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Abstract

The iterative behaviour of polynomials is contrasted with that of small transcendental functions as
regards the existence of unbounded domains of normality for the sequence of iterates.

1980 Mathematics subject classification (Amer. Math. Soc.): 30 D 05.

1. Introduction

If/is a rational or entire function of the complex variable z its natural iterates/"
are defined by/'(z) = /(z),/n+1(z) = /{/"(z)}, n = 1, 2, The theory devel-
oped by Fatou [10, 11] and Julia [12] deals with the set 6 = ©(/) of points of the
complex plane in whose neighbourhood (/") is a normal family. It is convenient
to express many results in terms of the complement g(/) of 6, that is the set of
non-normality. We shall assume throughout that / is not a rational function of
order 0 or 1. Then £f(/) has the following properties (see [10] and [11]):

I. 8f(/) is a non-empty perfect set.
II- 5 ( / ) and S ( / ) are completely invariant under the mapping z —»/(z).
In general a set S is called invariant under z —»/(z) if a e S implies/(a) G S.

The set S is completely invariant if a £ 5 implies both /(a) £E S and j3 £ X for
every solution /3off(/5) = a.

While extensive and detailed results have been obtained for rational / , work
on the transcendental entire case is restricted to showing that certain of the main

©Copyright Australian Mathematical Society 1981

483

https://doi.org/10.1017/S1446788700017961 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017961
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results extend from the rational case (for example [1], [3], [11]) with a few
discussions of examples and of features unique to the entire functions. Common
to both classes are the polynomials, assumed to have degree at least two, for
which it is obvious that/"(z) -» oo in a neighbourhood of oo. Indeed it follows
from II that:

III. If f is a polynomial of degree at least two then &(/) contains a neighbour-
hood of oo. Thus there is just one unbounded component D of E(/) and D = {z:
/"(z) -» oo}. Further D is invariant and completely invariant.

It is natural to examine the effect on the assertions of III of replacing/by a
transcendental entire function. It is obvious from I and Picard's theorem that g
is unbounded in this case, so that 6(/) no longer forms a neighbourhood of oo.
It will be shown that if / is transcendental but of sufficiently small growth (£(/)
can have no unbounded completely invariant component and under suitable
assumptions no unbounded component at all:

THEOREM 1. If for transcendental entire f there is an unbounded invariant
component of &(/), then the growth of f must exceed order \, minimal type.

THEOREM 2. / / the maximum modulus M(r,f) of the transcendental entire
function f satisfies

log M(r,/) = O {(log r / } as r -> oo,

where 1 < p < 3, then every component of S(/) is bounded.

The order of growth in Theorem 1 is sharp as we shall prove by consideration
of cos{(e2z + |T3-2)1/2} for any e such that 0 < e < (3w)l/2. The sharpness or
otherwise of Theorem 2 remains open, although the proof given does not seem
to extend to functions of larger growth.

Since for transcendental / any completely invariant component of (£(/) is
unbounded and invariant Theorem 1 has the corollary:

THEOREM 3. If f is transcendental and entire of growth not exceeding order j
minimal type, then (£(/) has no completely invariant component.

This complements the results of [2], where it was shown that a polynomial
may, like z2, have two completely invariant components of ©(/), but in the case
of transcendental / at most one such component can occur. The example
cos{(e2z + |T2)l/2} shows that the theorem is sharp.

In the course of the proofs we have to discuss the possible limit functions of
subsequences of (/") in the domains concerned. The necessary results are
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developed in Section 2 and include

THEOREM 4. Let D be a domain of the complex plane with at least three
boundary points and let f be analytic in D, except that if D is unbounded f need not
be analytic at oo. Let f map D into itself and suppose that no subsequence off has
limit z in D (in particular this is so if fis not a univalent map of D onto D). Then
the whole sequence (/") converges in D to a constant limit a £ D.

