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Abstract

It is well known that a complex-valued function <f>, analytic on some open set ft, extends to
any commutative Banach algebra B so that the action of 0 on B commutes with the action of
the Gelfand transformation. In this paper, it is shown that if B is a homogeneous convolution
Banach algebra over any compact group and if 0 € ft is a fixed point of 4>, then a similar result
holds, with the Gelfand transformation replaced by the Fourier-Stieltjes transformation. Care
is required, in that discussion of this relation usually requires simultaneous consideration of
the extension of 4> to B and to certain operator algebras.

1980 Mathematics subject classification (Amer. Math. Soc): primary 43 A 10; secondary 43 A
15, 46 H 30.

1. Introduction

Homogeneous convolution Banach algebras are notable for their similarity to
closed translation-invariant subspaces of group algebras. Reiter presented a sys-
tematic account in [8] of the properties of Segal algebras (which share properties
of the corresponding group algebra) over locally compact abelian or compact
groups. The more general homogeneous Banach algebras have been discussed by
Wang in [11] for locally compact abelian groups, and by the author in [13] and
[14] for compact groups.
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This paper continues the earlier study by the author.
It is well known that if <f> denotes a complex-valued function which is analytic

in some neighbourhood fi in the complex plane then <f> can be extended to any
commutative Banach algebra B, with identity e, in such a way that for every
Aefi

(1) <A(Ae) = 4>(X)e.

Further, if <p(b) exists in B then its Gelfand transform 0(6) ~ is related to the
transform b of b by

(2) (j>{br=4>ob.

For a discussion of this theory see, for example, Larsen [6] or Rickart [9].
However, homogeneous convolution Banach algebras over compact groups

need not be commutative (unless the group is commutative) and do not pos-
sess an identity (unless the group is finite). Nevertheless, we show that it is
possible to produce an extension of </>. It is not usually possible to obtain an
analogue of equation (1). However, we do show that in a sense 4> does com-
mute with the Fourier transformation to give an analogue of equation (2). Segal
obtained this result for some functions in the group algebra in [10].

Conditions under which a similar result may be obtained for the nonhomoge-
neous measure algebras are discussed in [3] by Fountain, Ramsay and Williamson.
The problem is by no means solved in this case.

Throughout this paper we use the notation of [4], [13] and [14]. Any unex-
plained notation may be found in these sources.

To begin with, let B denote any Banach algebra. As B need not contain an
identity element, we are unable to determine inverse elements. Instead we use
the notion of adverses as defined in Loomis [7]. If be — b — c = 0 in B, then b is
called a left adverse of c and c is called a right adverse of b. If b has both left
and right adverses, then they must be equal and unique. This element is called
the adverse of b.

A similar definition is to be found in Hille and Phillips [5], where an adverse
is called a reverse or quasi-inverse.

The spectrum a(b) of an element b is the set of all complex numbers A for
which X~1b does not have an adverse, together with A = 0. In [5], 0 is sometimes
excluded from a(b), but this does not cause us any confusion. For A ^ <*(&), we
denote the adverse of A-16 by D(X,b).

The basic properties of adverses are established in [5] and [7]. In particular,
we see that if B does contain an identity element e, then the usual spectrum
sp(6) of b contains the same non-zero numbers as a(b) (and so a(b) must be
compact). Further, for A ^ &(b),

(3) (Xe-by^je-
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We will find particularly helpful the following result which gives a characteri-
sation of those elements of B which possess left (right) adverses, and so, of those
which possess adverses.

Tha t is, the element b has a left (right) adverse in B if and only if given any
maximal regular left (right) ideal M of B, there exists an element c e B such
tha t cb — b — c (be — b — c) is in M.

