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Abstract

We consider the optimal proportional reinsurance from an insurer’s point of view to
maximize the expected utility and minimize the value at risk. Under the general
premium principle, we prove the existence and uniqueness of the optimal strategies
and Pareto optimal solution, and give the relationship between the optimal strategies.
Furthermore, we study the optimization problem with the variance premium principle.
When the total claim sizes are normally distributed, explicit expressions for the optimal
strategies and Pareto optimal solution are obtained. Finally, some numerical examples
are presented to show the impact of the major model parameters on the optimal results.
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1. Introduction

In the past few years, optimal reinsurance problems have attracted much interest in
the actuarial literature. With reinsurance one reduces the risk insured by the company
at the expense of reducing the potential profit. Therefore, the insurer should seek the
optimal reinsurance strategy to balance risk and profits. There are many approaches to
choosing reinsurance contracts. One of them is to apply the technique of stochastic
control theory and the Hamilton–Jacobi–Bellman equation; see, for example,
Schmidli [25, 26], Promislow and Young [23], Luo et al. [22], Irgens and Paulsen [15],
Liang [19] and Zhang et al. [30]. Another method is based on maximizing stability
measured by the variance or other functions, see Kaluszka [16, 17], Kaluszka and
Okolewski [18] and the references therein. Since an explicit expression for the ruin
probability for the jump-diffusion process is difficult to derive, some of the literature
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focuses on constructing optimal contracts to maximize the adjustment coefficient
by the Martingale approach; see, for example, Waters [29], Centeno [5], Hald and
Schmidli [13], Liang and Guo [20, 21]. A final approach relies on minimizing tail risk
measures, such as value at risk (VaR) and conditional tail expectation (CTE); see, for
example, Cai and Tan [3], Cai et al. [4], Bernard and Tian [2].

However, most of the literature above only considers the optimal reinsurance
problem with a single criterion, for example, minimizing the risk or maximizing
the profit. From the numerical examples of Liang [19], we can see that the optimal
reinsurance strategy is very different under different criteria: a strategy which is
optimal for one criterion may be unreasonable for another. Therefore, it is very
important to have a real optimal reinsurance strategy which maximizes profit while
minimizing risk. Most of the optimization problems for balancing risk and profits
can be found in financial models, very few of them in insurance risk models. For
example, Emmer et al. [9] consider some continuous-time Markowitz-type portfolio
problems that consist of maximizing expected terminal wealth under the constraint of
an upper bound for the capital at risk. Closed-form explicit solutions are obtained.
Basak and Shapiro [1] analyse optimal dynamic portfolio and wealth/consumption
policies of utility maximization with VaR constraint. They suggest an alternative risk
management model, based on the expectation of a loss, to remedy the shortcomings
of VaR. Kaluszka [16, 17] and Kaluszka and Okolewski [18] consider the optimal
reinsurance arrangements for balancing risk measured by variance and expected
profits, or other functions. Huang [14] designs an optimal insurance contract under
a VaR constraint to maximize the expected utility, and derives the optimal insurance
contract as a single deductible insurance when the VaR constraint is redundant, or as
a double deductible insurance when the VaR constraint is binding. Wang et al. [28]
consider the same optimal problem with VaR constraint as in Huang [14], albeit that
the criterion is maximizing the expected wealth.

In this paper, from an insurer’s point of view, we seek a proportional reinsurance
strategy that is optimal under two criteria: maximizing the expected utility and
minimizing the VaR. By the technique of multi-criteria optimization theory (see
Ehrgott [7]), we discuss the Pareto optimal solution of this two-criteria problem. Under
certain conditions, we prove existence and uniqueness of the optimal strategies and
Pareto optimal solution for the risk model with the general premium principle. The
relationships between the Pareto optimal solution and the other two optimal strategies
under a single criterion are given. Under the variance premium principle, we study the
two-criteria optimization problem. When the total claim sizes are normally distributed,
we derive explicit expressions for the optimal strategies and Pareto optimal solution.
Some numerical examples are presented to examine how the optimal results vary in
response to changes in the major model parameters.

