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Abstract. Dust-acoustic and dust-lower-hybrid diamagnetic drift wave instabilities
have been examined in a collisional non-uniform quantum dusty magnetoplasma.
The dust-acoustic drift instability arises through the Fermi degenerate pressure of
electrons for a high-density plasma, while for a relatively low-density collisional
quantum plasma and short wavelength consideration, the instability is dominated
by the Bohm potential effect exciting a new quantum dust-acoustic wave. In the long-
range wavelength limit, dust-lower-hybrid waves are found to be unstable because
of the diamagnetic drift of magnetized ions. Various possible instability conditions
are found for diamagnetic drift instability.

During the last two decades, low-frequency waves
and instabilities in dusty plasmas with or without the
presence of external magnetic fields have occupied the
major areas of dusty plasma physics. This is because
all properties of dusty plasmas in general are related
with waves and instabilities. With the advent of dust-
acoustic (DA) and dust-lower-hybrid (DLH) waves (Rao
et al. 1990; Salimullah et al. 1992; Shukla 1992; Shukla
and Silin 1992; Salimullah 1996; Jamil et al. 2010)
involving dust dynamics, a considerable amount of pro-
gress has been achieved in the context of astrophysical
and laboratory dusty plasma systems. Earlier, cross-field
instabilities were investigated in the presence of external
electric and magnetic fields in possible laboratory dusty
plasma experiments (Shukla et al. 2002; Rastunkov and
Krainov 2004; Rosenberg and Shukla 2004; Norreys
et al. 2009; Sabeen et al. 2010). In recent years, there
has been a growing interest in quantum dusty plas-
mas because of their importance in micro-electronics
and electronic devices with nano-electronic components,
dense astrophysical objects, and in laser-produced plas-
mas (Kremp et al. 1999; Andreev 2000; Jung 2001;
Opher et al. 2001; Chabrier et al. 2002; Haas et al. 2003; ,
Bingham et al. 2004; Marklund and Shukla 2006; Shukla
et al. 2006a; Brodin and Marklund 2007; Marklund
and Brodin 2007; Brodin et al. 2008a; Ren et al. 2009;
Salimullah et al. 2009a; Hussain et al. 2010). When a
plasma is cooled to an extremely low temperature, the
de Broglie wavelengths of plasma particles could be at
least comparable to the scale lengths, such as the Debye
length or the Larmor radius etc., in the system. In such

plasmas, the ultra-cold dense plasma would behave as a
Fermi gas, and quantum mechanical effects might play
a vital role in the behavior of charge carriers of these
plasmas under extreme conditions. There are different
models for quantum plasmas. Here we are using the
Schrodinger–Poisson model, which is a simplified model
and capture the main features of quantum plasmas. It
is more appropriate for the analytical and numerical
treatment of problems. It makes direct use of global
properties of plasma quantities, such as density and
average velocity, and therefore may ignore the spin
effects (Haas 2005; Haas et al. 2000; Asenjo et al.
2011).

Spin effects of quantized charges are important for lin-
ear modes in the presence of a strong magnetic field, and
for the systems whose confined geometry is frequently
comparable with the thermal de Broglie wavelengths like
micro electronics, nano-wires, quantum dots, etc. In large
dimensional systems, because of random orientation of
spins, high-density collisional plasmas, and the systems
where the electrostatic forces are strong as compared
with spin forces, the macroscopic spin population may
not sustain and therefore become negligible (Garcia et al.
2005; Shukla 2006; Shukla and Eliasson 2006; Brodin
et al. 2008b).

