l)
1/2, (9)

so this equation becomes

h = vw′2
0 , (10)

where primed variables are non-dimensionalized and

v = ȧ/u0 (11)

is a dimensionless parameter measuring the strength of the accu-
mulation hence referred to as the accumulation parameter.

We next consider the mass balance of the stream, which states

ȧw1 + ȧw0 = w1q1/l, (12)

or the accumulation and the influx from the ridge (the second
term, see Eqn (7)) are balanced by the longitudinal divergence
of the stream flux. This equation can also be interpreted as the
mass balance of the combined stream/ridge pair: that is, owing
to the negligible longitudinal flux of the ridge, the total accumu-
lation over the pair is discharged through the fast stream. As dis-
cussed in Part 1 (Ou, 2021), applying the global momentum
balance and the linear flow law to the lateral strain, the stream
velocity, averaged across the stream, is (Raymond, 1996)

u1 = t0 − tb
3nh0

w2
1, (13)

where τb is the (unknown) mean basal stress. Note that because of
the small surface depression (4), the same driving stress τ0 applies
over the stream/ridge pair. Defining additional scales

[t] = t0, (14)

Fig. 1. Isolated stream/ridge pair, with boxed-in vari-
ables prescribed and others, prognostic. l is the longitu-
dinal distance scale, h0 and h1 are the ridge and stream
height, w0 and w1 are the catchment width and the
stream half-width, u0, vi and u1 are the longitudinal
creep, the inward creep and the mean stream velocity,
τ0 and τb are the driving and the basal stress, their dif-
ference is half the effective pressure N, which is the dif-
ference between the overburden pi and water pressures
pw, ȧ and ġ are the accumulation and the geothermal
flux, respectively. The stream boundary is defined by
the basal stress equaling the driving stress, and the
water pressure is reduced over a narrow transition
under the ridge to zero, which divides the frozen and
wet bed.
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[u] = u0
[w]2

h20
, (15)

and

[q] = h0[u], (16)

the velocity and stream flux are non-dimensionalized to

u ′
1 = q ′

1 = (1− t ′
b)w

′ 2
1 , (17)

and Eqn (12) becomes

w ′
0 = w ′

1(q
′
1 − v)/v, (18)

which links the catchment width to the stream width.
Eliminating the catchment width w ′

0 from Eqns (10) and (18),
we arrive at

h = w ′ 2
1 [(1− t ′b)w

′
1
2 − v]2/v, (19)

which contains only stream variables. As alluded to earlier, the
additional degrees of freedom introduced by the entrainment
have been closed by the viscous flow law and the mass balance
over the ridge.

2.2. Meltwater balance

For a temperate bed, the basal heat balance is the same as the
meltwater balance, and its difference from Part 1 is that the lateral
dispersal of the meltwater, no longer curbed by the topographic
trough, must be included. Since the stream is defined by an effect-
ive pressure lower than half the driving stress (Tulaczyk and
others, 2000, see Fig. 1), one expects the efficiency of the melt-
water dispersal to play a key role in constraining the stream
width. To maintain the high water-pressure necessary for the slid-
ing motion, the drainage system must be of the distributed type,
which may take the form of linked cavities, a thin water film or
their hybrid (Fountain and Walder, 1998), but for our purpose,
the distinction is immaterial since it can be absorbed into the
effective hydraulic conductivity. For simplicity and indeed with
stronger observational evidence (Engelhardt and Kamb, 1997),
we take the water film of uniform depth d as the proxy medium
for the water transport.

Since the hydrological timescale is short compared with the
timescale of the ice variability (Fricker and others, 2007; see
Section 2.3), we assume a steady-state heat balance of the form
(Kyrke-Smith and others, 2014)

u1tb = ġ
h0
h1

− 1

( )
+ riLd

3

12m
2(t0 − tb)

w2
1

, (20)

which states that the frictional heating (the first term) is balanced
by the conductive cooling in excess of the geothermal flux (the
second term) and the drainage cooling associated with the out-
ward meltwater flux (the last term). For the conductive cooling,
we have assumed an englacial conductive equilibrium (Part 1)
and noted that the marginal warmth only slightly perturbs the
stream-wide conductive flux because of its narrowness
(Harrison and others, 1998) hence neglected. For the meltwater
drainage, we have applied a scaled Darcy’s law neglecting the sur-
face slope because the stream resembles a plug flow (Joughin and
others, 2002, Fig. 6) and noted that the effective pressure has end
values as indicated in Figure 1. It is noted that the outward

meltwater flux is wholly determined by the stream properties,
and it can be accommodated by the ridge because of the slight set-
back of the frozen bed (Fig. 1). Since both freezing and melting
are allowed in the hydrological balance, there is no need to distin-
guish the expanding versus the shrinking stream (Haseloff and
others (2018).