Throughout this paper, <f> will represent a complex-valued function which is
analytic in some zero-neighbourhood ft and which has 0 as a fixed point. It is
shown in [5] that for any b € B with a (6) C fi, the Cauchy-type integral

where F is a suitable contour in ft enclosing a(b), defines an element (j>(b) in B.
Further, the integral is independent of the choice of F. If B has an identity e,
then, in view of equation (3), the integral reduces to

(5) _

which is a familiar integral in the theory of commutative Banach algebras.
At this point we assume tha t B is a homogeneous Banach convolution algebra

over a compact group G. We let E denote the dual object of G. For each equiv-
alence class a € £ , Ua denotes a continuous, irreducible uni tary representation
which acts on a (finite) dff-dimensional Hilbert space Ha. The Banach algebra of
bounded linear operators acting on Ma is denoted by B (Ma). The Fourier-Stieltjes
transform /i of a measure JJ. is defined by

IG

for each a e £. Then (i(a) e B ^ ) .
The arguments which follow are, in fact, valid when B is assumed to be a linear

subspace of the space of pseudomeasures defined on G. However, we assume that
all elements of B are measures. Then

DEFINITION 1. The convolution Banach algebra B is homogeneous if
(i) it is left translation invariant,
(ii) each left translation operator is continuous on B,
(iii) each left shift operator is continuous from G to B, and
(iv) the embedding J of B into the pseudomeasures is continous; that is, there

exists a positive constant K such that

for all b e B.
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Examples include the usual function spaces A(G), C{G), UP(G) and LP(G) for
1 < p < oo, and any of their closed left-translation invariant subspaces. On the
other hand, L°° (G) and M(G) are not homogeneous. Many more examples are
given in [13]. We proved in [13] that if B is homogeneous, then for each a € E,
there exists a subspace £„ of Ma satisfying

{b{a) :beB} = {TeB{Ha):EaC kerT}.

Denote the latter set by J{£a). Further, the set of all trigonometric polynomials
p, with p(o-) e J{£a) for each a E E, forms a dense subset of B.

We use these properties of homogeneous convolution Banach algebras to ob-
tain our results.

We will extend the function <f> to the algebra B in two steps. Suppose that
b is an element for which a(b) C fi. We know that for each a € S, b(a) is in
J(£a). Therefore, we first show that we can define (j>{b(a)) in J{Ea) for each <r,
and then prove that the existence of each of the operators <j>(b(a)) ensures the
existence of </>(6) in B.

2. Maximal regular ideals

Crucial to the proof of our main theorem concerning the extension of <j> is the
knowledge of the maximal regular ideal structures, not only of the algebra B,
but also of the operator algebras J(EO). Fortunately the structures are closely
related.

All the information that we require is included in earlier papers, [12] and
[14], by the author. However, as Corollary 2.8 of [12] incorrectly describes the
maximal regular left ideals of J{£a), and so Proposition 4.7 of [14] incorrectly
describes those of B, we will review their structures briefly here.

Given the algebra B, we write

sp(B) = { f f £ S : ^ i } and sp(B) = {a € E: £a = {0}}.

If a € sp(S) then J{£a) = B{Ma), while if a £ sp(B) then b{a) = 0 for every
b e B. Therefore, we need only consider a € sp(S). The maximal regular right
ideals of J(£a) are precisely the sets

{T €. / (£ , ) : T(Kff) C Z , }

for some da — 1 dimensional subspace Za of )ia. Further, the maximal regular
right ideals of B are precisely the sets

{beB: 6(a)€m}

where m is a maximal regular right ideal of J{£a) for some a G sp(B). (For
proof of these facts refer to Propositions 2.9 and 4.8 of [12], and Theorem 4.1 of
[14]-)
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The maximal regular left ideals of J(£a) fall into one of two classes. If a €
sp(B) then they are precisely the sets

where y a is a one-dimensional subspace of Ma. On the other hand, if a €
sp(B)\sp(B) then they are precisely the sets

for some h 6 £j-, the complement £„ in ~Ha. It then follows from Theorem 4.1
of [14] that the maximal, regular left ideals of B are precisely the sets

{beB:b(a)em}

where m is a maximal, regular left ideal of J(£a) for some a € sp(B). (The char-
acterisation of the maximal regular left ideals of the algebras J(£a) is contained
in Theorem 2.7 of [12].)