Collision between the quantum mechanical identical
particles is considerably different from those in classical
plasmas because of their collision cross sections. An in-
crease in plasma oscillation frequency in quantum plas-
mas suppresses the collision probability, e.g., electron–
electron collision is negligibly small [Na and Jung 2008].
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In this paper, we study the diamagnetic drift instabil-
ities of DA and DLH waves in an inhomogeneous and
collisional quantum dusty magnetoplasma by including
the collision frequency of ions and dust particles. We
consider an infinitely extended inhomogeneous high-
density dusty magnetoplasma containing electrons, ions,
and charged dust grains in the presence of a homogen-
eous static ambient magnetic field B0 ‖ ẑ. At equilibrium,
we assume that the charge quasi-neutrality condition
is satisfied, i.e., ni0 + (qd/e)nd0 = ne0, where nj0(x) is
the equilibrium number density of the jth species (j =
electrons, ions, or dust), qd is the average charge on a
dust grain, and e is the electronic charge. We analyze
the stability properties of the system against electrostatic
perturbations, including the effects of heavier species.

The governing equations in the quantum hydro-
dynamic (QHD) model (Gardner 1994, Gasser et al.
2000, Manfredi and Haas 2001; Haas 2005; Manfredi
2005; Ali and Shukla 2006; Shukla et al. 2006; Ren et al.
2008, Saleem et al. 2008) for electrons, ions, and charged
dust grains (j = e, i, d) in the presence of the ambient
magnetic field B0 are

mj nj0
∂

∂t
vj = − nj0 qj∇φ + nj0

qj

c
vj × B0 − ∇ pFj1

+
�2

4mj

∇(∇2nj1). (1)

The corresponding components of velocities for jth
species can be written from (1) as

vLj =
qjΦ

mjω

[
iωωcj

ω2 − ω2
cj

kyx̂ +
ω2

ω2 − ω2
cj

kyŷ + kzẑ

]
, (2)

where

Φ = φ +
mj

qj
V

′2
Fj

nj1

njo
,

and

V
′

Fj = VFj(1 + γj)
1/2, γj = �2k2/8meKBTFj,

where nj = nj0+nj1, � is the Planck’s constant divided by
2π, φ(r, t) is the electrostatic potential in the quantum
magnetoplasma, and qj , mj , nj , and c are the charge,
mass, total equilibrium number density with equilibrium
value nj0 of the jth species, and the velocity of light
in vacuum, respectively. Here we take into account the
quantum effects of all the species in general when they
are considered extremely cold. In (1), we assume that the
plasma particles in a zero-temperature Fermi gas satisfy
the pressure law (Manfredi and Haas 2001; Manfredi
2005), pFj = mjV

2
Fjn

3
j /3n

2
j0, where VFj = (2KBTFj/mj)

1/2

is the Fermi speed; KB, TFj , and nj are the Boltzmann
constant, the Fermi temperature, and the total number
density with its equilibrium value nj0, respectively.

It may be mentioned that in a three-dimensional
quantum plasma, the total pressure should be propor-
tional to n(N+2)/N , where N = 3. However, according
to Manfredi and Haas (2001) this choice is not good,
as the results of QHD model differ from the Wigner–

Poisson model. Therefore, the total pressure of the three-
dimensional quantum plasma is approximately described
by the one-dimensional Fermi pressure. Similar pressure
law was employed by Ali and Shukla (2006) for three-
dimensional quantum plasmas.

The equation of continuity for inhomogeneity along
x -direction is

∂nj

∂t
+ ∇. (nj vj) = 0. (3)

After linearization of continuity equation, we have

∂nj1

∂t
+ nj0(∇. vj y + ∇. vj z) + vj x.∂nj 0/∂x = 0. (4)

The Fourier transformation of (4) gives the following
equation:

nLj1 =
nj0

ω
kzv

L
jz +

nj0

ω
kyv

L
jy +

n
′

j0

i ω
vLjx. (5)

Further, the Poisson’s equation satisfying the electro-
static potential φ of electrostatic perturbation is

∇2φ = 4πe
(
ne1 − ni1 − qd

e
nd1

)
. (6)

