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Introduction

Let R be a commutative ring and let q be an ideal in R. Let En{R) be the subgroup of
GLn(R) generated by the elementary matrices and let £n(q) be the normal subgroup of
En(R) generated by the q-elenientary matrices. The order of a subgroup S of GLn(R) is
the ideal q0 in R generated by x^Xa—x^, where (xfj)eS, with lg i , j^n and i=fcj. The
subgroup S is called a standard subgroup if £n(q0)SS. An almost-normal subgroup of
GLn(R) is a non-normal subgroup which is normalized by En(R).

It is known [1, Theorem 3.5, p. 239, Theorem 4.1(b), (c), p. 240] that if R is a
Dedekind ring then the standard subgroups of GLn(R) are precisely those normalized by
£„(/?), where n ̂  3. The restriction n ̂  3 is necessary. It is known for example [6, 8] that,
when A = 1 or K\_x\ where Z is the set of rational integers and K is a field, there are
infinitely many normal, non-central subgroups of SL2(R) which contain £2(q) only when
q=0. (By definition a subgroup has order 0 if and only if it is central.)

Using recent work of Liehl [4] we prove that if R = A, a Dedekind ring of arithmetic
type with infinitely many units [2, p. 83], then every standard subgroup of GL2(A) is
normalized by E2(A). We prove also that if the primes dividing 2 and the units of A
satisfy some further conditions then every £2(,4)-normalized subgroup of GL2(A) is
standard. (We provide examples to show that these conditions are necessary.) It follows
for example that, when A = Z[%] or Z[0], where 6 is a root of unity of order p", with p a
prime greater than 3, a subgroup of GL2(A) is standard if and only if it is normalized by
E2(A).

It seems natural to ask whether or not an £B(/4)-normalized subgroup of GLn(A) is a
normal subgroup, especially when such a subgroup is standard. In this paper we
provide examples of almost-normal subgroups of GL2(A), for various A. For a given R
the existence of almost-normal subgroups of GLn(R) depends upon n. It is known [5,
Corollary 4.2; 6] that almost-normal subgroups of GLn(Z) exist if and only if n = 2. It is
also known [5, Corollary 5.6] that, when «^3, almost-normal subgroups of GLn(Z[Q)
exist if and only if n is even, where i2= — 1.

Liehl's results [4] do not apply to the case where A is a Dedekind ring of arithmetic
type with only finitely many units and it appears that in this case the standard
subgroups of GL2(A) have little in common with those normalized by E2(A). For
example it is known [6] that there are infinitely many non-standard subgroups of
GL2(Z) which are normalized by E2(Z). On the other hand it is clear from [11] that
there are infinitely many standard subgroups of GL2(Z) (of order q=(6)) which are not
normalized by E2{Z).

Throughout this paper it will be assumed that A is a Dedekind ring of arithmetic type
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with infinitely many units. By the Dirichlet unit theorem this means that A has units of
infinite order. For each prime ideal p in A we put N(p) = |/l/p|.

For any ring R we let U(R) denote its set of units and for each ideal q in R we put
GLn(q) = Ker(GL,,(i?)-fGLn(/?/q)) and SLn(q) = GLn(q) n SLn(R). We let Hn(q) be the set of
all matrices in GLn{R) which are scalar (modq). For each reR and u, ve U(R) we put

and

To simplify the notation we put G = GL2(/4), T = SL2(A), F(q) = SL2(q), A(q) = £2(q),
H(q) = H2(q) and G(q) = GL2(q), where q is an ideal in A. (By definition T(A) = r and
G(A) = H(A) = G.)

As usual if H, K are subgroups of a group L then [H, K] is the subgroup of L
generated by all the commutators [h,k~} = h~1k~ihk, where heH and keK.