When non-dimensionalized, the heat balance (20) becomes

0 = au ′
1t

′
b︸�︷︷�︸

ḟ

− h︸︷︷︸
ċ

−b(1− t ′b)/w
′
1
2︸�������︷︷�������︸

ḋ

, (21)

where

a ; [u][t]/ġ (22)
is the ‘heating’ parameter measuring the strength of the frictional
heating and

b = riLd
3

12ġm
2 [t]

[w]2
(23)

is the ‘drainage’ parameter measuring the efficiency of the melt-
water dispersal. Since this drainage parameter differs from the
hydraulic conductivity only by a numerical factor, they are
referred to interchangeably. We have used the symbols ḟ , ċ and
ḋ for the ‘frictional’ heating, ‘conductive’ cooling and ‘drainage’
cooling, respectively. Substituting from Eqns (17) and (19), we
combine the mass and heat balances into a single equation gov-
erning the two prognostic variables: the half-width w ′

1 and the
basal stress t ′b of the stream:

0=aw1
′2(1−tb

′)tb′︸��������︷︷��������︸
ḟ

−w1
′2[(1−tb

′)w1
′2−v]

2
/v︸���������������︷︷���������������︸

ċ

−b(1−tb
′)/w1

′2︸�������︷︷�������︸
ḋ

,

(24)
which contains three dimensionless parameters: ω, α and β.

To tidy up Eqn (24), we use the shorthands

t ; t ′b, (25)

z ; w ′ 2
1 , (26)

to yield

0 = az(1− t)t︸�����︷︷�����︸
ḟ

− z[(1− t)z− v]2/v︸�����������︷︷�����������︸
ċ

−b(1− t)/z︸�����︷︷�����︸
ḋ

. (27)

Since this equation is quadratic in τ, it can be easily solved for τ(ζ),
which is the solid curve drawn in Figure 2 for the standard case of (ω,
α, β = 0.21, 2.3, 0.24). This curve bisects the net cooling and heating
regions, as indicated by the encircled signs, and it has a minimum at
some intermediate width marked by box C. The dashed line corre-
sponds to zero surface depression η, which intersects the solid
curve at box B. Since the surface depression (10) cannot be negative,
it is set to zero to the left of the dashed line wherein the heat balance
(27) with ċ = 0 would extend the solid curve from boxes B to A. As
we shall see later, box A marks both the onset and termination of the
stream, whose half-width is then given by

w ′
2 = (b/a)1/4. (28)

It is observed that the solid curve representing Eqn (27) is
U-shaped with a minimum in the basal stress, which can be
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understood by noting that: (a) because the three terms have dif-
ferent power dependence on the stream width, the drainage cool-
ing would dominate at small width, the conductive cooling at
large width, and the frictional heating possibly at intermediate
width; and (b) because the frictional heating contains an extra
appearance of the basal stress, it is overtaken by cooling when
the bed is weak. The minimum basal stress thus occurs at some
intermediate width when the drainage cooling and conductive
cooling are of comparable strength. We shall argue next that fol-
lowing its onset, the stream would evolve toward this minimum
when it attains stationarity.

2.3 Stationary state

A stream is initiated from a creep state when the bed first
becomes temperate and the meltwater production has weakened
the bed to below the driving stress, that is, along the top bound-
ary in Figure 2 with a small width. A narrow stream is subjected
to effective drainage of the meltwater, which would widen the
stream toward box A when it attains a steady-state meltwater
balance. The process is rapid since it is governed by the short
hydrological timescale. For this reason, we shall identify box
A as the onset of the stream, as alluded to earlier. Beyond box
A, we discern possible positive feedback between the stream
widening and the bed softening: a slight widening hence faster
sliding motion would increase the frictional heating to soften
the bed, which would augment the ice flux hence the entrain-
ment to further widen the stream. This positive feedback
would propel the stream toward box C when the bed is at its
softest to thwart the positive feedback and the stream attains
stationarity. Physically, this is when the increasing conductive
cooling eventually overcomes the frictional heating to stabilize
the bed strength.