In the presence of density inhomogeneities in x -
direction and the ambient magnetic field, B0 = ẑ B0,
we assume the presence of drift waves propagating in
the yz -plane, proportional to exp [− i (ωt − kyy − kzz)],
where k2 = k2

y +k2
z and k2

y�k2
z . Here ω and k are angular

frequency and wavenumber vector, respectively.
We would like to mention that for weak inhomogen-

eity approximation (Ren et al. 2008) with kx � k and
k � 1/Lj , we can retain the dominant linear term in the
Bohm potential term of the equation of motion. Similar
consideration has been employed earlier in the literature
(Shukla et al. 2006b) for drift wave investigations in the
non-uniform quantum magnetoplasmas. However, the
non-uniformity of equilibrium density is taken through
the continuity equation to study drift waves in non-
uniform quantum plasmas.

Using velocity components from (2) into (5), we
have

nLj1 =
nj0qj

ω

[
k2
z

ω2
+

k2
y

ω2 − ω2
cj

(
1 − ωcj

kyLj ω

)]
Φ. (7)

After putting Φ

nLj1 =

nj0qj
ω

[
k2
z

ω2 +
k2
y

ω2−ω2
cj

(
1 − ωcj

kyLj ω

)]
φ

1 − V
′2
Fj

[
k2
z

ω2 +
k2
y

ω2−ω2
cj

(
1 − ωcj

kyLj ω

)]. (8)

We know,

nLj1 = − 1

4πqj
χj k

2φ. (9)

From (8) and (9), we obtain the dielectric susceptibility
for jth species, where j = e, i, d as (Baines et al. 1965;
Salimullah et al. 2009b)

χj = −
ω2

pj

[
k2
z

ω2 +
k2
y

ω2−ω2
cj

(
1 − ωcj

kyLjω

)]
k2 − k2V ′2

Fj

[
k2
z

ω2 +
k2
y

ω2−ω2
cj

(
1 − ωcj

kyLjω

)], (10)
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where ωpj = (4πnj0q
2
j /mj)

1/2 and ωcj = qjB0/mjc are
the plasma frequency and the cyclotron frequency of the
jth species, respectively. In (5), the scale length of in-
homogeneity, Lj = −nj0/n

′
j0 with n′

j0 = ∂nj0(x)/∂x. For
quantum effect involving electron dynamics only, one
can write k2λ′2

Fe = k2λ2
Fe + ω2

Qe/4ω
2
pe, where

λFe = VFe/ωpe and ωQe = �k2/me. We use (10) to
find the general dielectric response function ε(ω, k) of
non-uniform quantum dusty magnetized plasma under
various possible conditions,

ε(ω, k) = 1 + χe(ω, k) + χi(ω, k) + χd(ω, k). (11)

It may be mentioned here that in the presence of
considerable amount of neutral atoms/molecules in the
dusty plasma, collision frequencies of plasma species
with neutrals cannot be ignored. Also, the diamagnetic
drift velocities of magnetized species in the non-uniform
plasma may be important that might cause diamagnetic
drift wave instabilities. In the presence of the ion dia-
magnetic drift velocity, uDi = (cTFi/ni0eB0)(∂ni0(x)/∂x)ŷ,
and the average collision frequency, νi, the ω in (11)
should be properly taken into account by replacing ω

with ω − kyuDi + iνi. We ignore diamagnetic drifts of
electrons and dust grains because they are not assumed
magnetized.

In order to study the diamagnetic DA and DLH drift
wave instabilities in a collisional non-uniform quantum
dusty plasma in the presence of an external static and
homogeneous magnetic field, we assume

ω � ω∗
i �ωci, k2

z � k2
y,

kV ′
Fi � ω � kV ′

Fe, (12)

where ω∗
i = ω2

pi/kyLiωci is the drift frequency of cold
and magnetized ions.

Dust-acoustic and DLH drift wave instabilities are
presented in the following sections.

