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PROJECTIVE AND INJECTIVE HOPF ALGEBRAS 
OVER THE DYER-LASHOF ALGEBRA 

PAUL G. GOERSS 

ABSTRACT. The purpose of this paper is to discuss the existence, structure, and 
properties of certain projective and injective Hopf algebras in the category of Hopf 
algebras that support the structure one expects on the homology of an infinite loop 
space. As an auxiliary project, we show that these projective and injective Hopf algebras 
can be realized as the homology of infinite loop spaces associated to spectra obtained 
from Brown-Gitler spectra by Spanier-Whitehead duality and Brown-Comenetz duality, 
respectively. We concentrate mainly on indecomposable projectives and injectives, and 
we work only at the prime 2. 

The mod 2 homology H*X — H*(X, ¥2) of an infinite loop space X is a commutative, 
cocommutative Hopf algebra with an action by Dyer-Lashof operations Q\ which in
crease degree, and Steenrod operations Sq7, which lower degree. These ingredients of 
structures are not independent, but related by Cartan formulas, instability requirements, 
and Adem and Nishida relations. We give the explicit formulas in Section 1 ; the reference 
is Chapter 1 of [3]. Let J3L^ be the category of such Hopf algebras. 

Then J3L^ is an abelian category and we say H G J3Lî̂  is projective if whenever 
Hi —> H\ is a surjection in J3L ,̂ and H —> H\ is any map in J3L ,̂ there is a factoring 

H > H2 

1= i 
H > Hx. 

For example, H^Q,00l,00Sn is not projective (if n > 2) because the action by the Steenrod 
operations in / / ^ ^ E 0 0 ^ " is trivial. However, H+Q^H^S" does have a projective cover. 

THEOREM 1. (1) There exists a projective object T{n) G J 3 ^ and a surjection 
g: T(n) —• HM00^00Sn in %%, so that if H —• H^Çi00lt

00Sn is any surjection in J ^ 
with H projective, then there is a factoring 

H - ^ T(n) 

1 l « 
H —> H^Q^Z^S" 
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HOPF ALGEBRAS 945 

withf split surjective. 
(2) There is a spectrum T(n) so that H*Çl°°T(n) = F(n) and ifX is any spectrum, the 

map 
[T(n),X] -> Hom^(r(rc),//*ft°°X) 

given by f \—> Q,°°f* is onto for all n and an isomorphism ifn is even. 

This theorem is not new, although this formulation might be different: these results 
are implicit in [5]; furthermore, T(n) is Spanier-Whitehead dual to a Brown-Gitler spec
trum [2] and, thus, has been heavily studied. 

T(n) is simply described, at least as an algebra. First 

H*n°°I?°Sn ^ F2[Q /(0] 

where in G HnQ
00IP0Sn is the non-zero class, Q\in) = Qix • • -Qs(in) is an iterated 

Dyer-Lashof operation with it < 2it+\ and i\ — /2 — • • • — is < n, and F2H denotes the 
polynomial algebra. Since what prevents H^Qt

00I^00Sn from being projective is the lack 
of Steenrod operations, it is not surprising that 

r(n)*F2[&(LnSqJ)]. 

where tn G T(n)n, Sqy = Sq7'1 • • • Sq7'* is an iterated admissible Steenrod operation with 
2/1 < n, and Q1 = Qx • • • Qh is an iterated Dyer-Lashof operation with it < 2it+\ and 
i\—i2 is >n—j\ j k . The action of the Dyer-Lashof and Steenrod operations 
on T(n) is determined by the axioms for infinite loop spaces; the coalgebra structure, 
however, is complicated and could be called a "Witt vector diagonal" as suggested by 
Segal (see [13]). 

An object H G fl$^ is injective if, whenever H\ —» Hi is an injection in J?^ , and 
H\ —>His any map, then there is a factoring 

H\ — • H2 

I I 
H — > H 

For example, H*K(Z/(2), n) is not injective because the action by the Dyer-Lashof op

erations is trivial. However, H*K(Z/(2\n) has an injective hull. 

THEOREM 2. (1) There exists an injective object H{n) G !A!R^ and an injection 
g:H*K(l/(2),n) —> H(ri) in J^ so that ifH*K(Z/(2\n) —> H is an injection with 
H injective in 5MB^ then there is an factoring 

H*K(Z/(2),n) - ^ H(n) 

I 1/ 
H y H 

withf split injective. 
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946 PAUL G. GOERSS 

(2) There is a spectrum D{n) so that H*Çf°D{n) = H{n) and, for any spectrum X, the 
map 

[X,D{n)] - • Homj^(//*Q0°X,H(nj) 

is an isomorphism ifn is even. 

The existence of H(n) is nearly formal, using the special adjoint functor theorem, as 
put forth in [8]. For any abelian group, G, let GQ/Z = Hom(G, Q/Z). Since Q/Z is an 
injective abelian group, the functor (-)Q/Z is exact. We will show that the functor on 5¥R^ 

/ / ^ H o m ^ ( r ( r c ) , / / ) Q / Z 

is representable; that is, there exists H(n) G J 3 ^ and a natural isomorphism 

Hom^( / / , / / (n) ) ^ Hom^(r(rc) , / / )Q / Z . 

Then H(n) is automatically injective. 
Given this description it should not be surprising that D(n) is Brown-Comenetz dual 

to a Brown-Gitler spectrum. Indeed, if E is a spectrum with associated homology theory 
£*(—), and if En = EnS° is a finite group for each n, then the functor 

X .—> (E,X)Q'Z 

defines a cohomology theory, and the representing spectrum is the Brown-Comenetz dual 
ofE. See [I]. 

What is not formal is finding a description of H(n). The difficulty lies in the fact that 
H(n)o ̂  F2, so that all the conveniences of connected Hopf algebras are not available to 
us. 

The idea is simple—one has to add enough Dyer-Lashof operations to H*K(Z/(2), n) 
to make this Hopf algebra "divisible" by Dyer-Lashof operations. The method is this: we 
first consider the category U%^ of modules that are at once modules over the Dyer-Lashof 
operations and the Steenrod operations, subject to the Nishida relations and instability 
criteria. Being a category of modules, Zl^ has a set of describable injectives G(n), n > 0. 
Then we consider a category $\%C of coalgebras over the Dyer-Lashof and Steenrod 
operations. There will be a functor V: WR^ —* J&RC right adjoint to the forgetful functor, 
and we will have an isomorphism of coalgebras in J%RÇ-

(3) H(n)^V(G(n)). 

But even the existence of V poses a problem; again we use the special adjoint functor 
theorem. 

In Section 1 we recall the work of May and others on the structure of the homology of 
infinite loop spaces. Sections 2 and 3 are devoted to constructing and studying projectives 
and injectives in various relevant abelian categories. Section 4 is devoted to Theorem 1.1 
and its ramifications. Section 5 is devoted to Theorem 2.1 and the isomorphism 3. Sec
tion 6 is spent on the homotopy theory of Theorems 1 and 2. We close Section 6 with 
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a few paragraphs on the relationship between this work and past work. Finally, there 
is an appendix on the special adjoint functor theorem—an extremely useful result for 
producing adjoints and showing functors are representable. 

And I should make a remark on what is not proved here. Various families of projec-
tives and injectives are given in the category !A$^ of Hopf algebras over the Dyer-Lashof 
operations. It would be nice to have a list of all such; in particular, it would be nice to 
know where the families here fit into some overall scheme. I know of no way of address
ing this problem. Specifically, I know of no way of reducing these questions to similar 
ones answered by Jean Lannes and Lionel Schwartz (see Topology 28, pp. 153-169) for 
the category of unstable cohomology modules over the Steenrod algebra. 

1. Recollections on the homology of infinite loop spaces. The homology of in
finite loop spaces supports a great deal of structure; in this section we recapitulate that 
structure. The standard reference is the first chapter of [3]. In the process we define our 
notation. 

If X is a space, then H*X = H*(X, ¥2) is an object in the category of unstable coalge-
bras over A. Call the category of such 03L Thus C E C^L is a graded F2 vector space 
equipped with a coassociative, cocommutative comultiplication 

x/j:C—>C®C 

and equipped with a right action of the Steenrod algebra 

O S q ' ' : ^ — * C n - i 

that is unstable in the sense that for all x G Cn 

0 if2i>n 
(1.1) * S q ' = l t . _ . 