1. Liehl's results

Bass, Milnor and Serre have shown that, for all q and for all nS3, En(q) is a normal
subgroup of GLn(A) and that the factor groups Cn(q) and Cm(q) are (naturally)
isomorphic, for all m^n, where Cn(q) = SLn(q)/En(q). (See [2, Theorem 7.5(c), Theorem
ll.l(b)].) (This is also true if A has only finitely many units.) Liehl [4] has proved the
following.

Theorem 1.1. Let q be any ideal in A.

(i) A(q)-ar(q).
(ii) For each n§;3, the map $n:r(q)/A(q)->Cn(q), defined by

<!>n(gA(q))=gEn(q)

where g=g®In-2, is cm isomorphism.

Proof. See [4, (20), (21)]. •

It follows that F = A(A), i.e. F is generated by elementary matrices, that A(q)< G and
that F(q)/A(q) is a subgroup of the group of roots of unity in A. (A formula for
|F(q):A(q)| is given on p. 166 of [4].) Moreover if A is not the ring of integers of a
totally imaginary number field then F(q) = A(q), for all q, by [4, (19), (21)].

We now consider some immediate consequences of Liehl's results. If H is a group and
m a positive integer we put H"l = </i"1:/iei/>.

Theorem 1.2. Let q be any ideal in A.

(a) [G,G(q)]^A(q).

(b) [
(c) [
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Proof. We note that [G,H(q)]^T(q). Let geC and feeG(q). Then, with the above
notation,

where go = [jg®I2,k®I2] = \jg,k]®I2. Now g0 e \GLA(A), GL4(q)] and [GL4(,4),
GL4(q)] = £4(q) by [2, Theorem ll.l(a)]. Part (a) follows from Theorem 1.1.

Now let x e r and yeff(q). Then

where x0 = [x, y] 0 /2 = [x © /2, y © y]. Clearly x0 6 [SL4(>1), H4(q)] and ISL^A), H4(q)] =
£*(q) by [1, Theorem 4.1(b), p. 240] and [2, Corollary 4.3]. Part (b) follows from
Theorem 1.1.

Finally, let geG and JieH(q). Then by part (a) [g,h~]2= [£,h2~\ (modA(q)). Now by
definition h = a/2(mod q), for some as A, where a2sdetli(modq). Thus h2 = higl, where
h1=ul2 and gi^F with u = detft. Hence [g,/i2] = [g,fi] = l (modA(q)), by part (a). Part
(c) follows. •

Corollary 1.3. Every standard subgroup of G is normalized by P.

Proof. Follows immediately from Theorem 1.2(b). •

As we shall see later the converse of Corollary 1.3 does not always hold. We now
consider conditions under which the inequalities in Theorem 1.2(a),(b) become
equalities.

Definition. A is said to have property (*) if it is equal to its ideal generated by
u2 — 1, where u e U(A).

Theorem 1.4. Let A have property (*).

(i) / / p is any prime ideal in A then N(p) > 3.
(ii) / / q is any ideal in A then

= [G,G(q)]=A(q).

In particular (q = A),

r=G=r.

Proof. For (i) if N(p) = 2 or 3 then u2 -1 e p, for all u e U(A).
For (ii) it is sufficient to prove that A(q) ̂  [I", A(q)] by Theorem 1.2(a),(b). By (*)

there exist uu...,u,sU(A) and au...,a,eA such that
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Now let qeq. Then

T(q) = fl T(q(uf - l)a,) = f\ Wur \ Mf), T( - qxft.
i = l i = 1

The result follows. D

Examples of A which have property (*) are not hard to find.

Theorem 1.5. Let m be the order of the group of roots of unity in A. If \2\m or p\m,
where p is a prime and p=£2,3, then A has property (*).

Proof. Let q* be the ideal generated by u2 — 1, where ueU(A) and let 6 be a
primitive pth root of unity, where p is an odd prime dividing m. Then 8eA and peq*
since (p)=(02-l)p~1 by [12, p. 173].