Specializing to entire functions one has

THEOREM 5. If f is entire and non-linear and D is an invariant component of
©(/), then either (i) / is a univalent map of D onto itself such that f"*(z) -+ z in D
for some nk such that nk -» oo, or (ii) the whole sequence (/") converges in D to a
constant limit which belongs to D. In particular every limit function is finite except
in the case when f(z) —* oo in D. Further, if f is transcendental then D is
simply - connected.

Both cases (i) and (ii) can occur: (i) occurs precisely when the domain D
contains a centrum, that is a fixed point a,f(a) = a, such that | / ' («) | = 1- Since
(/") is a normal family near a it turns out that / ' (« ) = exp(/w#), where 9 is real
and irrational, and indeed there are further restrictions on 6. See for example [8]
and [15].

Theorems 4 and 5 are analogous to results of Wolff [17] and Denjoy [9], who
derive similar consequences for general analytic maps of the open unit disc into
itself. The results do not carry over directly to our case by conformal mapping
even for simply connected D, because the boundary may be extremely wild.

A further auxiliary result seems to be of some independent interest:

THEOREM 6. Let f be entire and let D be an unbounded invariant component of
S( / ) in which f(z) —> oo. Then there exists a path approaching oo in D on which
\f(z)\ = O(\z\k) for some constant k.

This gives an extension in some respects of results of Bhattacharyya [6], [7],
who obtained the same conclusion without the hypothesis that f"(z) —* oo but
assuming that D contains an angle. Bhattacharyya also has some special cases,
now contained in Theorem 1, about the existence of unbounded invariant
domains of particular types.
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2. Proof of Theorems 4 and 5

LEMMA 1. Let D be a domain with at least three boundary points and let f be an
analytic function such that f(D) c D. If some subsequence of (/") has a non-con-
stant limit function in D, then there is a subsequence of (/") which converges to z
in D.

PROOF. (/") is normal in D. Suppose that f1 has non-constant limit g in D.
The values of g(z) are in D and indeed, by Hurwitz' Theorem, in D.

Put pf = /"•, <7, = f"1'"1-', where we may assume that «, — ni_l -» oo. Then
1i(Pi- I) = Pi- There is a subsequence of qt which converges in D to a limit h and
we have h(g) = g in D, which implies h(z) = z.

We remark further that in the circumstances of Lemma 1,/is a homeomor-
phism of D onto D. For if P""-^) -H> z then/must be univalent in D. Also if/
omits a value z0 of D then so do all/" and thus h = \imfn<~n'-1 either omits z0 or
is identically the constant z0, neither of which is admissible. Hence we have

LEMMA 2. Let D be as in Lemma 1. / / / is an analytic map of D into itself but is
not a univalent map of D onto D, then every convergent subsequence of (/") has a
constant limit.

If ZQ = \imf\z) in D and if f is continuous at z0 then /(z0) = z0.

To prove the last part observe that
/(z0) =/{lim/^(z)} = l im/{r (z )} = lim/^{/(z)} = z0.

PROOF OF THEOREM 4. The assumptions assure that only constant limit
functions occur by Lemma 1. Take any z0 G D and let Do be a relatively
compact subdomain of D which contains both z0 and f(z0). Define Dn = f"(D^;
then Dn_ x meets Dn for each n and so An = \J "_n Dk is connected for each n.

Note that lim sup^4n = {x; each neighbourhood of x meets infinitely many
An) = {x; each neighbourhood of x meets infinitely many £>„} is identical with
the set of the (constant) limit functions of subsequences of (/") in Do (and hence
in D). Further since An is a monotone decreasing family of sets, L = lim sup An

is identical with lim inf An = {x; each neighbourhood of x meets all but finitely
many An). Thus on the compact space S = C u {oo} the connected sets An have
a non-empty lim inf An and (see for example [16, p. 14]) L is connected. L is also
closed and thus a continuum or point in S.