^ ( & if 2i — n. 
Here £: C2/ —> C, is the shift map defined by 

where if; is the comultiplication, and p(x 0 x) — x, p(x ® y + y ® x) — 0. Note that (1.1) 
and the fact that x Sq° = x has strong implications for the structure of Co- In fact, define 

^0 Q Co 

to be the set of set-like elements; that is x G X0 if and only if x ^ 0 and 

ij)(x) = x 0 x. 

The requirement that xSq° = x implies that F2CX0) = Co, where F2(Xo) is the vector 
space with basis Xo. The proof of this statement requires some fairly deep facts about the 
structure of coalgebras; these facts are available, for example, in [14]. 

There is an abelian category associated to C#. Let 11 be the category of unstable 
modules over the Steenrod algebra. Thus U is the full-subcategory of the category of 
right modules over !A given by the condition that for all x G Mm, 

(1.2) j t S q ' ^ 0 i f2 />m. 

Then there is forgetful functor C# —» U. Here and hereafter we adopt the convention of 
leaving forgetful functors unlabeled. 
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948 PAUL G. GOERSS 

PROPOSITION 1.3. The forgetful functor C^l —> 11 has a right adjoint 

V.Zl > CA. 

Since this is not obvious, nor in the literature, we provide a proof in the appendix. 

If X is an infinité loop space H*X is a commutative Hopf algebra with conjugation— 

an abelian group object in G3L But H*X supports more structure than that. We define a 

category of Hopf algebras %H^ Ç C # by saying H G C # is in J ^ if 

(1.4.1) H is an abelian group object in C # ; 

(1.4.2) there are Dyer-Lashof operations 

&:Hn—>Hn+i, / > 0 , 

so that 
(i) Q(x) = 0 if i < n and Qn(x) = x2, Q{\) = 0 for all i ^ 0; 

(ii) ff(xy) = Za+t=iQl(x)Qff(y) 

(iii) ijQ\x) = Za+b=i QfOcj) <g> Qb(yj) where ^(x) = E*j ; <g> v7 

(iv) if / > 2/, 

00 = z[t2t
i-i

l)&+i~t& 

(v) g'WSq'' = E, (jIJ
2t) G'W+'(*Sq'). 

It is a consequence of (i) and (iv) that for every x G Hn any composition of Dyer-

Lashof operations applied to x can be written as a sum of elements of the form 

G/to = G/'--•#'(*) 

with 4 < 2ik+1 for all & and e(7) = ^ — /2 — • • • — i5 > w = deg(x). Q7 satisfying these 

requirements will be called an allowable monomial of excess greater than or equal to n. 

Morphisms in J ^ commute with the Ql. 

PROPOSITION 1.5 ([3]). IfX is an infinite loop space, then H*X G J ^ 

There are various abelian categories associated to !A%^. To define them we first make 
an algebra out of the Dyer-Lashof operations. Let R(—oo) be the free non-commutative 
graded F2 algebra an symbols Q divided by the ideal of relations given in (1.4.2)(iv). 
Note that since these relations are homogeneous, we could bigrade R(~oo) if we wished. 

The subspace spanned by {g7 : e(I) < n} is an ideal B(n) Ç R(—00). Let R(n) = 
R(-oo)/B(n) and set R(0) = R to be the Dyer-Lashof algebra. 

An R(—oo) module M is n-allowahle if and only if Qx — 0 for all x G M when 
/ < |;c| +n. Thus for a non-negatively graded rc-allowable R(~oo) module M, the R(—oo)-
action factors through an R(n) action. Write % for the abelian category of ^-allowable 
R(—00) modules. 
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We are particularly interested in the cases n = 0 and n — 1. The primitive element 
functor defines a functor P: 5¥R^ —> %; the indécomposables functor defines a functor 

7? = i?(0) admits a Hopf algebra structure with cocommutative diagonal given by the 
requirement that 

Ac' = E e a ® Qb. 

There is more structure than this, however. We form the semi-tensor product of R 
and the Steenrod algebra A. As a vector space this is R 0 A, and the multiplication is 
determined by the multiplications in R and !A and the formula 

(i 0 sqiw <g> i ) = £ ( y r ^ ) e'~7+r ®s^-

See (1.4.2). Denote this algebra by R 0 A. 

Let 11$^ be the category of R 0 J3 modules determined by the requirement that there 
be forgetful functors 

and 

vat—>u. 

Thus M G IM^ is a left O-allowable R(—oo) module, a right unstable J3 module and the 
Nishida relations (1.4.2)(v) hold. The co-augmentation defines a functor 

J: WJl —> <£W(, 

Finally, the diagonal formula (1.4.2)(iii) defines a category of coalgebras over the Dyer-
Lashof algebra. In fact, we define a category 5VRÇ Ç £ # by the requirements that 
C G J ^ C if and only if C satisfies (1.4.2)(i), (iii), (iv), and (v). Morphisms in ft%£ 
must commute with the Dyer-Lashof operations. An analog to Proposition 1.3 is given 
by: 

PROPOSITION 1.6. The forgetful functor %!%C —• 11% has a right adjoint V: 11% —» 
J%%C; in fact, V covers the functor of Proposition 1.3 in the sense that there is a diagram 

11% -^ mc 

I I 
u -^ en. 

This is also proved in the appendix. 
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950 PAUL G. GOERSS 

2. Projective and injective objects. The purpose of this section is to show that the 
various abelian categories of the previous section have interesting projective and injec
tive objects. Our primary goal is to understand such objects in Zi%^—unstable modules 
over the semi-tensor product of the Dyer-Lashof and Steenrod algebras. 

To begin, we consider the Steenrod algebra. The forgetful functor from Zl to the cate
gory of all modules over the Steenrod algebra has a right adj oint Q°° given by the formul a 

(2.1) (£l°°M)n = {x G Mn : xSq' = 0 if 2/ > n}. 

This defines a class of injective objects in Zl and proves that the forgetful functor Zl —-> 
n¥2 (= graded vector spaces) has a right adjoint K. In particular, if ZnF2 is the vector 
space of dimension one concentrated in degree n, let K(n) = AT(SnF2). Then 

(2.2) Hom^(M, K(n)) ^ (Mn)* 

where (•)* denote the dual and 

K(ri)*QH*K(Z/(2\n). 

These are the indécomposables in the homology of the indicated Eilenberg-MacLane 
space. 

The forgetful functor Zl —» n¥2 has a left adjoint also. Indeed, if V G n¥2 and M G 11, 
the functor 

M—>Hom„F2(V,M) 

is exact and preserves sums. Since Zl is an abelian category with enough injectives, this 
functor is representable: there exists a J(V) G Z1 so that 

Homw(/(V),Af) ^ HomnF2(V,M). 

The assignment V —-> J(V) is natural, so J becomes the adjoint. In particular, if J(n) = 
7(InF2), then 

(2.3) Hom^(/(n),M) ^ Mn. 

J(n) is the "dual Brown-Gitler module". See [11]. J(V) is, of course, projective. 
We next turn to %-the category of 0-allowable modules over the Dyer-Lashof algebra, 

the forgetful functor 
%) > R(—oo) — modules 

has a left adjoint as given by 

(2.4) a0M = M/{Qlx : i < \x\,x G M}. 

See [10]. This defines a projective class in %> and shows that the forgetful functor %) —-* 
n¥2 has a left adjoint P. If P(n) = PÇLn¥2) then 

(2.5) P(h) ^ P / / * ^ 0 0 ! 0 0 ^ if n > 1. 
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and 

P(0) Ç H^00!00^ 

is defined by 

P(0) = Span{G / ' - - -GHl] :^>0} . 

where 

[1] G HoQ00!,00^ 9* F2[Z] 

is the element corresponding to 1 G Z. 
P can be used to define a functor 

P': U —> WK. 

also left adjoint to the forgetful functor. P' covers P or, more concretely, 

(2.6) Pf(M) ^ P(M) 

as O-allowable modules over the Dyer-Lashof operations, and the j^-module structure 
on P'(M) is determined by the Jl-module structure on M and the Nishida relations. This 
functor is called £>(•) in [3]. 