Now let t// = 9\ where l ^ i ^ p —1. Then 1+(/> + •• •+(/'p~1=0 and, since p is odd,
u = \ + \j/e U(A). Since (u2 - 1)=(2 + (/<) it follows that

Note that if 4|m then is A, where i2= — 1, and so 2eq*. The result follows. •

Examples of A which have property (*) include A = Z[£] and A = Z\_ff], where 0 is a
primitive mth root of unity and m is divisible by a prime greater than 3. (See [12, p.
269].) When 0 is a primitive mth root of unity, where m = 2°t or 3*, then Z[0] has a
prime p with JV(p) = 2 or 3 and so does not have property (*) by Theorem 1.4(i). (See
[12, p. 173].)

2. Standard subgroups

In this section we obtain a partial converse to Corollary 1.3. We require the following
lemma.

Lemma 2.1. Let L be a local ring with maximal ideal m and suppose that either jeL
or |L/m|>2. Then the centre of PSL2(L) is trivial.

Proof. Let XeSL2(L) map into the centre of PSL2(L). Then there exist A,/xe[/(L),
with A2 = /z2 = 1, such that

(1)

and

XY=nYX, (2)
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Suppose first that ?eL. Then X.,n=±\. If k=-\ then c = d=0. But ad-bc = l.
Hence X= 1 and so c = 0 and a = d. From (2) we deduce that b=0.

Suppose now that 2 em and that |L/m|>2. From (1) we have c+d = M and so
c(2d + c)=0. It follows that cem and hence that a,deU(L).

From (2) we deduce that a = ftd and b=—fic. Hence ac + bd=0. Now repeat the
argument with D(u, u~l)XD{u~l,u\ where ueU(L). We deduce that ac + bdu4=0 and
hence that b{uA —1)=0. The hypothesis |L/m|>2 ensures the existence of ueU(L) such
that u2 — leU(L). For such a case u4—1GC7(L) and so b = 0. Hence c = 0. Now repeat
the argument with T(-l)XT(l) = T(-l)D(a,d)T(l). It follows that a = d. •

Definition. A rational prime p is unramified in ^ if p£U(A) and (p) = ni=iP" w n e r e

Pi,..., p, are distinct prime ideals.

Definition. The level of a subgroup of G is the largest ideal q such that A(q) gS.

The level is well-defined since A(qx)- A(q2) = A(q1+q2), for all qi,q2- Clearly the order
of a subgroup divides its level and they coincide if and only if the subgroup is standard.

Theorem 2.2. Let A have property (*) and suppose that 2eU(A) or 2 is unramified in
A. Then the standard subgroups of G are precisely those normalized by F.

Proof. By Corollary 1.3 it is sufficient to prove that if N is a subgroup of G
normalized by F then N is standard. By [13, Proposition 2, p. 492] the level q of N is
non-zero. It is sufficient to prove that N^H(q).

We prove first that M = [F, AT] • F(q) is contained in @(q), where @(q) = FnH(q). Now
A(q)^M and if A(q')gN then by Theorem 1.4(ii)

A(q') = [F, A(q')] ^ [F, JV] [F, F(q)] ̂  N • A(q) = N.

It follows that M has level q. Now let q = qoql7 where qo = Pa, with p prime, and q1 is
prime to p.

Consider the subgroup M0 = [Mnr(q1)]T(q0). Clearly F(qo)^Mo. If A(q')^M0,
where q' divides q0, then F(q') = A(q') • F(q0) is also contained in Mo. (See [1, Corollary
9.3, p. 267].) Hence

r(q'qx) = F(q') n F(qi) ^ Mo n F(qi) = ^Mn F(qi)] • F(q) g M.