In Section 2 the model and assumptions are given. In Section 3 we discuss the
optimization problem with the general premium principle. In Section 4 we study the
optimization problem with the variance premium principle, and give some numerical
examples.
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2. The model

We consider a (reinsured) risk over a one-year period, so that the insurer’s wealth
at the end of the year is

SI = u + c − δ(q)− X I ,

where u is the insurer’s wealth at the start of the year, c is the premium the insurer
receives to cover the risk, δ(q) is the amount of the reinsurance premium, and X I
denotes the amount of claims paid by the insurer. Let X be the (aggregate) loss for
an insurer. We assume that X is a nonnegative random variable with cumulative
distribution function FX (x)= Pr{X ≤ x}, survival function SX (x)= 1− FX (x)=
Pr{X > x} and mean E X > 0. Furthermore, let X R be the random variable for the
loss of the reinsurer in the presence of a proportional reinsurance. Then X I and X R
are related to X as follows:

X I = q X and X R = (1− q)X,

where the parameter q ∈ [0, 1] is known as the retention level. Here, we assume that
the reinsurance premium δ(q) is a continuous function, and satisfies the following
assumptions.

Assumption A:
δ′(q) < 0 and δ′′(q) > 0.

Assumption B:
−δ′(1)= E X.

Observe that the following principles are included in this class: for positive constants
3, c, A,

Variance premium principle: δ(q)= E(X R)+3 Var(X R),
Quadratic utility principle: δ(q)= E(X R)+ c − (c2

− Var(X R))
1/2,

Exponential principle: δ(q)= A−1 ln E[exp(AX R)].

For an overview of premium calculation principles, we refer the reader to Gerber [10],
Goovaerts et al. [11], Straub [27], Embrechts et al. [8], Rolski et al. [24] and
Dickson [6].

We denote by T = δ(q)+ q X the total risk or total cost of the insurer. The total risk
T is captured by two components: the retained loss and the reinsurance premium. The
relation T = δ(q)+ q X demonstrates the classic trade-off between the risk retained
by the insurer (q X) and the profit transferred to reinsurance (δ(q)). If the retention
q is small, then the retained liability to the insurer is expected to be low but at the
expense of the higher premium payable to the reinsurer. On the other hand, reducing
the loss of the reinsurance premium by raising q exposes the insurer to a potentially
large liability. Consequently, determining the optimal level of retention q is important.

Formally, the VaR of a random variable X at a confidence level 1− α, 0< α < 1,
is defined as

VaRX (α)= inf{x : Pr{X > x} ≤ α} = inf{x : Pr{X ≤ x} ≥ 1− α}.
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If X has a continuous one-to-one distribution function on [0,∞), then

VaRX (α)= S−1
X (α)= F−1

X (1− α),

where S−1
X and F−1

X are the inverse functions of SX and FX , respectively. From Cai
and Tan [3] and the definition of VaR, it is not difficult to derive

VaRT (q, α)= VaRX I (q, α)+ δ(q),

where
VaRX I (q, α)= q VaRX (α)= q S−1

X (α).

Then
VaRT (q, α)= q S−1

X (α)+ δ(q).

In addition, we suppose that the investor has an exponential utility function

U (x)= λ−
γ

β
e−βx ,

where γ > 0 and β > 0. This utility has constant absolute risk aversion parameter β,
as can be seen from the fact that −U ′′(x)/U ′(x)= β. Such utility functions play a
prominent role in insurance mathematics and actuarial practice, since they are the only
utility functions under which the principle of “zero utility” gives a fair premium that
is independent of the level of reserves of an insurance company.

From an insurer’s point of view, a prudent risk management strategy is to ensure
that the risk measures associated with T are as small as possible. At the same time,
the insurer wants the expected utility of their wealth to be as large as possible. This
motivates us to consider the following three optimization problems:

Problem A:
min

q∈[0,1]
{VaRT (q, α)};

Problem B:
max

q∈[0,1]
{EU (SI )};

Problem C:
min

q∈[0,1]
{VaRT (q, α),−EU (SI )}.