The composite functor F — P' o J: rcF2 —> WR^ is left adjoint to the forgetful functor 
and defines a projective class in WR^. Most striking perhaps is F(n) = F(Ln¥2) which 
has the property that 

(2.7) Hom^(F(/ i) ,M)^Afn . 

A basis for F(n) is given by monomials of the form 

G^nSq7) 

where tn G F(n)n corresponds to the identity, / = (i\,..., is), s > 0, is allowable in the 
sense that it < 2it+\ for all t, J = (j\,... j * ) , & > 0 is admissible in the usual sense, 
2/1 < n, and 

e(/) + i(J) > n. 

Here £(7) —j\ + • • • +7^ is the dimension of Sqy and e(T) is the usual excess. 
Note that F(0) = P(0), F(l) = P(l), but F(2) = P(2) 0 P(l) in % 
We next construct injectives in WR^ and %, using the method that was used to produce 

projectives in 11. We proceed more slowly, as this is the point of this section. The idea 
is this: let y G n¥2> Then the functor an WR^ given by 

M^Homn F 2(M,V) 

is exact and sends sums to products. Therefore the following lemma applies. 
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LEMMA 2.8. Let E: WR^ —> ï^-vector spaces be a contravariant functor that sends 

sums to products and surjections to injections (left exact). Then E is rep re sent able: there 

exists ME G lll^ and a natural isomorphism 

H o m < ^ ( M , M E ) ~ -̂> E(M). 

PROOE This is the same argument as in [ 11 ] or [7]. Define a graded vector space ME 

by 

(ME)n = E(F(n)). 

Then the operations Q and So/ define maps respectively 

F(n + i) —> F(n) 

F(n-j)—+F(n) 

by Ln+i i—> Ql(in) and in--} i—> tn Sq7. These define operations 

&:(ME)n—>(ME)n+i 

Sq7: (ME)n — (ME)n-j 

and the naturality of the definitions implies ME G IIH^. By definition 

H o m ^ ( F ( n ) , A f £ ) 9É E(F(n)). 

Since E sends sums to products and is left exact, E sends colimits to limits and 

H o m ^ ( F ( V ) , M E ) ^ E(F(VJ) 

for all V G n¥2- The result then follows from left exactness by considering a projective 

resolution of an arbitrary M G 111^. This lemma is a variation on the special adjoint 

functor theorem. See the appendix. 

So saying, apply this lemma to, for V G n¥2 

£(M)^Hom„ F 2 (M,V) . 

Let ME — G(V). The assignment V —> G(V) is natural in V and the isomorphism of 

Lemma 2.9 

(2.9) H o m ^ ( M , G(V)) = HomnF2(M, V) 

demonstrates that G(-) is right adjoint to the forgetful functor. 

Therefore G defines a class of injectives in U%^. Of particular interest is G(n) = 

G(LnVi), which has the property that 

(2. 10) Horn w ( A f , G(nj) = Wnf 
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and, in particular, that 

(2.11) G(n)k * Hom^(F(*) , G(n)) * (F(k)n)* 

Since F(k)n ^ 0 for infinitely many k, G(n) is not finite. 
The associated category %) also has an interesting class of injectives. For %—the 

category of O-allowable modules over the Dyer-Lashof algebra—the appropriate analog 
of Lemma 2.8 goes through using P (see (2.5)) instead of F. So there is a right adjoint 
Go: nli —» %) to the forgetful functor. Note that 

G0(n)k * Hom% (/>(*), G0(n)) = (P(k)n)* = 0 

if k> n. Thus Gç>(n) is bounded above. We will discuss the structure of G(n) and Go(rc) 
more in the next section. 

3. The Structure of G(n) and Go(ri). We use a technique pioneered by Haynes 
Miller [11] to give a complete description of Go(n) and then G(n). The key point is that it 
is easier to understand all G(n) at once because together they form a ring. A key input to 
the calculation is Madsen's calculation of the dual of the Dyer-Lashof algebra. To begin 
with Go (ft), recall that 

Hom^(M,Go(ft)) = (M„)*. 

Hence 
G0(n)k 9É Hom^(P(*),Go(n)) ~ (P(k)n)* 

Since P(k)n = 0 for n < k and 
P(k)k * F2 

generated by the universal element 

G0(n)k = 0 for k>n 

and 
G0(n)n = F2 

generated by the dual of the universal element. Thus there is a unique non-zero class in 
(GO(«) 0 Go(ra)) and, hence, a unique map in %. 

\i\ G0(n) 0 G0(ra) • G0(n + ni). 

Or put another way, the map 

Pin + m) > P{n) 0 P(m) 

classifying tn^im yields, via the isomorphism above, the same product. Thus if we define 
a bigraded object GQ(-) with 

(3.1) Go(-)p,q = Go(p)q, 
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then Go(-) has a commutative, associative bigraded multiplication. (We discuss the exis
tence of a unit below.) Furthermore, the Dyer-Lashof operations 

Ql: G0(p)q -^ Go(p)q+i 

commute with this multiplication in the sense that 

But since 

n{&(x®y)) = J £ &lx®&y) 

we have, in Go(-), 
Ql(xy)= £ &x-&y. 

i\+i2=i 

This actually splits up a bit further. Since the relations among the Dyer-Lashof operations 
are homogeneous, we may write 

P ( n ) ^ 0 P ( n , * ) . 

where 
P(n,k) = S p a n ^ 1 • -ffk(in) G P(n)}. 

The diagonal map P(n + m) —> P(n) 0 P(m) respects this splitting, so we get maps 

P(n + m,k) > P(n, k) ® P(m, k). 

Thus, if we define, Go(-,k) by 

(3.2) Go(',k)P4=[P(q,k)p]* 

we have 

(3.3) G0(-) = n^o(sfc) 
k>0 

and the splitting respects the multiplication. Finally, since 

Ql:G0(p)q —>Go(p)q+i 

is defined by dualizing that map 

P(q + i)—*P(q) 

that classifies Ql(iq) and this map induces a map 

P(q + i,k) >P(q,k+ 1) 
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we see that 

&:G0(',k)—+ Go(- ,* - l ) 

and this commutes with the isomorphism above. 
We compute Go(-, k). For this recall the Dickson algebra Dn: If 

Pn=F2[xu...,xn]*ÉH*B(Z(2))n 

is the polynomial algebra on «-elements of degree one, then Gln(F2) acts on Pn and 

Dn is an algebra; in fact, there are elements 

Qnj eDn 0<i<n-l 

of degree 2n — 2l so that 

A.=F2[ôn,0, . . . ,ôn,i- l] . 

Now, consider Go(-, &)*,o Ç Go(-, fc). This is closed under the multiplication. 

LEMMA 3.4. 77iere is an isomorphism of algebras 

Go(',k)*t0 = Dk, 

where Q^j is dual to 

where 

lki = (21'-1 (2*-' — 1), 2''_2(2*-'' — 1) 2*-'' — 1,2*-'"_1,2*-'"_2 l) / > 0 

/ w = (2*-1 ,2*-2 , . . . , l) . 

The unit 1 G Go(-, &)o,o w dwa/ to QIkk(to) where 

/ u = (0,0,. . . ,0). 

PROOF. G0(-, £)*,O = P(0, &)*. But P(0) = /?0 and 

Ro = (BMk]. 
k>0 

Here P(0, it) ~ R0(k) and /?0M* is computed in [9] and [3]. 
Lemma 3.4 implies that Go(-, k) is an algebra over the Dickson algebra. 
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PROPOSITION 3.5. As algebras over Dk there is an isomorphism 

where t\k G Go(-,/c)2* j is the unique non-zero element; that is, t\k is dual to 

Q 2 ' " - - - ô ' ( M ) e P ( i ) 2 1 . 

Thus 

G 0 ( - , * ) ^ F 2 [ Q i k , o , . . . , G M - i ^ u ] . 