It should be noted that although the solid curve represents a
steady-state balance, it is the small deviation from this balance
that propels the stream evolution. As this evolution involves the
slower mass adjustment than the hydrological processes, its time-
scale should be that of the former, which stems ultimately from

the sliding-induced thinning. It is thus of the form

[t] = hh0
[q]/l

(29)

= hl/[u], (30)

or it is simply the longitudinal transit time multiplied by the frac-
tional surface depression. For the standard case (Appendix), this
transit time is ∼2 ka and with η≈ 0.1 based on the later solution,
we have an evolution timescale that is of order 200 years hence
centennial, which is consistent with that characterizes the ice
stream variation over the Siple coast (Catania and others, 2012).
Having identified this timescale, we can infer the temporal behav-
ior of the stream/ridge pair along the solution continuum without
explicit time integration. This is the same approach as that taken
in Part 1 (Ou, 2021) wherein its utility in depicting the surge cycle
has been demonstrated.

In addition to the positive feedback discerned above, we offer
next a complementary rationale based on the non-equilibrium
thermodynamics (NT). We note that because of the high
Reynolds number, the substream water film is likely turbulent
(Kamb, 1987), so the effective hydraulic conductivity would be sub-
jected to microscopic fluctuations, whose fractional amplitude can
be taken to be the ratio of the turbulent to the mean water velocity.
Although Ou (2018) shows that such fluctuations would propel the
system toward maximized entropy production (MEP) in a different
context, the MEP has been applied over a wide range of phenomena
as a veritable generalization of the second law to the NT system
(Kleidon and Lorenz, 2005). In our application, the entropy produc-
tion σ is the product of the thermodynamic flux (ḋ) and the
thermodynamic force (1− τ) that drives this flux, or

s = ḋ(1− t) (31)

= b(1− t)2/z. (32)

We plot the entropy production along the solid curve in
Figure 2 (the dash-dotted line) from which we observe that its
maximum roughly aligns with the minimum basal stress.
Because of the appearance of the stream width in Eqn (32),
there is a slight misalignment of the two, which is of little practical
consequence for our purpose. The application of the NT renders a
different expression of the evolution timescale: for a fractional
fluctuation amplitude ε, this timescale should be ε−2 of the
hydrological timescale, based on Ou (2018). As a plausible
example, we take the turbulent velocity of the meltwater to be
an order smaller than its mean velocity, and a hydrological time-
scale of order 1 year (Fricker and others, 2007), then the evolution
timescale could be centennial, similar to that governing the ice
mass balance.

Based on above reasonings, we postulate that the stream would
evolve on centennial timescale toward the minimum basal stress
when it attains stationarity. We shall next examine this stationary
state and compare it with observations.

2.4 Application

With the stationary state being of minimum basal stress, we dif-
ferentiate Eqn (27) against ζ and set dτ/dζ to zero to derive

0 = az(1− t)t− z[(1− t)z− v][3(1− t)z− v]/v

+ b(1− t)/z (33)

Fig. 2. Steady-state heat balance (solid curve) on (ζ,τ) phase space for the standard
case of (ω, α, β = 0.21, 2.3, 0.24). For a wide stream (of greater ζ), the balance is
between the frictional heating (ḟ ) and conductive cooling (ċ) whereas for a narrow
stream between the frictional heating (ḟ ) and the drainage cooling (ḋ). To the left
of the dashed line, the surface depression (η) is set to zero. Solid arrow indicates
the stream evolution from its onset at box A to box B when the conductive cooling
commences and to box C when the basal stress is at its minimum and the stream
attains stationarity. The dash-dotted line is the entropy production (σ) whose max-
imum roughly aligns with the minimum basal stress.
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which can be combined with Eqn (27) to yield

t = 1− v(1+ b/z3)/z. (34)

The equation, being non-transcendental, allows the following
procedure for calculating the stationary state. For a guessed ζ,
we calculate τ from this equation, both are then substituted into
Eqn (27) to check the equality, and the initial ζ is then adjusted
until this equality is satisfied. For the standard case shown in
Figure 2, the calculated variables have the values of
w ′
1 = 0.80, t ′b = 0.37 and hence h = 0.11, w ′

0 = 0.73 and
u ′
1 = 0.40. Since the surface depression is much smaller than

unity, it supports the approximation (4), as alluded to earlier.
Although, as we shall see later, all these values undergo cyclic
changes when streams interact with one another, to the degree
that the stationary state represents an extremum of the cycle, it
has the observational counterpart hence can be compared.
Dimensionally, for the standard case, the driving stress thus is
0.23 b (shorthand for bar), the basal stress is 0.09 b, the stream
width is 32 km, the catchment width is 15 km, the stream velocity
is 77 m a−1 and the stream surface is 110 m lower than the ridge,
all seems quite reasonable except for the stream velocity seems
low (Joughin and others, 2002).