Using the exponential utility function, we can derive the expected utility of SI :

EU (SI )= λ−
γ

β
e−β(u+c)

· eβδ(q)+ln MX (βq),

where the moment generating function is MX (t)= E(eXt ). We see that maximizing
EU (SI ) is equivalent to minimizing βδ(q)+ ln MX (βq). Then Problems B and C
can be rewritten as:

Problem B′:
min

q∈[0,1]
{βδ(q)+ ln MX (βq)};
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Problem C′:
min

q∈[0,1]
{q S−1

X (α)+ δ(q), βδ(q)+ ln MX (βq)}.

Problem C′ is a multi-objective optimization problem and may be converted into a
single-objective problem by putting weights on the different objectives. Thus the
following function is to be minimized:

f (q)= λ1[q S−1
X (α)+ δ(q)] + λ2[βδ(q)+ ln MX (βq)], (2.1)

where λ1, λ2 ∈ (0, 1), λ1 + λ2 = 1, represent the weights.
By the multiple-criteria optimization theory (see Ehrgott [7]), we see that, if we

can find the unique positive optimal strategy q∗ ∈ [0, 1] which minimizes the function
f (q), then this optimal strategy is the properly Pareto optimal solution of Problem C′

and, consequently, the properly Pareto optimal solution of Problem C. In addition, to
guarantee the existence of the optimal strategy, we assume the following condition:

Condition A:
−δ′(0) > S−1

X (α) >−δ′(1).

REMARK 2.1. We assume throughout this paper that X has a continuous one-to-one
distribution function on (0,∞) with a possible jump at 0, and that S−1

X (x) exists for
0< x < SX (0). Moreover, we write S−1

X (0)=∞ and S−1
X (x)= 0 for SX (0)≤ x ≤ 1.

We also enforce the condition 0< α < SX (0), otherwise for α ≥ SX (0) we have a
trivial case as VaRX (α)= 0 and VaRX I (q, α)= 0. Note that SX (0)= 1 when the
distribution function of X is continuous at 0.

REMARK 2.2. To guarantee the existence of MX (t), the (aggregate) loss distribution
should have an exponentially decreasing tail SX (x). This means that the tail SX (x)
satisfies SX (x)= o(e−sx ) for some s > 0. It is, for instance, fulfilled if there is
an r∞ > 0 such that limr↑r∞ MX (r)=∞. This is exactly the condition needed for
the Cramér–Lundberg approximation in the classical risk model (see, for instance,
Gerber [10] or Grandell [12]).

3. The optimal strategy with the general premium principle

We consider the optimal strategies in the above three problems with the general
premium principle.

3.1. Existence and uniqueness of the optimal strategies Differentiating f (q)
(see (2.1)) with respect to q and simplifying yields

∂ f

∂q
= (λ1 + λ2β)δ

′(q)+ λ2 ·
M ′X (βq)

MX (βq)
+ λ1S−1

X (α), (3.1)

where
M ′X (βq)= E(βXeβq X ).

https://doi.org/10.1017/S1446181110000878 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000878


454 Z. Liang and J. Guo [6]

To find q such that f (q) is minimized to find the unique solution of the equation
∂ f/∂q = 0, or equivalently,

M ′X (βq)

MX (βq)
=−βδ′(q)−

λ1

λ2
[δ′(q)+ S−1

X (α)]. (3.2)

By the same method, we derive another two equations which the optimal strategies in
Problems B′ and A satisfy:

M ′X (βq)

MX (βq)
=−βδ′(q) (3.3)

and
δ′(q)+ S−1

X (α)= 0. (3.4)

In the following theorem, we verify that the above equations for q have a unique
positive solution.

THEOREM 3.1. Under Condition A, each of the Equations (3.2), (3.3) and (3.4) has a
unique positive solution.