If L contains more than one point it is uncountable. By Lemma 2 each point
z0 of L (except perhaps z0 = oo) satisfies/(z0) = z0. Since/ is analytic in D and
L <z D the uncountability of L would imply that /(z) = z, and so /"(z) -» z,
against the assumptions. Hence L consists of a single point and the result
follows.
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LEMMA 3 ([11]). Iff is non-linear and entire, f$ €E 3( / ) , U is a neighbourhood of
/? and K is an arbitrary compact plane set which omits the Picard exceptional value
off, if such exists then there exists a positive integer n0 such that for all n > nowe
have

This implies

LEMMA 4. If in any component D of ©(/) there is a sequence /*(z) which tends to
a finite limit function, then D is simply-connected.

PROOF OF THEOREM 5. If / is non-linear and entire any component D of
must have at least three boundary points. Since/(£>) c D for an invariant D,
the assumptions of Theorem 4 apply and we must have one of the alternatives (i)
or. (ii).

If there is at least one finite limit function, Lemma 4 shows that D is
simply-connected. If not the whole sequence /" must converge to oo in D so that
D is unbounded. But Theorem 1 of [4] states that any unbounded component of
©(/) is simply-connected, provided that/is transcendental.

It remains only to show that in case (i) every limit function is finite. Map D,
which is certainly simply-connected, to K = {|w| < 1} by >f = \p(z). Then
g — $ ° f ° $~X maps K univalently onto K and so is a Moebius transformation.
From f\z) —» z it follows that g^(w) —»• w. Examination of those Moebius
transformations which map K onto K shows that this can happen only when g is
a non-euclidean rotation about a fixed point, which we can without loss of
generality take to be at w = 0. Thus g(w) = e'yw, where y is real, and / =
Tp~\e'y\l/). Then for any z in D we have \f/(z) in K so |«KZ)I = P < 1> and
f(z) = yp~l(e'nyxl/(z)) shows that the values/"(z) all lie on the compact subset
yp'1 {w;\w\ = p} of D. Every limit function of/" must then be finite.

REMARK. If a = \p ~ '(0) then a is the unique solution of /(z) = z in D and
/'(a) = e'y. Obviously a e D c ©(/)• Direct computations (see for example
[11]) show that if y is rational we cannot have a G <£(/). Riissmann [15] has
shown that for almost all irrational y a fixed point with/'(a) = eiyn does belong
to ©(/), while Cremer [8] shows that for certain Liouville numbers this may not
be the case. Thus we can ensure case (i) of Theorem 5 by making / have a fixed
point a with a suitably chosen/'(a) = eirn, and D will be the component of ©(/)
to which a belongs. Case (ii) may be realised similarly by making / have an
attrative fixed point a such that/(a) = a, |/'(«)| < 1-
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3. Proof of Theorem 6

LEMMA 5. In a domain D the analytic functions g of the family G omit the values
0, 1. K is a compact connected subset of D on which the functions all satisfy
| g(z)| > 1. Then there exist constants B, C dependent only on K and D and such
that for any z, z' in K and any g in G we have

\g(z')\<B\g(z)\c.

PROOF. Denote by 45 the distance of K from the boundary of D. There is a
finite collection F oi N discs of radius 8 whose centres lie on K and whose union
covers K. Since K is connected there is for any pair z, z' in K a chain of p < N
points z = wx, H>2, . . . , wp = z' in K such that wt, wj+i lie in a common disc of
F. Thus |w, + 1 - w,.| < 28.

In the unit disc g(w, + 3Sz) is analytic and omits the values 0, 1. Now
Schottky's theorem (see for example [13]) states that there is an absolute
constant C such that for every function / which is analytic and unequal to 0, 1
in the unit disc we have for 0 < r < 1

max |/(z)| < expf —^— ((1 + r)log max(l,S 1/(0)1) + 2C'r)l.
\z\<r [ 1 — T J

Applying this to g(wt + 3Sz) and noting | g(*v,-)| > 1 we have

for some absolute constant A. Hence

\g(z')\<B\g(z)\c,

where C = 5N, B = Al+5+ + 5 are constants independent of the choice of g
or of z, z' in K.