PROOF. Let I(k, q) be the set of all allowable sequences 

/ = ( / i , . . . , 4 ) 

with 

e(J) = ix-i2 ik > q. 

The function I(k, q) —> P(q, k) sending 

defines a bijection between I(k, q) and the allowable basis for P(q, k). Define 

f:I(q,k)^I(q-l,k) 

by 

/ ( / , , . . . , / * ) = (/, - 2 * " 1 , 1 2 - 2 * ~ 2 , . . . , i ^ - l ) . 

/ is a bijection, hence 

f:I(q,k)-^mk) 
is a bijection. The result now follows from the calculation that 

P(q,k) —+P(l,k)®P(q- \,k) 

sends 

where \XJ\ > 2k. 

We next describe the action of the Dyer-Lashof operations 

0:Go(',k)—+Go(.9k-\). 

PROPOSITION 3.6. The following formulas hold. 

(fQkj = Qk-u-i ^ V O 

Q°Qk,o = 0 

Q%,k = 0 

Q t\,k = t\,k-\ 

QXQu = fi,*-iô*-i,/ where <Q^u- i = 1 
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All others are zero on the generators; this action may be extended to all ofGo(-, k) by the 
Cartan formula. 

PROOF. QQk,i = 0 = Qt\^ f°r7 > 1 f° r dimensional reasons. To compute Q°Qkj 
we proceed as follows. Note that, by counting degrees 

Q°Qk,o = 0 

and 

where a = 0 or 1. To find a, we note that it's necessary to compute 

P(0,k- 1)—>P(0,k) 

where Q\L0) -> Q'ôVo). NOW G L U - I is dual to g ^ o ) where 

Jt = (2i~l(2k-i - 1), 2/"2(2/:-/ - 1) , . . . , 2(2*-*' - 1), 2k~\ 2 ^ / ~ 1 , . . . , 2). 

Hence we must compute ^/,'j2°(^o) — G^'(^o)-
But this follows by repeated application of the formula 

The other formulas are similar, and are left to the reader. 
In discussing Go(-) itself, we note that since Dk — 0 in degrees less than 2k~l and 

since t\^ E Go(-)(i,2*)> w e n a v e 

and, unless (/?, q) — (0,0), only finitely many of the product terms are non-zero. This is 
an isomorphism of algebras and modules over the Dyer-Lashof algebra. 

To extend these results for £Z^, we use the fact that 

G(k)n * Hom^(F(n),G(fc)) ~ F(n)*k 

and the evident universal maps 

F(n + m) —> F(n) <g> F(m) 

to give the bigraded object G(-) where 

G(-){p,q) = G(p)q 

a commutative associative multiplication. As before 

F(n)^®kF(n9k) 

where 
FintQ^Spmi&'-'&iLnSq1)} 
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and, since, the Nishida relations preserve length, this is a splitting of right J^-modules. 
Furthermore the diagonal F(n + m) —> F(n) (g) F(m) maps preserve this splitting and we 
obtain a splitting of algebras over A\ 

G{n)^\\G{n,k). 
k 

Note that the action of the Dyer-Lashof operations and the Steenrod squares both obey 
the Cartan formula. 

Now, recall F(n) = Pf(j(n)) where P'\ U —> Zl^ is left adjoint to the forgetful 
functor and Hom^(./(n), Af) = Mn. There is a unique non-zero map in U, J(n) —» XT2 

and this induces a map 
F[n) —> P;(XnF2). 

But since P' covers the adjoint P: nÏ2 —> %), we have an isomorphism of %) modules 
P'ÇïTïi) — P(n). Thus we get a morphism of %) modules F(n) —* P(n) and, hence, an 
algebra map 

Go(-) — G(-). 

By specializing, we get a map of algebras 

G 0 ( - ,*) -^G(. ,*) . 

Define elements £kj G G(-,&)2*2'' by letting £kj be dual to 

G2*" • • • e ' ( ^ S q 2 " ' • • Sq1) 6 F(2U)2», 7 > 0. 

Note that £*_,- is the unique non-zero element of G(n, k) in this bidegree and that £k>0 = ^ j . 

PROPOSITION 3.7. G(-,k) is the free bigraded commutative algebra over GQ(-, k) on 
the elements £*_,•, j > 1 ; or 

G(s*)~G0M)l&^>0]/(6k.o + '*.i) 

where 0 < i < k ~ 1 ant/7 > 0. 77ie action of the Steenrod algebra is determined by the 
Cartan formula and the equations 

CjfcjSq27 ' = ^ _ ! /or/ > 1. 

^ • S q 2 ' ' = 0 fori^j-lorj = 0. 

It is possible to prove this using Milnor's method for computing the structure of the 
dual Steenrod algebra but perhaps the following is more enlightening. Let 

K: n¥2 —> U 

be the right adjoint to the forgetful functor. 
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LEMMA 3.8. G(n) = #(Go(n)) in ZL. In particular 

G(n,k)^K(G0(n,k)). 

PROOF. We have that 

Hom^(M,G(n)) ^ Homugi(p\MXG(n)) 

^HomF 2 (P / (M)n,F 2 ) 

k 
nHom F jM, ,Hom F 2 (P ( / : ) n ,F 2 ) 
k v 

n H o m F 2 ( ^ , G 0 ( ^ ) 
k 

^ Homnf2(M,GQ(n)). 

These are natural isomorphisms, so the result follows. 

LEMMA 3.9. The multiplication G(-, k)®G(-, k) —-> G(-, &) /s adjoint to the composite 

G(-,k) 0 G(-,*) ^ *(G0(- ,*)) 0 ff(G0(-,*)) ^ > G0(-,*) 0 G0(-,*) —* G0(-,*). 

where e\K{—) —> (—) is the counit of the adjunction. 

PROOF. This follows from the definitions. 
Thus we are in a very general situation: if/? is any bigraded F2-algebra, we can define 

a new F2 algebra K(R) by 

K(R)St* = K(RSt*) 

with multiplication given by the adjoint to 

K(RSJ 0 *(/?,,*) ^ Rs,* 0 Rt,* —> Rs+t,* • 

LEMMA 3.10. (1) Let R = F2[JC^I] where the bidegree of xpA is (/?, 1). Then 

K(R)^R[^:i>0]/(io + xpA) 

where the bidegree of '£/ /s (/?, 2') #/?d 

e S q 2 " = 6 - i / o r i > l 

^ Sq2' = 0 forj ^ i - l o r i = 0. 

(2) Let Rx be a bigraded F2 algebra so that R\t — Ofor t > 0. Let R2 be a bigraded 

F2 algebra of finite type. Then 

Rl ®K(R2)^ K(Rl ®R2). 
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PROOF. For (1) notice that the unit r/: (—) —> K(-) of the adjunction gives K(R) the 
structure of an R algebra. Let K(q) ^ K(1W2) = QH*K(l/(2), q). Then 

Wsp,*) = K(s) 

and 
K(RSt*) = 0 ifs^Omod/?. 

Furthermore the multiplication in K(R) is given by the unique maps 

K(s) ® K(t) —> K(s + 0 

that are non-zero in degree s +1. The result now follows from the familiar calculation for 
Eilenberg-Maclane spaces. See [15]. 

For (2) one uses the fact that if V is a finite vector space in degree zero and W is a 
graded vector space of finite type, then the natural map V <g) K(W) —-> K(V (g) W) is an 
isomorphism. 

PROOF OF PROPOSITION 3.7. By the proceding lemmas, 

G( . ,* )^G 0 ( - ,* )K/ : i>0] / (^ ,+Co) . 

where the bidegree of £/is(2*, 2*). Since G(-,/c)(2*,2<) is of dimension one over F2, £/ = £*,; 
and the result follows, 

3.1 The action of the Dyer-Lashof algebra on G(-). The counit 

e: G(-) = tf(G0(-)) — G0(-) 

is an algebra map and commutes with the action of the Dyer-Lashof algebra. 
Thus, by 3.6, we have 

Q°Qk,o = 0 

Q\k = o 

Q *\,k = h,k-\ 

Q Qk,\ — fu-i£?*-u 

where Q&-u-i = 1- This follows from the fact that e is an isomorphism in the appro
priate bidegree. In theory, the action of the Dyer-Lashof operations on G() follow from 
these, the Cartan formula, and the Nishida relations. In practice, however, they can act 
in a complicated manner. For example, the reader is invited to verify that 

Q*(QKÙ = ïk-\jQk-u> 7 > 0 , i > 0 . 

where <2*-i,*-i — 1- However, there are other non-zero operations. 
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4. Projective Hopf algebras. It is the purpose of this and the next section to show 
that the structure of projectives and injectives uncovered in the category of modules Zl^ 
can be used to produce projectives and injectives in the category !A$^ of allowable Hopf 
algebras over the Dyer-Lashof algebra. In addition, we will see in Section 6 that these 
Hopf algebras can be realized as the homology of infinite loop spaces. 