To verify the theorem, we first prove the following lemmas which play key roles in
this paper.

LEMMA 3.2. The function ln MX (r) is strictly increasing and convex.

PROOF. Let g(r)= ln MX (r). Then

g′(r)=
M ′X (r)

MX (r)
=

E(Xer X )

E(er X )

and

g′′(r)=
M ′′X (r)MX (r)− [M ′X (r)]

2

[MX (r)]2
.

By the Cauchy–Schwarz inequality,

E(X2er X )E(er X )− E(Xer X )2 > 0.

Since
M ′′X (r)MX (r)− M ′X (r)

2
= E(X2er X )E(er X )− E(Xer X )2,

it follows that g′′(r) > 0 for all r > 0. It is easy to see that g′(r) > 0 for all r > 0. 2

From Lemma 3.2, we obtain the following result.

LEMMA 3.3. The function M ′X (r)/MX (r) is strictly increasing and continuous.

We can now prove the theorem.

PROOF OF THEOREM 3.1. Let

g1(q)=
M ′X (βq)

MX (βq)
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and

f1(q)=−βδ
′(q)−

λ1

λ2
[δ′(q)+ S−1

X (α)].

Then

f1(0)=−
(
β +

λ1

λ2

)
δ′(0)−

λ1

λ2
S−1

X (α),

f1(1)=−
(
β +

λ1

λ2

)
δ′(1)−

λ1

λ2
S−1

X (α),

and

g1(0)= βE X, g1(1)=
E(βXeβX )

E(eβX )
.

By Condition A and Assumption B,

f1(0) > g1(0), f1(1) < g1(0).

From Lemma 3.3, we know that g1(q) is a strictly increasing continuous function, so
we have g1(1) > g1(0), and therefore, g1(1) > f1(1).

Since f1(0) > g1(0) and f1(1) < g1(1), by the monotonicity and continuity of
f1(q) and g1(q), we see that g1(q) and f1(q) have a unique point of intersection
at some 0< q∗3 < 1. Thus Equation (3.2) has a unique positive solution.

Now consider (3.3). Let f2(q)=−βδ′(q). We obtain

f2(0)=−βδ′(0) and f2(1)=−βδ′(1).

By Assumptions A and B, and the monotonicity of g1(q) we derive

f2(0) > g1(0) and f2(1) < g1(1).

Again by the monotonicity and continuity of f2(q) and g1(q), we see that g1(q) and
f2(q) have a unique point of intersection at some 0< q∗2 < 1. Thus (3.3) has a unique
positive solution.

Finally, we discuss (3.4). Since δ′(q) is a strictly increasing continuous function
such that −δ′(0) > S−1

X (α) >−δ′(1), there exists a unique positive value q∗1 ∈ (0, 1)
which satisfies S−1

X (α)=−δ′(q∗1 ). 2

By Theorem 3.1, we derive the following result.

THEOREM 3.4. Under Condition A, let q∗1 , q∗2 and q∗3 be respectively the unique
positive roots of (3.4), (3.3) and (3.2). Then q∗1 and q∗2 are respectively the optimal
strategies for Problems A and B, and q∗3 is the Pareto optimal solution for Problem C.

https://doi.org/10.1017/S1446181110000878 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000878


456 Z. Liang and J. Guo [8]

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

q
1
* q

2
*q

3
*

f1(q)

f3(q)

f2(q)

0 1
q

FIGURE 1. Functions f1(q), f2(q) and f3(q) giving q∗1 < q∗3 < q∗2 .

3.2. Relationship between the three optimal strategies The following results give
the relationship between the three optimal strategies.

THEOREM 3.5. Let q∗1 , q∗2 and q∗3 be the optimal strategies mentioned in Theorem 3.4,
and let M =max(q∗1 , q∗2 ), N =min(q∗1 , q∗2 ). Then q∗3 ∈ (N , M).