We next examine the dependence of the stationary state on the
dimensionless parameters, as shown in Figure 3 on the (ω, β)
space. The axes are in the binary logarithm spanning half to dou-
ble the standard values (solid squares); the solid lines are for the
standard α and the dashed lines for the doubled α. To understand
the dependence, we show in Figure 4 how the stationary state
defined by the minimum basal stress (box C) would be displaced
(solid squares) when the dimensionless parameters are doubled
from their standard values (the altered basal heat balance in the
dashed lines). A greater ω, say, due to greater accumulation,
would raise the stream surface to reduce the conductive cooling,
which, as can be inferred from the double-headed arrow on the
right, would lower box C and push it to the right. The stationary
state, thus, is characterized by a smaller depression, wider stream
and weaker bed whereas at the same time Eqn (10) implies a nar-
rower catchment; the wider stream and weaker bed reinforce each
other to augment the stream velocity (17); all are as observed in
Figure 3.

A greater β implies stronger drainage cooling, which, as can be
inferred from the double-headed arrows on the left, would raise
the left limb of the solid curve to push box C upward and to
the right. The stationary state, thus, is characterized by deeper
depression, wider stream and stronger bed, and from Eqn (10)
a wider catchment; the stronger bed and wider stream however
counter each other to render little net effect on the stream velocity
(17); all are as observed in Figure 3.

A greater α implies stronger frictional heating, which would
lower box C to weaken the bed, but with little effect on the stream
width (only slightly narrower). The weakening of the bed, how-
ever, is observed from Eqn (19) to increase the depression and
with that the catchment width (10); the weakening bed also
speeds up the stream (17); all are again as observed in Figure 3.

Among the external parameters, the most uncertain are per-
haps the ice viscosity ν and the water-film depth d. From scale
definitions, the dimensionless parameters have the following
power dependence on these two parameters: ω∼ ν, α∼ ν−1, β∼
d3, so the ice viscosity has no effect on the drainage parameter
whereas the water-film depth only affects the drainage parameter.
Quantitatively, the doubling and halving of the ice viscosity falls
within the parameter domain of Figure 3, which, however, can
only accommodate 30% change in the water-film depth.
Although one may appraise the sensitivity of the glacial properties

from Figure 3, one should be mindful of the limit of such infer-
ences given the crudeness of the model. Perhaps more signifi-
cantly, Figure 3 suggests relative robustness of the standard
solution over considerable ranges of the external conditions; the
stream properties, thus, can be summarized crudely as follows:
its width is about twice the geometric mean of its height and
length (9), its basal stress is less than half of the driving stress,
its surface depression is an order smaller than its height and it
moves about two orders faster than the creep; all these are consist-
ent with the observed Ross ice streams (Shabtaie and others, 1988;
Joughin and others, 2002).

Because of the mass and thermal coupling, a stream/ridge pair
must be considered as a single physical entity. Although the pair
could attain stationarity when isolated from other pairs, we shall
next see that such isolation is untenable and they invariably inter-
act (Catania and others, 2012).

3. Interacting streams

Although steady-state mass balance holds for a stationary stream/
ridge pair, it would be perturbed for the time-dependent problem
of interacting pairs; but since we are only deducing their qualita-
tive behavior in the following, this mass balance should remain
adequate. For a more refined quantitative model, temporal change
of the surface displacement obviously needs to be included in the
mass balance.

3.1 Centerline separation

Let us imagine the initiation of the streams when the bed first
becomes temperate as the ice sheet thickens. Without the topo-
graphic constriction, the streams would be randomly distributed
and coalesce to form bigger ones as they grow (Kyrke-Smith
and others, 2014). Through entrainment of the adjacent ice,
they would self-organize into stream/ridge pair differentiated by
wet/frozen beds, and the pair would grow to the stationary state
discussed above if it is isolated from the neighboring pair. The
situation can be visualized via a transect of the surface height
across neighboring pairs as shown in Figure 5a. The left and
right pairs are distinguished by solid and dashed lines, respect-
ively, with the flat surfaces representing the streams and the
curved surfaces, their catchment zones; the shaded strip is the
ridge outside the catchment zones that enables the isolation of
the two pairs. Such a configuration, however, is untenable for
the following reason: the shaded strip, being outside the catch-
ment zone, is not subjected to cold advection hence remains
warm-based; it is thus ripe for initiating an embryonic stream
to interact with the existing ones, contradicting their isolation.

