

Some Remarks Concerning the Topological Characterization of Limit Sets for Surface Flows

Habib Marzougui

Abstract. We give some extension to theorems of Jiménez López and Soler López concerning the topological characterization for limit sets of continuous flows on closed orientable surfaces.

1 Introduction

Let *M* be a closed orientable connected surface. A continuous flow ϕ on *M* will be a continuous map $\phi \colon \mathbb{R} \times M \to M$ with the properties:

(i) $\phi((t+s), x) = \phi(t, \phi(s, x))$ for every $t, s \in \mathbb{R}$ and $x \in M$, (ii) $\phi(0, x) = x$ for every $x \in M$.

Given a point $x \in M$, we define the map $\phi_x \colon \mathbb{R} \to M$ by $\phi_x(t) = \phi(t, x), t \in \mathbb{R}$. We call $L_x = \phi_x(\mathbb{R})$ the orbit of x. We say that x is a singular point (or a singularity) of ϕ if ϕ_x is constant. Denote by:

- $sing(\phi)$ the set of singular points of ϕ .
- $M^{\star} = M \setminus \operatorname{sing}(\phi)$.
- M_1 the union of all orbits of ϕ which are closed in M^* .
- $U_1 = M^* \setminus M_1$.

A subset *A* of *M* is called *invariant* if $\phi(\mathbb{R} \times A) = A$, that is, *A* is a union of orbits. For every orbit *L* of ϕ and $x \in L$, we call

$$L_x^+ = \{\phi_x(t); t \in \mathbb{R}_+\} \quad (\text{resp. } L_x^- = \{\phi_x(t); t \in \mathbb{R}_-\})$$

the positive (resp. negative) semi-orbit of x. The set

$$\Omega_L = \bigcap_{x \in L} \overline{L_x^+} \quad (\text{resp.} A_L = \bigcap_{x \in L} \overline{L_x^-})$$

is called the ω -limit (resp. α -limit) set of L, and $\lim L = \Omega_L \cup A_L$ is called the *limit set* of L. A point $y \in \Omega_L$ (resp. $y \in A_L$) means that there exists a sequence $t_n \mapsto +\infty$ (resp. $t_n \mapsto -\infty$) such that $\lim_{n\to\infty} \phi(t_n, x) = y$. We have $\lim L = \overline{L} \setminus L$ if L is a non-periodic orbit. If L is a periodic orbit, $\Omega_L = A_L = L$. The set Ω_L (resp. A_L) is closed, connected, invariant, and non-empty.

Received by the editors November 21, 2007; revised July 22, 2008.

Published electronically January 26, 2011.

AMS subject classification: 37B20, 37E35.

Keywords: flows on surfaces, orbits, class of an orbit, singularities, minimal set, limit set, regular cylinder.

H. Marzougui

We say that an orbit L of ϕ is proper if $\overline{L} \setminus L$ is closed in M. For example, a closed orbit in M^* , is proper. In particular, if L is a periodic orbit, it is called *trivial recurrent*. A non-proper orbit L is called *non-trivial recurrent*, that is, either *locally dense* if \overline{L} has non-empty interior, or *exceptional* if L is nowhere dense. For non-trivial recurrent orbits L, we have one of the following types: ω -recurrent if $\overline{L} = \Omega_L$; α -recurrent if $\overline{L} = A_L$; or both ω -recurrent and α -recurrent if $\Omega_L = A_L = \overline{L}$. If L is proper and non-periodic, then $\lim L = \overline{L} \setminus L$. Otherwise, $\lim L = \overline{L}$. In particular, if L is a non-proper orbit then $\overline{L} = \Omega_L$ or $\overline{L} = A_L$.

A subset *E* of *M* is called *a minimal set* of ϕ if *E* is closed in *M*, non-empty, ϕ -invariant and has no proper subset with these properties. This is equivalent to saying that for every orbit *L* contained in *E*, we have $\overline{L} = E$. In particular, a closed orbit in *M* is a minimal set of ϕ .

We call the *class of an orbit* L of ϕ the union cl(L) of orbits G of ϕ such that $\overline{G} = \overline{L}$. We note that orbits which are in the same class are either all proper or locally dense or exceptional. In particular, if L is proper, cl(L) = L.