PROOF OF THEOREM 6. We may assume that/is transcendental. Replacing/(z)
by (/(a + bz) - a)/b, a, b constant, subjects g(/), 6(/) to a linear transforma-
tion. Since g is unbounded we may without loss of generality assume that 0 and
1 belong to 3.

Take z, in the unbounded invariant component D of the hypothesis. Then
z2 = /(z,) ^ Z[ since/"(z) —> oo in D. Join z, and z2 by a path y, in D and define
zn+i = Azn)> Yn + i = /(Yn) for n = 1, 2, . . . , so that yn is a path which joins zn

to zn+1 in D and, moreover, yn —> oo. Thus F = U Yn is a path which goes to oo
inZ).

Since/" -» oo on y,, we have |/"(z)| > 1 on y, for n > n0 and/" ^ 0, 1 in Z).
Thus by Lemma 5 there are constants B and C such that

\f(t')\<B\f(t)\c, t,t'(Eyi,n>n0.
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In particular t' = z2, t — zx leads to |zn + 2 | < •6|z
M +i |C- For any point z suffi-

ciently far out on T we have 2 S yn for some n > n0 + 1 and so z = / n ~ ' ( 0 f ° r

some f e Yi- Then

and also |zn+1| = \fn~\z2)\ < B\z\c. Hence/(z) G YB+1 satisfies

\f(z)\<B\zn+i\
c
 <B(B\Z\C)C = B>+C\Z\C\

COROLLARY. The situation of Theorem 6 can occur only if f has growth of at
least order \, mean type.

An example which shows the sharpness of the order of growth in the corollary
is/(z) = sinVz /Vz + z + a for sufficiently large positive a.

For the domain D: x > a2,y2 < 4{x + 1) where z = x + iy, is mapped by
the principal branch of w = u + iv = z1/2 into a subset of |u| < 1, u > a. Thus

inVzsin 1-1/2<e\z\~l/\ z(ED,
VI

and so
\f(z)-(z + a)\<e\z\~1/2, zGD.

If z e D let z0 = x0 + iy0 be on the boundary of D. Either x0 < x + \a, in
which case |z + a — zo| > | a , or x0 > x + ~ a, in which case

so that

|z + a - zo\>\yo\-\y\

> 2{x + 1 + \a)i/2 - 2{x + 1)1/2

>if l(x + l +\a)~l/2.

Thus in all cases the inequality

\z + a - zo\ > \a(x + 1 + ~a)'l/2

holds and the distance of z + a from the boundary of D is at least

for all z £ Z) if a is sufficiently large. For such a choice of a,f(D) c I>. Thus/"
is normal in D and £> forms part of a component D, of ©(/), which satisfies
/(^i) C £>,. If x0 is sufficiently large the segment / = [x0, 00) of the real axis
belongs to D and has the property that f(x) > x on /, so that f(x) -» 00 on /,
from which it follows that/"(z) —» 00 in the whole of Z), by Theorem 5.
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For any positive X the function g(z) = X~'/(Xz) satisfies g"(z) = X~"f(Xz).
Thus @(g) has the unbounded invariant component X~iD1 in which g" —*<x>.
Further, g has order \ and type X.

4. Proof of Theorem 1

We quote a result closely related to the ideas of Lemma 1 and 2. It was first
proved in this form by H. Cremer [8].

LEMMA 6. Iff is a non-linear entire function and in a component D of S ( / ) some
subsequence <?/(/") has a non-constant limit function, then there is a component Dx

of ©(/) and a positive integer p such that f maps Dx univalently on Dx and for
some nk —» oo we have f^z) —> z in Dx. Moreover fN(D) c Dt for some N.