If we denote the ‘centerline’ separation by w ′
c, it then has an

upper bound of

w ′
c = 2(w ′

1 + w ′
0), (35)

the right-hand side pertaining to the stationary stream/ridge pair
derived in the previous section. Because of this upper bound,
there is inherent interaction of the pairs with the widening one
squeezing the other one. Because of this compensating behavior,
the two stream beds obviously may not be weakening at the
same time, so how does this reconcile with the minimization of
the basal stress? For this, we posit the following hierarchy: the
minimizing tendency applies only for the self-propelled stream
growth; once it attains the maximum width, the tendency ceases
and the stream can shrink passively if forced by the neighboring
stream.
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We visualize the interaction as shown in Figure 5b, which
depicts the two extrema of the cycle within the stationary center-
lines. As the left pair widens (the solid arrow), propelled by the
weakening stream bed, it would narrow the right pair (the dashed
arrow); when the left stream attains its maximum width, the right
stream would be at its narrowest, which then begins to grow,
reversing its prior passive role. One may also visualize the inter-
action on the phase space (Fig. 6a) whereby boxes D and C
represent the two extrema of the cycle, and the solid and dashed
arrows correspond to that shown in Figure 5b, namely, the active

(a) (b) (c)

(d) (e)

Fig. 3. State variables plotted against the accumulation (ω) and drainage (β) parameters: (a) stream half-width; (b) basal stress; (c) surface depression; (d) catch-
ment width and (e) stream velocity. Dashed contours are for the doubled heating parameter (α).

Fig. 4. As shown in Figure 2 but showing the modification of the heat-balance curve
(solid to dashed lines) and displacement of the stationary state (box C to solid
squares) by the doubling of the dimensionless parameters (single-headed arrows).

(a)

(b)

(c)

Fig. 5. Transverse sections of the surface height of the interacting stream/ridge pairs.
The left and right pairs are drawn in solid and dashed lines, with the flat and curve
surfaces indicating the stream and the ridge, respectively. The centerline distance wc

(outermost vertical lines) decreases from (a) to (c). (a) The pairs are isolated from
each other by an ice strip (shaded). (b) The streams vary between boxes D (slow)
and C (fast) of Figure 6. (c) The streams vary between boxes A (stagnant) and C
(fast) of Figure 6.
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growth of the left stream from boxes D to C causes the passive
shrinkage of the right stream from boxes C to D.

For a further decrease of the centerline separation, the narrow-
ing stream may reach box A (Fig. 6b) of zero flow, which is char-
acterized by half-width w ′

2 (28) and zero depression hence
catchment width, as depicted in Figure 5c. The centerline separ-
ation thus is

w ′
c = w ′

1 + w ′
0 + w ′

2. (36)

We shall next argue that this centerline separation, in fact, con-
stitutes its lower bound. If this was not the case, the narrower
stream would have stagnated before the wider stream reaches its
maximum width, that is, the wider stream is not yet passive
hence must be continually growing; and since the stagnation of
the narrower stream would initiate an embryonic stream, both
streams would be growing at the same time to push their center-
lines apart, which cannot be stationary.

With the above, we have deduced upper and lower bounds of a
stationary centerline separation given by Eqns (35) and (36),
respectively; but for an initial value problem of the stream gener-
ation, once the lower bound is reached, the centerline separation
has attained stationarity hence there is no tendency for its further
expansion, or the system has reached an equilibrium.

3.2 Equilibrium state

With the above rationale, we thus define the equilibrium state of
the interacting streams as defined by the stationary centerlines of
minimum separation. Within the centerlines, the neighboring
stream/ridge pairs exhibit compensating cycles of maximum amp-
litude, varying between the fastest (and widest) and stagnated
(and narrowest) streams. To aid the visualization, we draw the
time progression of the interacting streams in Figure 7, which
will be compared later with that of the Ross ice streams B (left,
also named after Whillans) and C (right).

The reactivation of the left stream causes it to widen and
weaken its bed (the solid arrow from boxes A to C in Fig. 6b),
both acting to speed up the flow (17); the increasing ice flux
lowers its surface to entrain greater inward flux from the ridge
(19) accompanied by growing catchment zone (10) until the
stream bed reaches the minimum strength. The widening of the
left stream/ridge pair would narrow the right stream and
strengthen its bed (the dashed arrow from boxes C to A in
Fig. 6b), being constricted to its right by the stationary centerline.
This narrowing slows the stream and reduces the catchment flux

until its surface rises to the ridge (box B). With the surface pinned
to the ridge height, the narrowing continues to strengthen the bed
until it reaches the driving stress and the flow comes to a halt (box
A). Since the surface is already flush with the ridge and the bed
remains temperate, it is preconditioned for reactivation to repeat
the cycle.