3. Extending analytic functions

The operator algebra J{£a) does not contain the identity operator Ia on Ma

unless a € sp(B), in which case J{£a) is equal to the whole of the algebra
However we do sometimes find it useful, and possible, to work with B ()(„) instead
of J{£a). This follows from the following proposition.

PROPOSITION 1. LetT & J(£<,). Then T has an adverse in J{£a) if and
only if it has an adverse in B{)la).

Note that since adverses are unique when they exist, the adverse of T in B (Ha)
must belong to J{£a).

PROOF. AS J{£a) is a subspace of B{)ia) it is obvious that the adverse of T
in J{£a) must be its adverse in B(#CT).

On the other hand, suppose that T has an adverse in B{Ha), S say. Then
ST = S + T = TS. It follows easily that 5 is in J{£a) because for any ft € £„,
Sh = STh -Th = 0 since £„ C ker T. Thus S is the adverse of T in J{£a).

An operator T in B{Ha) has an adverse if and only if Ia — T is invertible.
Consequently, the non-zero complex numbers in its spectrum a(T) in J{£a)
coincide with those in its spectrum sp(T) in B(Ma). The two spectra are equal
if T is not invertible.

To begin our discussion we must be able to relate the spectra a(b) and
SP(6(CT)), for a 6 sp(jB); otherwise we have little chance of deciding when <j>
can be extended to the various algebras being considered.
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THEOREM 1. Let X be a non-zero complex number and b an element of B.
Then X € a(b) if and only if X £ sp(6(<r)) for some a € sp(.B).

DISCUSSION. For any non-zero A we have D(X,b) = D(1,A-X6). Therefore
we need only consider Theorem 1 for the case A = 1.

PROOF OF THEOREM 1. If 1 £ a(b) then b has an adverse in B, say c.
Using the definition of an adverse, we can write

c{a)b{a) = c{a) + b{a) = b(o-)c{a)

for each a € E, or equivalently

- 6(IT)) = Ia = (I, - b{a)){Ia - c(a)).

Thus 1 £ sp(S(<r)) for each a € sp(B).
On the other hand, suppose that 1 ^ sp(6(a)) for each a e sp(iJ). To show

that 1 ^ a(b) we need only find, for each maximal regular right (left) ideal M of
B, an element c for which b * c — b — c (c * b — b — c) is in M.

We noted in Section 2 that there exists a in sp(B) and a maximal regular
right (left) ideal m of J{£o) such that

Further, it follows from Proposition 1 tht b{a) has an adverse in J{£a). Con-
sequently, there exists an operator S in J{£a) such that b(a)S - b{a) — S
{Sb(a) - b(o) - S) is in m.

Define the trigonometric polynomial p by

p(x) = dMSUAx)*)

for each x € G. Then it is easy to see that p e B (since p(r)) € J(£v)) and that
p has the properties required of c.

COROLLARY 1. <j>(b) exists in B if and only if 4>(b{a)) exists in B{K) for
each a € E.

DISCUSSION. If a $ sp(B) then (j>[b{a)) is the zero operator in B{Ma).

PROOF OF COROLLARY 1. In view of Theorem 1, the existence of (j>{b) and
<j>(b(a)) depend only on the existence of a suitable contour T in Cl.

It is clear that if <f>{b) exists in B then any contour F in fi which encloses a(b)
must enclose sp(6((r)) and so can be used in the integral (5) to define <f>(b(a)) in

for each <r € E.

https://doi.org/10.1017/S1446788700032225 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032225


[7] Homogeneous algebras 7

On the other hand if it is known t h a t <j>(b(a)) exists then there is a contour,
Tff say, which encloses sp(6(er)) and over which the integral (5) is evaluated. The
IV need not be identical, and so it is not clear t h a t any one of them will enclose
a(b). However, a(b) is a compact subset of Cl and thus Ahlfors has shown in [1]
tha t there does exist a suitable contour in T which encloses a (6). I t can be used
to define 0(6) by the integral (4). Since the integral (5) is independent of the
choice of contour, T can also be used in place of Ta t o define <p(b(a)).