LEMMA 7. If f is a non-linear entire function and <£(/) has an unbounded
component D in which every limit function of a subsequence of (/") is finite, then
the growth off is at least of order j , mean type.

PROOF. The hypotheses ensure that/is transcendental in view of HI of Section
1. We suppose that the growth of/is at most of order 5, zero type.

Take a fixed point a in D. Then (/"(a)) is bounded, for otherwise there is a
sequence nk of integers which tends to 00 and is such that /^(a) -» 00. By
replacing nk by one of its subsequences we can assume that f"* is locally
uniformly convergent in D to a limit which can only be the infinite constant.

let A be a constant such that A > 1 and |/"(a)| < A for all n. Let y be a path
in D which joins a to a point ft of D, such that the minimum modulus function

m(f r) = min \f{z)\

satisfies m(f, |/?|) > |/J|2, and also |/?| > 2A. This is impossible (see for exam-
ple [14]) since (/(z) — a0 — axz)/z1 is at most of order \, zero type and so has
unbounded minimum modulus function.

Now/(y) joins/(a) to some point at least beyond \z\ = |/?| and by induction
we see that/"(y) contains/"(a) inside \z\ < A and some other point z, such that
|z,| = I/?I > 2A. Then f^ cannot have a constant limit on y for any subse-
quence r,k and the only possible limits in D are non-constant.

By Lemma 6 there is a component of ©(/) which is mapped univalently onto
itself by some f and the identity function z is a limit of some sequence of
iterates fpn* in Dv Since fN(D) c Dx for some integer N it follows from the
unbounded minimum modulus of / that fN(D) and hence also £>, are un-
bounded.
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Now fN(y) contains a' = fN(a), with |«'| < A, and a point z' such that
\z'\ = \P\>2A and fN{y) c />,. Let T be the part of fN(y) from a' to the
first intersection with \z\ = | /8|. Then/^F) always contains points of modulus at
least |/?|2 > 2\(3\, provided j > 1, and this is true in particular for j = pm,
m = 1, 2, . . . . Thus it is impossible that fk{z)-»zonr. This contradicts the
result derived in the preceding paragraph, and so the growth of / must exceed
order \, zero type. Bhattacharyya [7] showed that the function F(z) =
cos{(e2z + f ir2y/2}, 0 < e < (3w)1/2, which has order | , type e has an attractive
fixed point at 0: F(0) = 0, F'(0) = e2/(3w). Thus 0 belongs to a component D of
<£(F) in which F"(z) -»0. He showed further that D contains the interval
[-1, oo) of the real axis and is therefore unbounded and invariant. Since all
singularities of F~l lie over ± 1 which are in D, we can continue the branch of
g = F~l which satisfies g(0) = 0 into any branch of F~1(z), z e D, along a
path y which joins 0 to z in D. By the complete invariance of ©, the values
F~\y) lie in (5, g(0) G D so all values F~\z) G D, which is thus completely
invariant.

PROOF OF THEOREM 1. Suppose that / is transcendental entire with an
unbounded invariant domain D. Then Theorem 5 shows that either every limit
function is finite or else f(z) —» oo in D. In the first case the result follows from
Lemma 7. In the second Theorem 6 shows that there is a path approaching oo
on which |/(z)| = <?(|z|*) for some k and the result follows by the minimum
modulus properties of functions of growth at most order | , zero type. The
sharpness of the rate of growth in Theorem 1 is shown both by Bhattacharyya's
function F quoted above, and by the function g(z) described in discussing the
corollary to Theorem 6. F(z) also shows the sharpness of Theorem 3 of the
introduction.

5. Proof of Theorem 2

LEMMA 8 (Barry [5, p. 473, Theorem 5]). Let /(z) be a non-constant entire
function which, forp > I, satisfies

log M(r, f) = O(log rf (r -* oo).