To contrast the time progression of the ice streams with the
surge cycles of the topography-confined glaciers, we juxtapose
them in Figure 8. The widths (striped upper surfaces), the basal
stress (striped lower surfaces), the surface height (solid lines)
and the ice velocity (dashed lines) are drawn; the shaded columns
signify the abrupt activation and termination of the surge.

At the surge onset, without the meltwater drainage, the basal
stress quickly decreases to zero, causing the surge. The ensuing
thinning augments the conductive cooling, which strengthens
the bed and slows the flow. When the basal stress reaches about
half the driving stress, the bed freezes over rapidly to enter the
creep phase. There are, thus, three timescales characterizing the
surge cycles: the onset and termination of the surge governed
by the short hydrological timescale, the surge and creep durations
characterized by the surface displacement divided by thinning rate
and accumulation, respectively, with the former typically much
shorter. For the stream, on the contrary, the meltwater drainage
somewhat smooths the basal stress, so there is only one centennial
timescale governing its time variation.

The differing causality of the surge from that of the stream
manifests in sharply different relation among its state variables.
During the surge, the causality goes from thinning to stronger
bed to slower flow, resulting in a positive correlation between
the surface height and the ice velocity. For the stream, on the con-
trary, the causality goes from widening to weaker bed to faster
flow to lower surface, which results in anticorrelation between
the surface height and the ice velocity. Because of these opposite
correlations, they should be discernible from observations, as dis-
cussed next.

3.3 Observation

Although the Northeast Greenland Ice Stream has the moniker of
an ice stream, it is steered by the bed trough (Joughin and others,
2001) to fall in the purview of Part 1 (Ou, 2021) wherein its
deduced properties are discussed. Although the Siple coast does
not have a flat bed, the relatively low relief does not strongly con-
strain the Ross ice streams, which represent unique examples of
the ‘pure’ ice streams (Bentley, 1987; Bennett, 2003) for which
our model may be applicable. Since our model is predicated on
coupled stream/ridge pairs, its applications are further limited
to ISB and ISC for the reason that ISA is bounded on one side
by the Transantarctic Mountains, and that ISD and ISE have
poorly developed interstream ridge before they merge into one
stream. In addition, only ISB and ISC have their time evolution
over the last millennium sufficiently documented (Hulbe and
Fahnestock, 2007; Catania and others, 2012) to test our model.

Based on Figure 5c, we have drawn in Figure 7 the projected
time evolution of ISB (left) and ISC (right), and the time proceeds
from ∼450 years to 150 years ago. It is observed that, following
the reactivation of ISB, it would widen and thin while ISC
would narrow, thicken and eventually stagnate, a prognosis that
is indeed consistent with the observed scenario (Catania and
others, 2012).

There is extensive discussion of the ISC stagnation, which
is mostly viewed as a happenstance with myriad precedents
(Anandakrishnan and others, 2001; Bennett, 2003). Among
them, the ice and water piracies by ISB are inferred from the cur-
rent surface relief (Alley and others, 1994), which, however, is
likely a result rather than the cause of the ISC stagnation (Price

(a) (b)

Fig. 6. Interaction between an active growing stream (solid arrow) and a passive nar-
rowing one (dashed arrow), resulting in a cycle of: (a) smaller amplitude between
fast/slow streams and (b) maximum amplitude between fast/stagnant streams.
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and others, 2001). Additionally, we note that the meltwater can-
not be transported across the frozen ridge between streams, and
that the upper-glacier supply of the meltwater is not required
for maintaining the stream, which after all is initiated by the
local production of the meltwater; then the ice piracy is at odds
with the observed thickening of ISC before its stagnation. As
regards the drainage switch to the channelized system (Retzlaff
and Bentley, 1993), there is no observational evidence of conduits
under ISC and in fact the bed conditions of ISB and ISC are quite
similar (Kamb, 2001). The loss of the meltwater would expose the
sticky spots, as inferred from seismic data (Anandakrishnan and
others, 2001), which however is a mediating agent rather than a
cause of the stagnation. Although the grounding line has retreated
in the last hundreds of years, it is likely a response to the stagna-
tion (Hulbe and Fahnestock, 2007) since ice flow is relatively
unaffected by the back-stress from the ice shelf (Anandakrishnan
and Alley, 1997). However, others have likened the ISC stagnation
to the surge termination by thinning-induced freeze-on (Hulbe
and Fahnestock, 2004; Bougamont and others, 2011), which is at
odds with the observation that the ISC bed remains wet (Bentley

and others, 1998) and its stagnation is preceded by thickening –
not thinning (Catania and others, 2012).