COROLLARY 2. 0(6) exists in B if and only if 0(6(CT)) exists in J{£a) for
each a £ E.

PROOF. IS an immediate consequence of Proposition 1, Corollary 1 and the
equality of integrals (4) and (5) in

4. Transform equation

Suppose that (j>{b) exists in B. What is its Fourier-Stieltjes transform? We
show that for each a, <j>{b)~(o) is, in fact, the operator <j>(b(a)) in J{£a)-

First, however, observe that if equation (3) is applied to any operator T in
then, for A ga(T) ,

Take A ̂  ct(b). Then, it follows from the definition of D(X, b), on taking Fourier-
Stieltjes transforms, that for each a,

But adverses are unique, when they exist, and so D(X,b)"[<r) = D(X,b(a)).
Therefore, for any a,

We use this relation to determine the Fourier-Stieltjes transform of 4>(b).

THEOREM 2. For each a e E,
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PROOF. Theorem 1 and its corollary ensure the existence of <p(b{a)) in J{£a)
for each a. A simple sequence of calculations yields the required result. For,

2ni

dX

4>(X)
j D{X,b){x)Uv{x)*dx\ dX

= j 4>{b)U.{x)* dx

COROLLARY 3. Let be B and X £ a(b). Then there exists c € B such that
for each a € E

b{a)\XIa - Ho)}'1 = c{a) = [XIa - Sfa)] - 1 ^) .

PROOF. Apply Theorem 2 to <£(£) = ^/(f - A).

This corollary generalizes, to the non-abelian compact case, a result first ob-
tained for L^R) by Wiener in [15], and extended to LP(T), 1 < p < oo, and
C*(T), A; € N, by Edwards in [2].

5. A topological property of the domain of the extension

The extensions of <j>, determined by the integrals (4) and (5), to B and to
d{Ha) respectively, have as their domains the sets

D = {beB:a{b)CQ} and Da = {T e B{Ha): sp(T) C Q}.

Theorem 1 and its corollaries ensure that an element b of B is in D if and only
if 6(cr) € D,, for each a.

Our final result shows that a much stronger statement can be made about
these domains.

Let C and Ca denote the connected components containing the zero element
of each of the domains respectively. Let be B.
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THEOREM 3 . beC if and and only ifb(o-) e Ca for each a e £ .

PROOF. Suppose that there exists c € C and a € E for which c(a) £ Ca.
Then there exists open subsets A\ and fi.% of PCT, with 0 € Xi and c(a) € >?2-

It follows from (iv) of Definition 1 that the sets A\ and Ai given by

Ai = {beB:b{o-)eAi}, • = 1,2,

are open in 5 . Further, since fi is open, each of the sets

4 = {&€£: a(b) C fi and 6(<r) € 4 } , i = 1,2,

is also open in 5 . Clearly they must be disjoint, and 0 € A\ while c € A'2. But
this is impossible because c was chosen from C, and so no such a exists.

On the other hand, assume that b(a) € Ca for each a € 2. Then Theorem 1
ensures that a(6) C fi. If we note that C must be closed in D and recall that
the set of trigonometric polynomials contained in B is dense in B, we see that it
is sufficient to show that b 6 C when b is a trigonometric polynomial. This can
be achieved by proving that b may be arcwise connected to 0 in C.

Now let 7ff denote a continuous map from [0,1] to Ca with

7a(0) = 0 and 7<T(1) = b{a).

This map must exist because B{Ma) is finite dimensional. Moreover, because b
is a trigonometric polynomial, all but a finite number of the 7(T may be assumed
to be trivially 0.

Define the map 7: [0,l]-»fl by

for all x € G and t € [0,1]. Then for each t, i(t) is a trigometric polynomial.
Moreover,

and so i(t)~{<r) E J{£a). Thus -){t) € -B. Clearly 7(0) = 0 and 7(1) = b. Observe
that 7 must be continuous, and so it remains only to show that a(^(t)) C fi for
each t € [0,1]. This fact follows easily from Theorem 1 because

Cfi.
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