PROOF. Let

f1(q)=−βδ
′(q)−

λ1

λ2
[δ′(q)+ S−1

X (α)], f2(q)=−βδ
′(q), f3(q)=

M ′X (βq)

MX (βq)
.

We see that q∗1 is the unique solution of the equation f1(q)= f2(q), q∗2 is the unique
solution of f2(q)= f3(q), and q∗3 is the unique solution of f1(q)= f3(q).

If q∗1 < q∗2 , to prove that q∗1 < q∗3 < q∗2 , it is sufficient to prove that f2(q) > f1(q)
for all q > q∗1 ; see Figure 1. Note that

f2(q)− f1(q)=
λ1

λ2
(δ′(q)+ S−1

X (α)).

Since δ′(q)+ S−1
X (α) is an increasing function of q , when q > q∗1 ,

δ′(q)+ S−1
X (α) > δ′(q∗1 )+ S−1

X (α)= 0,

and thus we derive f2(q) > f1(q), for all q > q∗1 .
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FIGURE 2. Functions f1(q), f2(q) and f3(q) giving q∗2 < q∗3 < q∗1 .

If q∗1 > q∗2 , to prove that q∗2 < q∗3 < q∗1 , it is sufficient to prove that f1(q) > f2(q)
for all q < q∗1 ; see Figure 2. Note that

f1(q)− f2(q)=−
λ1

λ2
(δ′(q)+ S−1

X (α)).

Since δ′(q)+ S−1
X (α) is an increasing function of q , when q < q∗1 , we have

δ′(q)+ S−1
X (α) < δ′(q∗1 )+ S−1

X (α)= 0, and thus we derive f1(q) > f2(q), for all
q < q∗1 . 2

In addition, by (2.1) and (3.1), we derive the following theorem.

THEOREM 3.6. When λ1→ 0, we have q∗3 → q∗2 , and when λ2→ 0, we have
q∗3 → q∗1 .

REMARK 3.7. The results above coincide with the real world. Since the insurer wants
to balance the VaR and expected utility, that is, minimize the VaR and maximize
the expected utility, the corresponding optimal strategy must take a value in (N , M).
Furthermore, its value depends on the weights. For instance, λ1 < 1/2 means that the
insurer pays more attention to expected utility, and the corresponding optimal strategy
becomes closer to q∗2 than when λ1 ≥ 1/2, and vice versa.
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4. The optimal strategy with the variance premium principle

In this section, we assume that the reinsurance premium is calculated according to
the variance principle, that is, δ(q)= E(X R)+3 Var(X R), and the total loss X is
normally distributed with parameters µ and σ 2, denoted by X ∼ N (µ, σ 2). Then

δ(q) = (1− q)µ+3(1− q)2σ 2,

δ′(q) = −µ− 23(1− q)σ 2, δ′′(q)= 23σ 2,

S−1
X (α) = µ+ σuα,

where uα is the 100(1− α)th percentile of the standard normal distribution. Here
Condition A becomes:

Condition A′:
0< uα < 23σ.

LEMMA 4.1. Assume that X ∼ N (µ, σ 2). Under Condition A′, the optimal
proportional reinsurance to minimize VaRT (α, q) is

q∗1 = 1−
uα

23σ
. (4.1)

LEMMA 4.2. Assume that X ∼ N (µ, σ 2). The optimal proportional reinsurance to
maximize the expected utility EU (SI ) is

q∗2 =
23

β + 23
. (4.2)

LEMMA 4.3. Assume that X ∼ N (µ, σ 2). Under Condition A′, the optimal
proportional reinsurance to minimize f (q) in (2.1) is

q∗3 =
23σβ + (λ1/λ2)23σ − (λ1/λ2)uα
σβ2 + 23σβ + (λ1/λ2)23σ

. (4.3)

Lemmas 4.1, 4.2 and 4.3 are natural consequences of Theorem 3.4, so we omit the
proofs.

Comparing q∗1 and q∗2 above yields the following result.