We call the *lower structure* of an orbit *L* of ϕ the subset $SI(L) = \overline{L} \setminus cl(L)$. In the case where *L* is proper, $SI(L) = \overline{L} \setminus L$ is always closed in *M*.

We call the *higher structure* of an orbit *L* of ϕ the union SS(*L*) of orbits *G* of ϕ such that $L \subset \overline{G}$ with $\overline{G} \neq \overline{L}$.

For a subset A of M, int(A), $bd(A) = \overline{A} \setminus int(A)$ will denote respectively, the interior and the boundary of A.

We call a *regular cylinder* an open connected set of *M* which is homeomorphic to an open annulus and its boundary has two connected components.

In [6], the problem of the topological characterization of limit sets of flows on closed surfaces has partially answered by Jiménez López and Soler López.

For ω (resp. α)-limit sets which has empty interior, their result can be paraphrased as follows:

Theorem 1.1 (Jiménez López and Soler López [6]) Let ϕ be a continuous flow on a closed orientable surface M and let L be an orbit of ϕ . Assume that L is proper or that int $(\Omega_L) = \emptyset$ and $M \setminus \Omega_L$ has a finite number of components. Then Ω_L is a boundary component of a regular cylinder in M. Conversely, if Ω is a boundary component of a regular cylinder in M then there are a smooth flow on M and an orbit of this flow such that $\Omega = \Omega_L$.

For ω (resp. α)-limit sets with non-empty interior, there were also characterized:

Theorem 1.2 (Jiménez López and Soler López [5]) Let ϕ be a continuous flow on a closed orientable surface M and let L be an orbit of ϕ . Assume that $int(\Omega_L) \neq \emptyset$. Then $\Omega_L = \overline{O}$ where $O = int(\Omega_L)$ and M is not homeomorphic to the sphere S^2 .

Conversely, if $O \subset M$ is an open set not homeomorphic to a subset of the sphere S^2 then there are a smooth flow Φ on M and an orbit L of Φ such that $\Omega_L = \overline{O}$.

The problem remains open in the case of an ω (resp. α)-limit set which, simultaneously, is the limit set of one of its orbits, has empty interior, and whose complement has an *infinite* number of components.

The aim of this note is to extend the above works by characterizing ω (resp. α)limit sets of surface flow orbits; we show that the assumption: " $M \setminus \Omega_L$ has a finite number of components" in Theorem 1.1 is unnecessary provided the flow has a finite number of singularities, or that \overline{L} is a non-trivial minimal set. Moreover, for non-empty interior limit set, we give a precise description of its topological characterization.

Our main results can be stated as follows.

Theorem 1.3 Let ϕ be a continuous flow on a closed orientable surface M and let L be an orbit of ϕ such that $int(\Omega_L) = \emptyset$. Then Ω_L is a boundary component of a regular cylinder in M if one of the following conditions hold:

- (i) ϕ has finitely many singularities.
- (ii) *L* is an exceptional orbit with \overline{L} does not contain singular points.

In the case of flows with finitely many singularities, the set U_1 is open in M [4, Theorem, p. 386] and we have precisely the following.

Proposition 1.4 Let ϕ be a continuous flow with finitely many singularities on a closed orientable surface M and let L be an orbit of ϕ such that $int(\Omega_L) \neq \emptyset$. Then

- (i) Ω_L is the closure of the connected component V of U_1 containing L;
- (ii) the flow $\phi_{|V}$ is minimal (every orbit of $\phi_{|V}$ is dense in V).

Notice that we have the same statements as for Theorem 1.3 and Proposition 1.4 for α -limit sets.

Remark (1) In condition (i) of Theorem 1.3, a flow without singularities or with finitely many singularities may admit ω -limit sets with empty interior and having infinitely many components in its complementary. Informally speaking the construction of such flow consists of making the suspension of an homeomorphism $f: S^1 \to S^1$ obtained by blowing up infinitely many orbits of the irrational rotation on S^1 . This is the procedure usually used to obtain the Denjoy flow, but for that case only one orbit is blowing up.