Instead, based on positive comparison of Figure 7 with obser-
vations, we offer the following explanation of the ISC stagnation.
First, it is not a happenstance but a recurring event of the natural
cycles. Second, the cycles are the outcome of invariable inter-
action among streams with the neighboring ones exhibiting com-
pensating cycles. As such, the widening of ISB following its
reactivation ∼450 years ago would narrow ISC to augment the
meltwater drainage, which then strengthens the bed to cause the
stagnation. Although the loss of lubricant has been mentioned
in the literature (Catania and others, 2012), it is largely over-
looked, as attested by the above-referenced reviews, and our
model provides a concrete affirmation of the mechanism.

There are additional points worth noting about ISC. Although
its stagnation can be caused by narrowing-induced loss of the
meltwater, as indicated by the dashed arrow in Figure 6b, the
bed strengthening might not fully catch up with the narrowing
to maintain the heat balance, so the stream might veer slightly
into the cooling zone to effectuate partial freezing. This may

Fig. 8. Time progression of the ice stream (left) and cyclic surge of the topographic glacier (right). Surface height in solid lines, velocity in dashed lines, striped top
and bottom are width and basal stress, respectively. Shaded columns represent onset and termination of the surge characterized by short hydrological timescale.
The figure shows the sharp contrast between the two cyclic variations.

Fig. 7. Time progression of the interacting streams, with their surfaces marked by stripes and maximum velocity by arrows. Following its reactivation, the left
stream widens, deepens and speeds up. Squeezed by the left stream/ridge pair, the right stream narrows, shoals and slows to stagnation. Dashed line tracks
the migration of the ridge, which is of constant height. The figure can be representative of the Ross ice streams B (left) and C (right) from 450 to 150 years ago.
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possibly explain the accretional ice layers recently discovered
under ISC (Vogel and others, 2005). To the degree that the melt-
water drainage is operative when ISC stagnates, the bed must
remain temperate and wet. This differs fundamentally from the
surge termination, which, once commences, the positive feedback
between the strengthening bed and reduced heating lead unceas-
ingly to a thorough freeze-on (see Part 1); there is no allowance
for a temperate and wet bed, contrary to the observed ISC.

4. Discussion

One key difference of flatbed ice streams from topography-
confined glaciers considered in Part 1 (Ou, 2021) is the allowance
of the meltwater dispersal, which has bended the solution con-
tinuum of Figure 2 to render a minimum bed strength. If the
meltwater dispersal is artificially suppressed as is the case of
Brinkerhoff and Johnson (2015), the stream would simply grow
unabated until it bifurcates into limit cycles, which correspond
to the cyclic-surge regime considered in Part 1 when the bed
trough is sufficiently wide. A narrow trough, on the contrary,
would arrest this growth to render a stationary state correspond-
ing to the steady-sliding regime of Part 1. With inclusion of the
meltwater dispersal, Kyrke-Smith and others (2014) have availed
to them the downward branch of the continuum, and their clos-
ure amounts to fixing the bed strength in selecting the stream
width, which, thus, is sensitive to the additional parameters
related to the water film closure. Our stationary state, on the con-
trary, is set at the minimum bed strength, which being independ-
ent of the water-film mechanics renders a more robust width.
Perhaps more significantly, we have postulated self-propelling of
the streams toward this stationary state, which allows their inter-
action to exhibit compensating cycles, as seems the observed case.
Since the stream boundary varies not because of instability but the
outcome of deterministic cycle, there is no need to invoke drain-
age switch in stabilizing this boundary (Perol and others, 2015;
Meyer and others, 2018) whose observational support remains
tentative.

There is much discussion on the mass balances of Ross ice
streams because of their effect on the global sea level, but if the
interacting streams exhibit compensating cycles, their effect on
the net mass balance would be reduced, as is the observed case
(Shabtaie and Bentley, 1987). The equilibrium state of stationary
centerlines is predicated on the width-compensation of neighbor-
ing stream/ridge pairs, which does not imply exact compensation
in the ice transport because of its non-linear dependence on the
stream width; a quantitative addressing of the problem, however,
stretches the capability of our crude model.