PROPOSITION 4.4. Assume that X ∼ N (µ, σ 2). Under Condition A′, we have:

(i) if β < 23uα/(23σ − uα), then q∗2 > q∗1 and q∗1 < q∗3 < q∗2 ;
(ii) if β > 23uα/(23σ − uα), then q∗2 < q∗1 and q∗2 < q∗3 < q∗1 .

REMARK 4.5. Here β is the constant absolute risk aversion parameter of the utility
function. A larger value of β means more risk aversion for the decision maker. Let
β0 = 23uα/(23σ − uα). Then, under the criterion of maximizing the expected utility,
we see that when β > β0, the decision maker has larger risk aversion and wants to
transfer more risk to the reinsurer. Conversely, when β < β0, the decision maker has
smaller risk aversion and wants to retain more risk.

We give some numerical examples. For notational convenience, we denote by m
the ratio of λ1 to λ2, that is, m = λ1/λ2.
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FIGURE 3. The effect of 3 on q∗1 , q∗2 and q∗3 .

EXAMPLE 4.6. Assume that X ∼ N (3, 4), α = 0.05, m = 1. The results are shown in
Figures 3 and 4.

From Figure 3 (β = 3), we see that the optimal strategies increase as 3 increases,
which means that a more expensive reinsurance premium yields a greater retention
level. Moreover, there exists a 30 such that when 3<30, we have q∗1 < q∗3 < q∗2 ,
whereas when 3>30, we have q∗2 < q∗3 < q∗1 . From Figure 4 (3= 1) we can
see that there exists a β0 such that when β < β0, we have q∗1 < q∗3 < q∗2 , and when
β > β0, we have q∗2 < q∗3 < q∗1 . These two results are natural consequences of
Proposition 4.4.

EXAMPLE 4.7. Assume that X ∼ N (3, 4), 3= 1, β = 1, 3 and α = 0.05, 0.0394,
0.0192. The results are shown in Figure 5.

In this case, we get 1< β0 = 23uα/(23σ − uα) < 3. From case (a) in Figure 5
we find that, when β = 1, the optimal reinsurance strategy decreases when the value
of m increases. Whereas when β = 3 (see case (b) in Figure 5), the optimal strategy
increases when the value of m increases. From both cases, we also see that a larger
value of α will yield a higher retention level of optimal reinsurance. This simply
states that as the confidence level decreases, the insurer should retain a greater share
of each claim.
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FIGURE 6. The effect of m on q∗1 , q∗2 and q∗3 .

EXAMPLE 4.8. Assume that X ∼ N (3, 4), α = 0.05,3= 1, β = 1, 3. The results are
shown in Figure 6.

In this case, we get β0 = 23uα/(23σ − uα)= 1.921. Since β = 1< β0 and
β = 3> β0, we have q∗1 < q∗3 < q∗2 when β = 1 and q∗2 < q∗3 < q∗1 when β = 3. This
is again a natural consequence of Proposition 4.4. Furthermore, we find that when
λ1→ 0, we have q∗3 → q∗2 , and when λ2→ 0, q∗3 → q∗1 , which is a direct result of
Theorem 3.6.

5. Conclusion

We briefly summarize the main results of this paper. From an insurer’s point of
view, the two-criteria optimization problem of proportional reinsurance is considered.
We seek a proportional reinsurance strategy which is optimal to maximize the expected
utility as well as minimize the VaR. Using the technique of multi-criteria optimization
theory, we discuss the Pareto optimal solution. Under the general premium principle,
we prove the existence and uniqueness of the optimal strategies and Pareto optimal
solution, and give the relationship between the optimal strategies. Furthermore, we
study the optimization problem with the variance premium principle. When the total
claim sizes are normally distributed, we derive explicit expressions not only for the
optimal strategies but also for the Pareto optimal solution. Numerical examples are
presented to examine how the optimal results vary in response to changes in the
major model parameters. We conclude that to balance risk and profit, a reasonable
or acceptable reinsurance strategy should take a value in (N , M) (see Theorem 3.5).
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