Following [1, Theorem 2.5, p. 208] there exist a homeomorphism $f: S^1 \to S^1$ and a continuous increasing surjective map $h: S^1 \to S^1$ semi-conjugating f to the irrational rotation R_α of angle α . Moreover there exist countable many orbits of R_α $(R^n_\alpha(x_i)_{n\in\mathbb{Z}})_{i\in\mathbb{N}}$ such that $\chi = \bigcup_{n\in\mathbb{Z}} \{R^n_\alpha(x_i) : i \in \mathbb{N}\}$ is the set of point $x \in S^1$ for which $h^{-1}(x)$ contains more than one point. Now it suffices of defining the flow Φ as the suspension of f, see *e.g.*, [1, p. 16]. It is easy to verify that Φ satisfies the desired property and the following ones:

(i) There exists a set Ω such that $int(\Omega) = \emptyset$ and $\Omega = \Omega_L = A_L$ for every orbit *L*.

(ii) Φ admits proper and non-proper orbits.

(iii) Φ has no singularities nor periodic orbits.

(2) Flows having infinitely many singularities and admitting an ω -limit set with empty interior and with infinitely many components in its complementary also exist. Moreover, this ω -limit set is not boundary of any regular cylinder, see [7].

2 Some Results

In the following, we give some properties for the dynamics of recurrent orbits.

Proposition 2.1 ([8, Proposition 2.1]) Let ϕ be a continuous flow on a closed orientable surface M and suppose that $sing(\phi)$ is a compact totally disconnected set on M. Then, if L is a non-proper orbit of ϕ then every orbit contained in SI(L) is closed in M^{*}.

Proposition 2.2 Under the hypothesis of Proposition 2.1, if L is an orbit of ϕ such that \overline{L} contains a periodic orbit γ then L is proper.

Proof Suppose that *L* is a non-proper orbit, then \overline{L} is one of its limit set, say $\overline{L} = \Omega_L$. By [3, Proposition 7.11], we will have $\Omega_L = \gamma$ thus $\gamma = \overline{L}$, which is impossible.

Proposition 2.3 ([9, Theorem 2.2]) Let ϕ be a continuous flow on a closed orientable surface M with finitely many singularities. If L is an exceptional orbit then $V = SS(L) \cup cl(L)$ is open in M.

Proposition 2.4 ([2, Theorem 1.1]) Let ϕ be a continuous flow on an orientable surface M. Let $E \subset M$ be a non-trivial compact minimal set. Then, there exists a connected, open, ϕ -invariant neighborhood U of E with the following property:

• *if* $L \subset U$ *is an orbit, then* $\Omega_L \cup A_L \subset E \cup bd(U)$ *and* $\Omega_L = E$ *or* $A_L = E$.

In particular, Proposition 2.4 holds for $E = \overline{L}$ if \overline{L} does not contain singular point and *L* is an exceptional orbit (since in this case \overline{L} is non-trivial compact minimal set).

3 **Proof of Theorem 1.3 and Proposition 1.4**

3.1 **Proof of Theorem 1.3**

Lemma 3.1 Let ϕ be a continuous flow on a closed orientable surface M and let L be an exceptional orbit. Suppose that ϕ has finitely many singularities or that \overline{L} does not contain singular point. If $(W_j)_{j \in J}$ are the connected components of $M \setminus \overline{L}$ then there exists $m \in J$ such that $\overline{L} = bd(W_m)$.

Proof The inclusion $bd(W_m) \subset \overline{L}$ is clear since $bd(W_m)$ is closed in $M \setminus \overline{L}$. To prove the other inclusion $\overline{L} \subset bd(W_m)$, suppose the contrary; that is for every $j \in J$, we have $L \subset M \setminus \overline{W_j}$.

If ϕ has finitely many singularities then by Proposition 2.3, the set $V = SS(L) \cup$ cl(L) is open in M. Then (since $M \setminus \overline{W_j}$ is ϕ -invariant), for every orbit $G \subset V$, we have $G \subset M \setminus \overline{W_j}$. Therefore, $V \subset M \setminus \overline{W_j}$ for every $j \in J$. It follows that $M \setminus \overline{L} \subset M \setminus V$ and then $int(\overline{L}) \neq \emptyset$, a contradiction.