Although our model has determined the width and spacing of
the ice streams, we have not addressed how the whole pattern is
being anchored. Myriad external controls of the stream location
have been examined (Winsborrow and others, 2010), but our
model suggests that some of the bed differences can be an out-
come of the self-organization rather than progenitors of the dis-
parate flows. On the contrary, if there are topographic troughs
steering the upper-glacial tributaries, as seemingly the observed
case (Joughin and others, 1999), they can provide an anchor for
the whole stream/ridge pattern and there need not be external
control of individual stream locales.

5. Summary

In Part 1 (Ou, 2021), we have considered the dynamics of a
topography-confined glacier, which may undergo surge cycles
due to thermal switches. In this Part 2, we have expanded the
dynamical framework to address the ice streams over a flatbed.
The expansion is twofold: first, without the topographic

constriction, the stream would entrain the ambient ice, and the
accompanying cold advection would freeze the ambient bed,
resulting in self-organized stream/ridge pair; second, without
the topographic trough curbing the meltwater dispersal, it
would counter the conductive cooling to yield a minimum in
the basal stress at some intermediate stream width. Invoking a
positive feedback loop and the NT, we posit that the stream
would evolve toward this minimum when it attains stationarity.

Although this stationary state exhibits certain sensitivity, it
remains relatively robust over considerable ranges of the external
condition. Crudely, the stream width is about twice the geometric
mean of its height and length, the basal stress is less than half of
the driving stress, the surface depression is about an order smaller
than the ridge height, and its velocity is about two orders greater
than the viscous creep; all are commensurate with the observed ones.

We next consider the invariable interaction of the stream/ridge
pairs on a flatbed. We posit that they would attain an equilibrium
configuration when the centerlines are the closest allowed
whereby the neighboring streams exhibit compensating cycles of
maximum flow and stagnation. The model deduction is consistent
with the observed interaction of ISB and ISC over the last millen-
nium, including the ISC stagnation ∼150 years ago. Based on this
positive comparison, the model suggests that the ISC stagnation is
not a happenstance but a recurring natural cycle, and it uncovers
a heretofore overlooked mechanism: namely, the widening ISB
following its reactivation would narrow ISC to augment the loss
of the meltwater, leading to its stagnation. Consistent with obser-
vations, this stagnation is preceded by thickening – opposite the
thinning-induced surge termination. Although there could be
incidental freezing as evidenced in the accretionary ice layer, the
bed remains temperate and wet, as currently observed under ISC.

Although the model is extremely crude, it has nonetheless
abridged more glaring empiricisms of the past models, and to
the degree that the model deductions are consistent with observa-
tions, we suggest that the model has captured the governing
dynamics of the flatbed ice streams. Together with Part 1 (Ou,
2021), we have presented a theoretical framework that integrates
the dynamics of surging glaciers and self-organized ice streams
while underscoring their generic difference due to the lateral dis-
persal of the meltwater.
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Appendix: Symbols and standard values

ȧ accumulation (=0.1 m a−1; Shabtaie and others, 1988)
ċ conductive cooling
d water-film depth (=2mm; Engelhardt and Kamb, 1997, their Table 1)
ḋ drainage cooling
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ḟ frictional heating
g gravitational acceleration (=9.8 m s−2)
ġ geothermal flux (=0.06Wm−2; Maule and others, 2005)
h0 ridge height (=1 km; Bennett, 2003)
h1 stream height
l longitudinal distance scale (=400 km; Bennett, 2003)
L latent heat of fusion ( = 3.35 × 105 J kg−1)
N effective pressure
pi overburden pressure
pw water pressure
q1 stream ice flux
qi inward ice flux
u0 creep velocity ( = 0.48 m a−1)
u1 stream velocity
[u] velocity scale ( = 1.92 × 102 m a−1)
vi inward velocity
[w] width scale ( = 20 km)

w0 catchment width
w1 stream half-width
w2 minimum w1

wc centerline separation
α heating parameter (=2.3)
β drainage parameter (=0.24)
ζ ;w′ 2

1

η fractional stream depression
μ water viscosity ( = 1.7 × 10−3 Pa s)
ν ice viscosity (=160 b a; Doake and Wolff, 1985)
ρi ice density ( = 0.92 × 103 kg m−3)
σ entropy production
τ ;t ′b
τ0 driving stress (=0.23 b)
τb basal stress
τi inward stress
ω accumulation parameter (=0.21)
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