First, we discuss the projectives. For M € U^, define a graded commutative algebra 
S*M by letting S be the symmetric algebra functor and 

5*M = ^(M)/(x2 + 2 W W). 

Here |JC| is the degree of x. Then it is possible for S*M to be the algebra of an object in 
5¥Rj, indeed, if C G ÏA$JC is a coalgebra over the Dyer-Lashof algebra, then the inclusion 

C — > C ® C — > S*C<g> S*C 

extends to a unique algebra map S*C —> S*C (g) S*C making S*C G J 3 ^ . Thus S*: 
J%XC —• JVR. is a left adjoint. Let F: n¥2 -* U^ be left adjoint to the forgetful functor. 

THEOREM 4.1. Let V £ n¥2 be of finite type and Vb — 0. Then there is a commutative 
coproduct 

S*F(V) —> S,F(V) <g> S*F(V) 

so that S*F(V) e JZHt and S*F(V) is projective in J^. 

PROOF. This is proved exactly as in [5], Section 1. 

REMARK 4.2. The hypothesis that Vb = 0 can be removed either algebraically— 
using some sort of group completion—or topologically as follows. Write 

v ^ v+ e v0 

where (V+)o = 0 and Vb concentrated in degree 0. In the category of spectra, choose a 
wedge of spheres so that //* Va S^ = Vb. Then 

S*F(V) = S*F(V+) 0 //*Q°°(Va^) 

satisfies the conclusions of (3.1). There is an inclusion 

S*F(V) —> S*F(V) 

and a coalgebra structure on S*F(V) so that this morphism is a group completion in the 
category of coalgebras. 

REMARK 4.3. Notice that since V is of finite type, we can—by choosing a basis— 
write V as a sum of one-dimensional vector spaces I,nF2 for various n. Then F( V) is a sum 
of F(Ln¥2) — F(n) for various n and, hence, S*F(V) is isomorphic to a tensor product 
of algebras of the form S*F(n) for various n. Furthermore, combining the description of 
F(n) given in Lemma 2.8 with the definition of S* we see that for n > 0 

S*F(n)^F2[QI(LnSqJ)] 

https://doi.org/10.4153/CJM-1993-053-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-053-9


962 PAUL G. GOERSS 

with e(I) + l(J) > n. Thus S±F(V) is understood as an algebra. Let T(n) — S*F(n) with a 
Hopf algebra structure from Theorem 4.1. If n is odd tn is primitive; so V(n) is primitively 
generated. If n is even the coalgebra structure an S*F(ri) is less well understood, but is 
unique up to isomorphism. See Remark 4.8 below. 

To exploit these results, let V: 11%^ —-» J%RC be the right adjoint to the forgetful 
functor. There is a morphism in 11%, 

V(M) 0 V(M) —>MxM 

given by x CED y l—> (xefy), £(x)y). Thus we get a morphism in J^J(C 

V(M) 0 V(M) —> V(M x M). 

Composing with the addition map MxM —> M, yields a commutative associative product 
V(M)®V(M) —• V(M) in JVRÇ. Thus V(M) has a natural Hopf algebra structure over the 
Dyer-Lashof algebra; however, V(M) may fail to be in !A!S^ because we don't necessarily 
have Qn(x) = x2 for x of degree n. Therefore, we need a further hypothesis. 

Let 11% Ç Ztft be the full sub-category stipulated by the condition that M G 11% 
if and only if for all x G Mn, Qn(x) = 0. 

PROPOSITION 4.4. Let M G U^Q. Then there is a natural (in M) Hopf algebra 
structure on V(M) so that V(M) G J%% and the functor 

V: ZIH^ > X% 

is right adjoint to the indécomposables functor. 

PROOF. AS with all our right adjoints, this proved in the appendix. See Corollary A.6. 

COROLLARY 4.5. Let H\, H2 be two Hopf algebras in ft% so that 

Hx ^ S*F(V) = H2 

as algebras over %^ and the Steenrod algebra. Then H\ = H2 in $1%. 

PROOF. Note QH\ = QH2. Consider the diagram 

H2 —> H\ 

1= 1/ 
H2 - ^ V(QHX) 

where the arrows/ and g are adjoint to the isomorphisms QH[ = QH\. The arrow g' 
exists because H2 is projective. It is an isomorphism because it is an isomorphism on 
indécomposables, and both algebras are free. 

Now let T{n) — S*F(n) (n > 1) with any choice of %% Hopf algebra structure. This 
choice is unique up to an isomorphism in $1%. 
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COROLLARY 4.6. Let M e 11%. Then 

Hom^(r(n),V(M))^Mn. 

PROOF. 

H o m ^ ( l > ) , V(M)) ^ Homw^(Gr(n),M) 

= Hom^(F(n),Af) = M„. 

PROPOSITION 4.7. T(n) is the projective cover ofH^Cl°°IP°Sn. 

PROOF. If n = 0 or 1 , 1 » ^ ^ Q 0 0 ! 0 0 ^ ; so assume n > 2. Note that 

HnÇi0OyL0OSn = [ g / / ^ 0 0 ! 0 ^ * ] , , ^ F2. 

We may use Corollary 4.6 and the fact that T(n) is projective to get a diagram 

V(n) - ^ H>,Q.00l00Sn 

1= I 

where/ is adjoint to the non-zero class in //^Q^E^S". Thus g is surjective. Suppose 
H G J 3 ^ is projective and there is a surjective map H —> H^Q00I,00Sn. Then, because / / 
is projective, there is a diagram 

H - ^ I » 

1= 1* 
H y T / ^ Q 0 0 ! 0 0 ^ 

Since T(n) = S*F(n) as algebras, <p must be surjective. 

REMARK 4.8. The diagonal on F(n) can be described by understanding the functor 

Hom^(r(/7), •) —> groups. 

Write n = 2s{2t + 1) and let 
B = Z(2)[x0,xi,...] 

be the polynomial algebra over the integers localized at 2 on indeterminants xt of degree 
2'(2/+l). Let 

wk(x) = x% +2x$ ' +--- + 2kxk 

be the Witt polynomial of degree 2k(2t + 1). There is a unique coproduct 

A: B —>B(g)B 
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so that W^(JC) is primitive for every k. With this coproduct, B becomes a bicommutative 

Hopf algebra. This coproduct is called "the Witt vector diagonal" because, if R is a Z(2> 

algebra and if we ignore the grading, then the group 

Homaigebras(#, R) 

is the Witt vectors in R. Now let 

B(ri) = Zi2)[xo,...,xs]ÇB 

be the sub-Hopf algebra on the first s indeterminants. Recall the n = 2s(2t + 1 ). Then set 

C(n) = F2®B(n). 

Then for H G %3^ we have 

H o m ^ ( n > ) , / / ) = Hom#(C(w) , / / ) 

where Of is the category of bicommutative Hopf algebras over F2. In particular, the iden

tity T(n) —^ T(n) corresponds to a map in Of 

C(n) —> T(n) 

that determines the coproduct on T(n). These thoughts are addressed in detail in [5]. 

5. Injective Hopf algebras. It is the purpose of this section to prove to following 

result. 

THEOREM 5.1. There is an injective Hopf algebra H(n) G ^R^ n > 0, so that there 

is an isomorphism in !A%C of co algebras 

H(n) -=-+ V(G(n)). 