If \overline{L} does not contain singular point then $E = \overline{L}$ is an exceptional compact minimal set. Hence, by Proposition 2.4, there exists a connected neighborhood U of E such that for every orbit $G \subset U$, we have $E \subset \overline{G}$ so $G \subset M \setminus \overline{W_j}$. Therefore, $U \subset M \setminus \overline{W_j}$ for every $j \in J$. It follows that $M \setminus \overline{L} \subset M \setminus U$ and then $\operatorname{int}(\overline{L}) \neq \emptyset$, a contradiction.

Proof of Theorem 1.3 Let *L* be an orbit of ϕ such that $int(\Omega_L) = \emptyset$. If *L* is periodic, obviously *L* is a boundary of a regular cylinder. Now, suppose that *L* is non-periodic. We distinguish two cases.

314

If $L \subset M \setminus \Omega_L$ then decompose $U = M \setminus \Omega_L$ into its connected components by $U = \bigcup_{j \in J} W_j$ and define W_m the component containing L. It is easy to check that $bd(W_m) = \Omega_L$ for some m.

If $L \subset \Omega_L$ that is $\overline{L} = \Omega_L$; then L is an exceptional orbit. By Lemma 3.1, there exists $m \in J$ such that $\Omega_L = \overline{L} = bd(W_m)$.

The reminder of the proof, that is W_m is homeomorphic to a regular cylinder, is similar to that of the proof of Lemma 3.3 in [7].

3.2 Proof of Proposition 1.4

Lemma 3.2 Let ϕ be a continuous flow with finitely many singularities on a closed orientable surface M. If L is a non-proper orbit of ϕ then $cl(L) = \overline{L} \cap U_1$. In particular, if L is locally dense then cl(L) is the connected component of U_1 containing L.

Proof Let *L* be a non-proper orbit. If $G \subset \overline{L} \cap U_1$ is an orbit of ϕ then *G* is non-closed in M^* . From Proposition 2.1, we have $\overline{G} = \overline{L}$. So, $G \subset cl(L)$ and $cl(L) = \overline{L} \cap U_1$. Now, let *V* be the connected component of U_1 containing *L*. We also have $\overline{L} \cap V = cl(L)$. Suppose that *L* is locally dense; that is $int(\overline{L}) \neq \emptyset$. We have $L \subset int(\overline{L})$ and therefore $cl(L) \subset int(\overline{L})$. It follows that $cl(L) = \overline{L} \cap V = int(\overline{L}) \cap V$ thus, cl(L) is open and closed in *V*. As *V* is connected, we have cl(L) = V.

Proof of Proposition 1.4 Let *L* be an orbit such that $int(\Omega_L) \neq \emptyset$. Then *L* is locally dense and we have $\overline{L} = \Omega_L$. By Lemma 3.2, if *V* is the connected component of U_1 containing *L* then cl(L) = V. Thus, $\overline{L} = \overline{V} = \Omega_L$ and assertion (i) follows. Assertion (ii) is clear since cl(L) = V.

Acknowledgments The author would like to thank Gabriel Soler López for useful comments.

References

- S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, *Introduction to the qualitative theory of dynamical systems on surfaces*. Trans. Math. Monographs 153, Amer. Math. Soc., 1996.
- [2] K. Athanassoupolos, *The flow near non-trivial minimal sets on 2-manifolds*. Math. Proc. Phil. Soc. **108**(1990), 569–573.
- [3] C. Godbillon, Dynamical systems on surfaces. Springer-Verlag, 1983.
- [4] A. Haefliger, Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa 16(1962), 367–397.
- [5] V. Jiménez López and G. Soler López, *Transitive flows on manifolds*. Rev. Mat. Iberoamericana 20(2004), 107–130.
- [6] ______, Accumulation points of nonrecurrent orbits of surface flows. Topology Appl. 137(2003), 187–194. doi:10.1016/S0166-8641(03)00208-6
- [7] ______, Empty interior recurrence for continuous flows on surfaces. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 20(2010), 2897–2913. doi:10.1142/S0218127410027441
- [8] H. Marzougui, Structure des feuilles sur les surfaces ouvertes. C. R. Acad. Sci. Paris Sér. I 323(1996), 185–188.
- [9] _____, Structure of foliations on 2-manifolds. Illinois J. Math. 42(1998), 398–405.

University of 7th November at Carthage, Faculty of Science of Bizerte, Department of Mathematics, 7021 Zarzouna, Tunisia *e-mail*: habib.marzouki@fsb.rnu.tn