If e, 7} and C are constants such that r\ > e > 0 and C > 0 and

E = E{r; \ogm{r,f) < log M(r,f) - C(log rY'1^},
then

f d(\ogr)v~e < oo.
JE

Here m(r,f) = min|z|_r|/(z)|.
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LEMMA 9. If the transcendental entire function f satisfies

(1) log M(r, f) = O(log rf (r -> oo)

where 1 <p < 3, then there exists a sequence /?„ —» oo, such that

(i)M(Rn,f)= Rn+l,n = 1 , 2 , . . . ,

(ii)jB =logRn > 16" log 16,
(iii) there exists pn which satisfies both

and

for all sufficiently large n.

PROOF. Since/is transcendental there exists r0 such that

M(r)= M(r,f)>r16, r > r0.

Take Rt > Max(1616, r0). Then defining Rn by (i) we have

whence (ii) follows by induction.
Since p < 3 we may choose TJ > 0 such that p + i) < 3 and e so that e > 0

and X — 17 — e > 0. Choose C = 1. In Lemma 8 the measure condition on E
shows that for sufficiently large r the interval (rx, r) must contain a point in the
complement of E, provided that r, is defined by

Then

log /-, = log r — A~'(log r)1~x + 0(log r)l~7X as /•-• oo,

so

(2) log /-, > log r - IX ~ •(log r)1 "A > ^ log r, r > r2.

By Lemma 8 there is p = p(r) in (/•„ /•) such that m(p) = m(p,f) satisfies

(3) log m(p) > log Af (p) - (log p)",

where p = p — 2 + ij < 1. For r = Rf+n~\ n sufficiently large, we can find
such a p(/-) and we call this pn. By (2) we have

which is the first part of (iii).
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Also by (3)

(4) log m(Pn) > logMir^R^"")} - [(2 + ±

Putting V(s) = log M(es), sn = log R^ we have by (2)

for large n by (ii). Since F is an increasing function (4) yields

(5) l o g M ( p J >

Since V is a convex function of s we have

(2 + d r r

for large n, since K(J) > 16.s > s for j > log r0. By combining the
above inequality with (ii), we see that the right hand side of (5) is at least
(2 + (n + 1)"') V(sn) for large n. But this is equivalent to

m(pH,f)
PROOF OF THE THEOREM. Suppose that / satisfies the hypotheses of the

theorem and also that ©(/) has an unbounded component D. We may assume
without loss of generality that 0, 1 belong to §(/)• Construct sequences R^ and
pn as in Lemma 9 and let «, be such that conditions (i), (ii), (iii) hold for n > nv

Take a fixed n > «,. Then D meets the circles y: \z\ = R^ and y': \z\ =
/?i+V"+l) ' s o there is a path C in D which joins a point of y to a point of y'
and contains a point pn+ie1<p"+l.

Now f(D) is an unbounded component of E(/) and contains the path /(C)
which joins a point vvn =/(/?ne'*"), say, in \wn\ < Rn+l to a point w'n =
/(ft,+,**••') with

Hence/(C) contains an arc which joins \z\ = /?n + 1 to |z| = •Rn
2+2

("+2)

Continuing by induction we see that/*(£)) is an unbounded component of ©(/)
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containing an arc of /*(C) which joins \z\ — Rn+k to

\z\ = RnXk+i +

Thus on C the function/* takes a value of modulus at least Rn+k. Since Rn -» oo
as n -» oo we see that the only possible limit function of (/*) is oo and so
fk(z) —> oo locally uniformly in D as k —» oo.

Since all/* omit 0, 1 in D and since |/*| > 1 on C for, say, k > /c0, Lemma 5
shows that there are constants A, B such that

\fk(z')\<A\fk(z)\B, z,z'GC,k>k0.

In particular

<ARn
B

+k, k>k0,

i.e.

M{Rj)<ARf, j>n + k0.

Since Rj —» oo this contradicts the assumption that / is transcendental and the
theorem is proved.
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