In particular, H(n) is isomorphic as a coalgebra over the Steenrod algebra to the tensor 

product of the homologies of various Eilenberg-MacLane spaces. The strategy of the 

proof is to first prove the existence of H(n) and only then to establish an isomorphism of 

H(n) with V(G(n)). 

To dispense with the case n = 0, let 

Z/(2°°) = colimZ/(2") 

be the 2-torsion in the divisible group Q/Z , and let HZ/(2°°) be the Eilenberg-Maclane 

spectrum with 7ToHZ/(2°°) ^ Z/(2°°). Then 

H(0) = / /*Q0 0 / /Z/(20°) = F2[Z/(2°°)] 

satisfies the conclusions of Theorem 5.1 for n — 0. 
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As a bit of notation, if G is an abelian group, let 

GQ/z = Hom(G,Q/Z). 

Since Q/Z is an injective abelian group, the functor 

G —> GQiJ 

is exact. 
Now define a functor, for n > 1, 

Dn: J%^ —> Abelian groups. 

by 

Dn(H) = Hom^( r (« ) , / / ) Q / Z 

where V(n) is the projective Hopf algebra of the last section. 

PROPOSITION 5.2. Dn() is represent able; that is, there is an object H(n) G J ^ so 
that 

Hom^(/ / , / / (n)) =DnH. 

This result will be proved below, and this result defines H(n). 

COROLLARY 5.3. H(n) is injective in J ^ . 

PROOF. This is a consequence of the fact that V(n) is projective and that Hom(-, Q/Z) 
is exact. 

To prove Proposition 5.2, we use the special adjoint functor theorem—see Corol
lary A.2. Thus we must verify some facts about the category J3L .̂ 

LEMMA 5.4. The category S^R^ has all (small) colimits. 

PROOF. Suppose we have shown that J3L^ has arbitrary coproducts. Then for any 
functor F:I —> J 3 ^ , for a small category /, we may define 

colimF = colim/// 

to be the coequalizer in the diagram 

LI # / ==* LI Hi > Colim Hi 

where, in the left coproduct, Hf = domain of/, and where do, d\ are defined on Hf by 
do\nf = id and d\ |// — f. Since J4^ is abelian, the coequalizer is the cokernel of the 
difference between do and d\. 

To show J 3 ^ has arbitrary coproducts, let X be a set and 

{Hx:xeX} 
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an X-indexed collection of objects in J ^ . If X is finite 

xex xex 

If X is arbitrary, write X — colim Y where we have Y ÇX finite. Then set 

]J Hx = colim [J Hx. 
xex Y<^x xeY 

where this colimit is as vector spaces, and inclusions are defined by unit maps F2 —» Hx. 

LEMMA 5.5. SVR^ has a set of generating objects. 

PROOF. In the argument before A.4 we showed that the objects P'(C) G !A%C with 
C £ Cft finite as vector spaces generate J ^ C . P'\ Cft —> ft$S is left adjoint to the 
forgetful functor. Also, if C G J ^ C , S*C G J ^ . Thus the objects 5*P'(Q with C G Û Ï 
generate !A5^. 

REMARK. These generators are familiar objects. Specifically, if X is a space, 

HtO^irx = S,P'H,X. 

PROOF OF PROPOSITION 5.2. Since an object in J^ has only a set of quotient 
objects, Corollary A.2, Lemma 5.4, and Lemma 5.5 will imply Proposition 5.2 if we 
can show that 

D„(-) = Hom^(r( ,7) , - )Q / Z 

sends colimits to limits. Since (-)Q/Z is exact we need only show 

Hom^( r (n ) , - ) 

preserves colimits. The fact that T(n) is projective and the description of colimits given 
in the proof of Lemma 5.4 demonstrate that we need only show 

H o m ^ ( l > ) , LI Hx) <* [J H o m ^ ( r ( n ) , / / , ) . 
v xex J xex 

There is an obvious natural map 

LI Hom^(T(n\Hx) - ^ Hom^(r( rc) , LI Hx 

xex v xex 

and this map is always an injection. To prove that it is a surjection, note that there is a 
class]n G T(n)n so that a morphism/: T(n) —> H in J 3 ^ is determined by/(/„). Thus the 
evident map 

colimHomj^fr(H), \J Hx) —> H o m ^ ( T(n), \J Hx 
Y^X ^ XGY ' ^ xeX 

where the colimit is over Y Ç X finite is onto. But if Y is finite 

xeY xEY xÇY 
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SO 

] J Hom(r(n),Hx) * Hom(r(/i) , ] J Hx 

This proves Proposition 5.2. 

The rest of the section will be devoted to producing an isomorphism in 2VRJ2 from 

V\G(ri)\ to H(n). We begin by showing that V(G(n)) is the injective hull of a familiar 

object. Let V(K(n)) G J ^ C b e the homology of K(Z/(2), n). 

LEMMA 5.6. There is a unique non-zero map in !A%C 

i: V(K(n)) — V(G(n)) 

and this morphism is an injection. 

PROOF. Consider: 

H o m ^ c ( v ( K ( H ) ) , V(G(fi))) ~ nomu^(v{K(n)),G(n) 

But v[K{n))* = HnK{Z/(2), n) = F2. Let / be the morphism corresponding to the non

zero element of F2. Since 

i:V(K(n))n^V(G(n))n 

is one-to-one, / must be one-to-one. 

PROPOSITION 5.7. V[G(n)) is the injective hull ofV(K(ri)). 

This is equivalent to saying that if we have a one-to-one morphism/: v(K(n)) —-» C 

in J3L^C and C is injective in J 3 ^ C then we may complete the diagram 

v(K(n)) 

If 
c 

I 

—-> 

V(G(«) ) 

I/' 
c 

in such a manner that/7 is injective. This requires some lemmas. 

First let Go(ri) Ç G(n) be as in Section 3. Thus 

G(n) *Ê K(G0(nj) 

where K: Zl —> 1W^ is right adjoint to the forgetful functor. Hence, V(G(ri)) = 

V(KGo(n)^j is, as a coalgebra over the Steenrod algebra, the homology of an Eilenberg-

Maclane space. There is a canonical inclusion 

G0(/i) Ç V(G(n)). 

This could be called the image of the Hurewicz homomorphism. 
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LEMMA 5.8. Let 0 / x G Go(n)k. Then there is an element 9 G ^(—oo)n-.k so that 
0 ^ 9(x) G G0(n)n * F2. 

PROOF. Recall that G0(n)k ^ Hom^ (/>(/:), G0(nj) = P(kfn and 0: G0(n)k —• G(n)„ 
is defined by dualizing the map/Q: P(n) —> P(&) given by fo(in) = 9ik. But the map 
R(—oo)n-k —• P{k)n given by 9 i—> #^ is onto; hence if 0 ^ x G G(/i)jt = P(k)„, choose 
9 G !^(-oo) so that (JC, fl^) ^ 0. Then 

(fo,6w) = (fgXtln) = (x,feM) = (-*,#^) ¥ °> 

so we have to 7̂  0. 

LEMMA 5.9. Given a diagram in SVRjC. 

V(K(n)) - U V(G(H)) 

|/ J/' 
c — c 

with 0 7̂  / : WÂT(/Î )J —> Cw. 77iew bothf andf must be injections. 

PROOF. / is immediately one-to-one. To show/7 is one-to-one it is sufficient to prove 
the composite 

G0(n) - ^ V(G(nj) -^ C 

is one-to-one. By hypothesis, if y G Go(n)n is the non-zero class f'(y) ^ 0. If 0 ^ x G 
Go(n)k, choose 9 G !^(—00) so that to = _y. Then 

o/'W=/'W=/'w^o, 

sof'(x) f 0. 

PROOF OF PROPOSITION 5.7. If/: v(AT(n)) —+ K is an injective morphism in WRjC 
and C is injective in 2\!RJC, then we automatically obtain a diagram 

V(tf(«)) - ^ V(G(n)) 

|/ |r 
c — c 

because / is an injection. Then/7 is an injection by Lemma 5.9. 
Now let H(n) be as in Proposition 5.2. Since the forgetful functor J 3 ^ —> !A%C has 

a left adjoint H(n) is injective in !A$J0. Furthermore 

Hom^(v(#(n) ) , / / (n ) ) ^ H o m ^ ( r ( n ) , v(tf(n)))° Z 

by Corollary 4.6. Thus there is a unique non-zero Hopf algebra map 

/ : V(K(nj) > H{n) 
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and this map is non-zero in degree n. Thus there is an injection in 5MSjCf\ V\G(n)\ —» 
H(n) making the following diagram commute 

V(K(nj) - U v(G(nj) 

[f if 
H(n) > H(n). 