It follows that qoq! divides q'qt and hence that q'=q0- We conclude that Mo has level q0.
Let L=A/q0. Then L is a local ring and so F/F(q0) is naturally isomorphic to SL2(L)

and M0/F(q0) is mapped onto a normal subgroup M, say, of SL2(L). (See [1, Corollary
9.3, p. 267].) Let m be the maximal ideal of L. Since A has property (*) and 2 is
unramified it is clear by Theorem 1.4(i) that either (m = (2) and |X/m|>2) or ( |eL and
|y4/m|>3). Suppose that M is a non-central subgroup of SL2(L). Then by [3, Satz 3]
together with the proof of [9, Corollary 2.2] it follows that M contains
KeT(SL2(L)-*SL2{L/r)), for some non-zero ideal r in L. It follows that Af0 contains A(q2)
for some q2 dividing q0, where q2^q0- This contradicts the maximality of q0. Hence M
is central and so M n F(q1)^0(qo).
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Again by [1, Corollary 9.3, p. 267] we have F=r(qo)F(q1) and so M • ©(qo)/0(qo) is
a central subgroup of r/0(qo) s PSL2(L). We now apply Lemma 2.1 and conclude that
Mg0(qo). By [10, Theorem 2.2(a)] it follows that

M g f l <=>(Pa) = ©(<!)•

Let T and N be the images of F and N, respectively, in GL2(A/q). By the above
[F, N] is central and T = SL2(A/q), since A/q is semi-local. By Theorem 1.4(ii) we have
r = [F, F] and so we may apply [1, Lemma 5.1, p. 245]. We conclude that [F, JV] = 1.
Since R is centralized by the elementary matrices it is central. Hence N £ H(q). •

Theorem 2.2 applies for example to A = Z[£] or Z[0], where 6 is a root of unity of
order p", with p a prime greater than 3. (See [12, p. 174].)

Example 2.3. Our first example shows that Theorem 2.2 does not hold when
2 $ U(A) and 2 is not unramified. Suppose that 2 is divisible by p2, for some prime ideal
p in A.

Now 2p2^p4 and so r(p2)/r(p4) is an elementary 2-abelian group in which each
element is uniquely representable by a matrix of the form

b "I
1+aJ

where a,b,ce p2/p4. (See [10, Theorem 4.1].)
Let A = {fc2 + p4:/cep} and define a subgroup N(A) of r(p2), containing F(p4), by

Then N(A) is a well-defined, normal subgroup of F. (See [9, Theorem 2.4].) Moreover
the order of iV(A) is p2 since p2 is principal (mod p4). (A is a Dedekind ring.)

Suppose that A(p3) ^ N(A) and let h be a generator of p3 (mod p4). Then there exists
k e p such that

Hence the level of N(A) is p4 and so N(A) is not standard.

Example 2.4. Our next example shows that Theorem 2.2 does not hold if A has not
property (*) even if 2 is unramified. Suppose that A has a prime p with AT(p) = 3.
(Consider for example ,4 = Z[0], where 6 has order 3" with <x> 1, [12, p. 174].)

By [1, Corollary 9.3, p. 267] we have T/r(p) ^ SL2(F3), where F3 = A/p is the field of
order 3. From the well-known structure of SL2(F3) it is clear that, if Fo = F(p) • F', then
F/r0 is cyclic of order 3, "generated" by T(l). Now let ueU(A) be of infinite order with
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u = 1 (mod p) and let

N = (D(u,\)T{x),T0\

where x = 0, +1. It is easily verified that N is normalized by F.
[2 11

Now eSL2(Z)' and so F' and hence N has order A. (See for example [13,

Lemme 13, p. 522].) It can also be shown that Mn F = F0 from which it follows that N
has level p. We conclude that N is not standard.

Anticipating the next section we note that N is not normal in G when x = ±1 . This
follows from the fact that [/>(-1,1), D(u, l)T(x)] = T(2x).

3. Almost-normal subgroups

Theorem 3.1. Let A have a property (*) and suppose that 2e U(A) or 2 is unramified in
A. If A is not the ring of integers of a totally imaginary number field then G has no
almost-normal subgroups.

Proof. Let AT be a subgroup of G of order q which is normalized by F. Then N is
standard by Theorem 2.2 and so [G, AT] g F(q). But F(q) = A(q) (see §1) and so

•
Theorem 3.1 applies for example to A = Z[£] or Z[p], where p2—p — 1 =0. (By [12, p.