Thus we must show/7 is an isomorphism. Now/7 defines an injective natural transfor
mation 

# H o m ^ c ( / ) , V(G(n))>j — H o m ^ c (/),//(")) 

and/ ' is an isomorphism if and only iffl is a natural isomorphism. Thus we must show 
fl is a surjection for all D G J ^ C . 

It is sufficient to prove this when D is among the generators for the category tA$JC\ 
that is, when D — P'(C), with C G C& a finite coalgebra. In this case 

H o m ^ c ( V ( C ) , V(G(n))) ~ P'(CYn 

is a finite dimensional F2 vector space; therefore, it is sufficient to show that 

Hom^c(P
f(C),H(n)) 

has the same cardinality as P*(C)*. Note that 

Uomj^c(P\C\H(n)) ^ H o m ^ ^ P ' C Q , / / ( > ) ) 

^ H o m ^ ( r ( n ) , ^ P / ( C ) ) Q / Z 

To proceed, filter S*Pf(C) by powers of two; that is, 

FS*P'(Q = {x2V : x G S*P'(C)}. 

One easily computes that FSS*P'(C) is a sub-JW^ Hopf algebra of FslS*P'(C). 
To explicitly compute with this filtration, filter P\C) by 

FP'(C) = {Q2SnQ2^n • • • Qn(x) : * G P'{C)n}. 

LEMMA 5.10. FP'(C) Ç P'{C) is a sub-object in %%Cand 

FS*P\Q ^ S*FPf(C). 

PROOF. First consider the case s — \. The formula 

10 k = 2t+\ 
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show that F1 P'(C) Ç P'(Q is a sub-object in U^. The fact that it's a sub-object in X^C 
follows from the Cartan formula and the fact that Q(y) — 0 if/ < deg(y). For general s, 
use the fact that 

FP'{C) = FX ••FlPf(C). 

s 

That FStP(C) ^ S*FSP(C) is a consequence of the fact that 

x2 = Qn(x) 

if ft = deg(x). 
Next, let EQS^P'(C) be the associated graded (in the abelian category J^O of this 

filtration. Since T(n) is projective, 

£°Hom^(r(rc),S*P(C)) ^ Hom j^(r(n),F0^*JP
/(C)) 

Lemma 5.10 implies that 
ES

0S*P\C) * S,Es
0P

f(C). 

LEMMA 5.11. H o m ^ ( r ( « ) , S*ES
0P'(C)) ^ [ ^ ' ( Q L . 

PROOF. This follows from Corollary 4.6 once we demonstrate the following fact. 
Let M G Sffi^C have the property that Qn(x) = 0 for all x G M. Then there is an 
isomorphism of Hopf algebras S*M —^ V{M). To see this, note that QS*M = M. Hence, 
by Proposition 4.4, there is a map of Hopf algebras S*M —* V(M). Since both Hopf 
algebras have the property that x2 = 0 for all x in the augmentation ideal, and since this 
map is an isomorphism on indécomposables, it must be an isomorphism. 

PROOF OF THEOREM 5.1. Lemma 5.11 implies that 

fl: H o m ^ c ( V ( C ) , V(G(n))) - ^ Hom^ c(P /(C), / / (n)) 

is an isomorphism for all C G C# finite. Because the inclusion 

ff:V(G(n))—>H(n) 

is split (V(G(n)) is injective), this implies/7 is an isomorphism. This completes the proof. 

COROLLARY 5.12. H(n) is the injective hull of V(K(nj) in XR^. 

PROOF. Let H e 5¥R^ be injective and suppose/: V(K(nj} —» H is one-to-one. Then 
we have a diagram of Hopf algebras in J3i^ 

V(K(nj) -^ H(n) 

[f [f 
H > H 

By Theorem 5.1 and Lemma 5.9,/ ' is one-to-one as coalgebras, hence an injection in 
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6. Realizing injective Hopf algebras. The homotopy theory behind the algebra of 
the previous sections is straightforward. For example, the projective case is well-known: 

THEOREM 6.1. There is a two-complete spectrum T(n), n > 0 so that 
(1) H*T{n) * J{n) 
(2) H,Q°°T(n) ^ T(n) and a,: Z /* ! 0 0 ^ 0 0 ^) -> H*T(n) is onto 
(3) Ifn is even, the morphism 

[T(n),x] — t H o m ^ H ^ T i n l H ^ X ) 

is an isomorphism. This map is only onto ifn is odd. 

This is proved in [5], with previous results along these lines in [4] and [6]. T(ri) is 
unique up to homotopy equivalence. The injective case is handled by the following result. 

THEOREM 6.2. There is a spectrum D(n), n > 0 so that 
(1) H*Q°°D(n) ^ H(n). 
(2) Ifn is even 

[X,D(n)] >Hom^(//*QTOX,//*Q^£>(")) 

is an isomorphism. 

To begin the proof, note that the functor on finite spectra 

X >[T(n\Xflz 

satisfies the requirements of Brown representability. Thus, let D(2n) be the spectrum so 
that 

[X,D(2ri)] = [T(2n),X]I/(200) 

and let D(2n - 1) = l~lD(2n). 
Certainly, we have 

[X,D(2n)]^ [T(2n),X]Q/z 

^ Hom^l(H,Q00T(2nlHMOGX)Q/I 

^ Hom^(//*Q°°X,//(A2)) 

so Theorem 6.2(2) holds if Theorem 6.2(1) holds, at least for finite X. To extend to all X, 
note that if X is finite and n > 0, 

Hom j^(//*Q°°r(2«), H*Q,°°X) 

is a finite 2 group. Thus for general X we write X — colimZ^ as the filtered colimit of 
finite spectra and compute that 

[X,D(2n)]^lim[Xa,D(2n)] 
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because lim is exact on finite groups. Thus 

[X,D(2n)] ^\\m[Xa,D(2n)] 

^ \imHom<^(H*QXa,H(2n)) 

^ Horn j^{H ^°°X, H (2n)) 

Thus Theorem 6.2(2) holds for all X, if Theorem 6.2(1) holds. 
To prove Theorem 6.2(1), note that the identity D(2n) —• D(2n) yields a map 

H,Q.°°D(2n) - ^ H(2n). 

and the isomorphism above sends/: X —-> D(2rc) to 

//*Q°°X -^> H,n°°D(2n) - ^ 7/(2n). 

Since //(2rc) = v(G(2/i)) as coalgebras and G(rc) is injective as an unstable A module, 
there is an Eilenberg-Maclane space Y so that H*Y = H(2n) as coalgebras in Cft and a 
map g: QP°D(2n) —> y so that g* = </?. But since 

7r*Q~D(2>0= [S*,D(2w)] 

^ Hom j^(//*Q00Z00^,//(2^)) 

g is a weak-equivalence and hence g* is an isomorphism. Thus Theorem 6.2( 1) holds for 
n even. For the rest 

H*Q.°°D(2n - 1) ^ //*QQ°°D(2n) 

and the result follows because £Go(2rc — 1) = GO(2H)+. See Proposition 3.5. 

REMARKS ON PREVIOUS WORK. ( 1 ) The proof of Theorem 6.2 is one way to under
stand Brown and Gitler's original construction of Brown-Gitler spectra [2]. Let B(n) be 
the 2n-th suspension of the Spanier-Whitehead dual of T(2n): 

(6. 3) B(n) = I?nF(T(2n), 5°). 

Then for a spectrum X 

[T(2n),X] ^ [S2n,B(n)AX] = B(n)2nX. 

So 
[X,D(2n)] ^ [T{2n),XflT ^ (B(n)2nX)Q/I. 

This demonstrates that D(2n) is the 2n-th suspension of the Brown-Comenetz dual of 
B(n)[\]: 

D(2n) ^ I?ncB(n). 

https://doi.org/10.4153/CJM-1993-053-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-053-9


HOPF ALGEBRAS 973 

This last equation is actually Brown and Gitler's definition of B(n)—they constructed 
D(2n). One easily computes from 6.3 that 

H*B(n)^A/A{xSqiU>n}. 

Since H*B(n) is finite one can conclude from the work of Brown and Comenetz that 

H*D(2n) = 0. Since H*Q°°D(2n) ^ 0, D(2n) is not a connective spectrum. 

Furthermore, the unique non-trivial map B(n) —• KZ/(2) is Brown-Comenetz dual 

to the unique non-trivial map E 2" KZ/(2) —> D{2n). Since Q°°D(2n) is a product of 

Eilenberg-Maclane spaces, we have that for any space X, 

H2nX^[X,I?nKI/(2)] ^ [X,K(l/(2),2n)] —> [X,Q°°D(2n)] - ^ D(2n)°X 

is an inclusion, and by, examining the delooping of Q°°D(2n), that H2n+lX —> D(2n)]X 

is also an inclusion. One easily concludes that B(n)qX —-> HqX is onto for q < 2n + 1. 

(2) Others have studied injective and projective objects in the category of Hopf al

gebras over the Steenrod operations—that is, forget the Dyer-Lashof operations. There 

the indecomposable projective objects are related to cohomology theories constructed 

by Segal. See the article by Steiner [13]. This is where the phrase "Witt vector diagonal" 

arises. See also [5] for more on this point. This was pointed out to me by Tom Hunter. 

Appendix: the special adjoint functor theorem. This paper makes repeated use 

of the special adjoint functor theorem—we used it explicitly in Section 5 and implic

itly in Section 2. Thus, in this appendix, we make the statement of this theorem and a 

further application to producing right adjoints of forgetful functors out of categories of 

coalgebras. 

Let C be a category—which, for the purposes of this paper, carries the implicit as

sumption that H o m ^ X , Y) is a set for all objects X and Y of C. Recall that a morphism 

f:X-^ F i s C is epi if whenever we have g\,gi'- Y —-+ Z s o that g i / = gjf, then g i = g2-

For all the categories in this paper categorical epimorphisms are set theoretic surjections. 

Next recall that a quotient object of an object x in C is an equivalence class of epis 

/ : X —•» Y where/i : X —> Y\ is equivalent t o / if there is an invertible morphism 6: Y —> Y\ 

so that/i = Of. If the epis of C are set-theoretic surjections, then X can have only a set 

of quotient objects. 

Finally, recall that a set of objects !A of C is called a generating set if whenever 

/ , g: X —> y are two morphisms in C so tha t / ^ g, there is an A G A and 6: A —* X in C 

so tha t /0 T̂  go. The elements of A "separate" the morphisms of C. 

With this notation, we give the special adjoint functor theorem. 

THEOREM A.l (SAFT). Suppose C is a category that 

(1) has all small colimits, 

(2) has a generating set, and 

(3) every object of C has only a set of quotient objects. 

Then a functor F: C —> (D has a right adjoint if and only if F preserves colimits. 

This is due to Freyd, among others, and a proof can be found in [8], Section V.8. An 

immediate corollary is the following. 
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COROLLARY A.2. Let C be category satisfying the hypotheses Theorem A. I and let 
D be a category so that there is a forgetful functor 

<D —> Sets 

with a left adjoint. Then any contravariant functor 

E.C —* £> 

that sends colimits to limits is rep re sent able; that is} there exists YE G C and a natural 
bijection 

Homc(X, YE) -=-• E(X). 

In this result 2) might be the category of groups, abelian groups, vector spaces over a 
field, or a category of modules. This is the result used in Sections 2 and 5. 

As an application let C# be the category of coalgebras over the Steenrod algebra. C# 
has all colimits, Cft has a generating set consisting of all coalgebras that are finite as 
graded vector spaces, and every object in C& has only finite many quotient objects. 

Since the forgetful functor Cft —-* U preserves colimits and we have: 

COROLLARY A.3. The forgetful functor C# —> 11 has a right adjoint 

V:<U —• 0 1 . 

To handle the forgetful functor !A$JZ —* WR^ for allowable coalgebras over the Dyer-
Lashof algebra to allowable modules over the Dyer-Lashof algebra, we first must estab
lish some notation. 

The forgetful functor 11%. -> U has a left adjoint P'. (See (2.6)). If C G C#, then 
the composite 

C-^C®C-> P'{C) (8) P'{C) 

gives, by adjointness, a coproduct 

P'{C) - ^ P\C) 0 P'(C) 

making P'(C) G WRC. Or, said differently, P'\ Cft —> WRC is left adjoint to the for
getful functor. Thus !A$JC has a generating set consisting of coalgebras P'{C) where 
C G C& is finite as a graded vector space. 

COROLLARY A.4. The forgetful functor %%C —> 11%^ has a right adjoint. 

V: 11^ > %%C. 

Actually, little new has been done, for we have the following result. 
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PROPOSITION A.5. Let M E U%^. Then there is an isomorphism in C& 

V'(M) ^ V(M). 

PROOF. Let C e Cfl. Then 

Hom^(C,M) ^ Hom^^(P(C) ,M) 

^ H o m ^ c ( P ( C ) , V ' ( M ) ) 

^ H o m 0 q ( C , V / ( M ) ) . 

This proves the result. 

Finally, we come to the result asserted in Section 4. 

COROLLARY A.6. The indécomposables functor Q: 5VR^ —> £ / % has a right adjoint 

V": WRQ —• J ^ and for M G Zl% there is an isomorphism in Cft 

V"{M) ^ V(M). 

PROOF. In Section 5 we constructed the colimits in $¥Rj, Q preserves colimits. We 

also showed that S*P'(C), C G 0 1 finite, generate J^K,. Thus V" exists. Copy the proof 

of Proposition A.5 to show V"{M) ^ V(M). 

REFERENCES 

1. E. H. Brown, Jr. and M. Comenetz, Pontrjagin duality for generalized homology and cohomology theories, 
Amer J. Math. 98(1976), 1-27. 

2. E. H. Brown, Jr. and S. Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod 
Algebra, Topology 12(1973), 283-295. 

3.F. R. Cohen, T. J.Lada, and J. P. May, The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics 
533, Springer, Berlin, 1976. 

4. P. G. Goerss, Unstable projectives and stable Ext, Proc. London Math. Soc. 53(1986), 539-561. 
5. P. Goerss, J. Lannes, and F. Morel, Vecteurs de Witt non-commutatifs et representabilité de Vhomologie 

modulop, Invent. Math. 108(1992), 163-227. 
6. J. Lannes, Sur le n-dual du n-ème spectre de Brown-Gitler, Math Z. 199(1988), 29-42. 
7. J. Lannes et S. Zarati, Sur les U-injectifs, Ann. Sci. Ecole Normale Sup. 19(1986), 1-31. 
8. S. MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5, Springer, 

Berlin, 1971. 
9.1. Madsen, On the action of the Dyer-Lashof algebra in H*G, Pacific J. Math. 60(1975), 235-275. 

10. H. Miller, A spectral sequence for the homology of an infinite delooping, Pacific J. Math. 79(1978), 139— 
155. 

11. , The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120(1984), 39-87. 
12. C. Schoeller, Etude de la catégorie des algebras de Hopf commutative connexe sur un corps, Manusc. 

Math. 3(1970), 133-155. 
13. R. Steiner, Decompositions of groups of units in ordinary cohomology, Quart. J. Math. 30(1979), 483-494. 

https://doi.org/10.4153/CJM-1993-053-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-053-9


976 PAUL G. GOERSS 

14. M. Sweedler, Hopf Algebras, W. A. Benjamin, New York, 1969. 
15. W. S. Wilson, Brown-Peterson Homology: An Introduction and Sampler, Regional Conf. Series in Math 

48, A.M.S., Providence, 1982. 

Department of Mathematics 

University of Washington 

Seattle, Washington 98195 

U.S.A. 

https://doi.org/10.4153/CJM-1993-053-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-053-9