77] the ring of integers of the number field Qi^/5) is Z[p]. Clearly Z[p] has property
(*) and 2 is unramified in Z[p] by [12, p. 171].)

Example 2.4 (for the cases x = +1) is an almost-normal subgroup of G which is not
standard. We now consider the existence of almost-normal subgroups which are
standard.

Theorem 3.2. Almost-normal, standard subgroups of order q exist if and only if

Proof. The proof is an adaptation of that of [7, Lemma 2]. The condition is clearly
necessary. Suppose then that [G, H(qJ] ^ A(q) and choose xeH(q) such that
[G,x]^A(q). If detx is a root of unity replace x with xx0, where xo = ul2 and u is a unit
of infinite order in A. We may assume therefore that det x has infinite order.

Let S = <x, A(q)>. Then S is a standard subgroup and is therefore normalized by F by
Corollary 1.3. Now [G,S] ̂ F(q) and so by Theorem 1.2(a) we have

] = [gi,s][g2)s] (modA(q))

and

Cg,s1s2]s[g,s,][g,s2] (modA(q)),

for all g, gt, g2eG and s, slt s2eS.
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Suppose now that S o G. Then [G, S]^S and so there exists goeG and an integer
m^O such that

O0, x] = xm(mod

But [G, [G,S]] ^A(q) by Theorem 1.2(a) and so

l = lgo,x^ = [go,xr = xm2 (modA(q)).

We conclude that S is not normal in G. •

Corollary 3.3. / / |F(q):A(q)| is odd then G has no almost-normal subgroups of order q
which are standard.

Proof. We recall from §1 that F(q)/A(q) is a finite cyclic group. Let M(q) =
[G, H(q)] • A(q). Clearly M(q) ^ F(q). If G has a standard, almost-normal subgroup of
order q then M(q)=£A(q) by Theorem 3.2. Hence M(q)/A(q) is cyclic of order 2 by
Theorem 1.2(c). •

From the above it is clear that if N is an almost-normal subgroup of order q which is
standard then |F(q) n N: A(q)| must be even.

Example 3.4. For our last example let /4 = Z[0], where 6 is a unit of order pa, with p
an odd prime. (We must have <x> 1 when p=3 to ensure that Z[0] has infinitely many
units.) We obtain an almost-normal, standard subgroup of G of order q = (4). In this
case |F(q):A(q)| = 2 by the formula on p. 166 of [4].

For each aeA let N(a) be the norm of a in A (usual definition [12, p. 184]). Then
N(a) is a non-negative integer, for all aeA. Let (f> be a primitive p-th root of unity. We
use the Dirichlet theorem on primes in an arithmetic progression [2, (A. 10), p. 83] to
choose a prime element <xeA such that <x=l + 2</) (modq). Then N(a) = N(l + 2(t>) (mod4)
and by [12, p. 185] we have JV(1 +2<(>) = bm, where m = p*~l and

(In fact b is the norm of 1 + 20 in <Q(<£).) It follows that N(a) = - 1 (mod 4).
Now <x2 = 1 (modq) and so we can choose Xe0(q) = FnH(q) such that X = (l +2<f>)I2

(modq). (See [10, p. 332].) We consider the element g = [D(- l , 1),AT] of [G,H(q)].
Clearly geF(q) and under the natural isomorphism from F(q)/A(q) to SL3(q)/£3(q) the
element gA(q) is mapped to §E3(q), where g=g(&l. (See Theorem l.l(ii).) By [5,
Theorem 4.6] and the formula following it g£E3(q). Hence g£A(q) and so
[G, H(q)] ̂  A(q). By Theorem 3.2 therefore almost-normal, standard subgroups of order
q exist.

By the proof of Theorem 3.2 it follows that (uX, A(q)> is such a subgroup, where u is
any unit of infinite order in A. (We could take u = 1 + 6, for example.)
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