1. Dust-acoustic drift wave instabilities
(1/k2λ′2

Fe � 1/k2λ2
Fe � fi � 1)

First, we consider a high-density quantum dusty plasma
where quantum effect arises through the Fermi degener-
ate pressure of electrons and the small Bohm potential
is neglected. Here we consider that the electrons fully
degenerate with the Fermi temperature TFe, ions are
magnetized and collisional, and the dust grains are un-
magnetized but collisional (Baines et al. 1965; Rosenberg
and Shukla 2004). In this case, the dielectric function
satisfying (12) is given by

ε(ω, k) = 1 +
1

k2λ2
Fe

+ fi − ω∗
i

Ωi + iνi
−

ω2
pd

ω(ω + iνd)
, (13)

where Ωi = ω − kyuDi and fi = ω2
pi/ω

2
ci; here uDi is the

magnetized ion fluid drift velocity. For iνi �Ωi, iνd �ω,
and 1/k2λ2

Fe � fi, the above equation for ε = 0 can be

written as

1 +
iω2

pi

kyLiωci

k2λ2
Fe

νi
− k2C2

Fd

ω2

(
1 − iνd

ω

)
= 0, (14)

where C2
Fd = ω2

pdV
2
Fe/ω

2
pe. The relation εr = 0, where

εr is the real part of the dielectric function, yields the
dispersion relation of the modified DA wave in the
Fermi quantum dusty plasma

ωDA = k CFd. (15)

Assuming kyLiωci < kCFi, where CFi = ωpiλFe is the ion-
acoustic speed at the electron-Fermi temperature, (14)
describes the DA drift instability given by

ω

ωDA

=
1 + i√

2

(
νi|Li|ωci

kyC
2
Fi

)1/2

− iνd

2ωDA

, (16)

where Li = −|Li| for a positive ion density gradient. We
note that DA wave in the Fermi quantum dusty plasma
grows in amplitude when the ion inhomogeneity scale
length is sufficiently small.

Next, we consider the strong quantum effect arising
through the Bohm potential compared with the effect
arising through the Fermi degenerate pressure. This
situation arises for a relatively low-density quantum
plasma and short wavelength DA waves. In this case,
the dispersion relation is obtained from

1+
4 ω2

pe

ω2
Qe

+fi−
ω∗

i

Ωi

(
1 − iνi

Ωi

)
−
ω2

pd

ω2

(
1 − iνd

ω

)
= 0, (17)

where Ωi > iνi is made.
However, for iνi�Ωi and iνd�ω, (14) reduces to

1 − ix −
ω2

pd/
(
4ω2

pe/ω
2
Qe

)
ω2

(
1 − iνd

ω

)
= 0, (18)

where

x =
δ�2k4

4memiνi

1

ky|Li|ωci

, (19)

with non-neutrality parameter in the dusty plasma, δ =
ni0/ne0. Assuming δ�2k4�4memiky|Li|ωciνi, the DA drift
instability is described by

ω

ωQDA

=
1 + i√

2

(
4 memi νiky|Li|ωci

δ�2k4

)1/2

− iνd

2ωQDA

, (20)

where the quantum DA wave frequency because of the
Bohm potential is given by

ωQDA =
ωpd ωQe

2 ωpe

=
�k2Zd

2
√
memd

√
nd0

ne0
. (21)

Here we note that the quantum modified DA wave
suffers instability for small νi|Li|.
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2. Dust-lower-hybrid drift wave instabilities
(fi�1/k2λ2

Fe�1)

For iνi �Ωi and iνd �ω in this case, the dielectric func-
tion from (13) reduces to

ε(ω, k) = 1 + i

(
ω2

pi

kyLiνiωcifi

)
− ω2

dlh

ω2

(
1 − iνd

ω

)
, (22)

where the DLH frequency is given by ωdlh = ωpdωci/ωpi.
For a positive density gradient, Li = −|Li|, the disper-
sion relation for a growing DLH drift wave is obtained
from (22) as,

1 − i ωci

νiky|Li|
− ω2

dlh

ω2

(
1 − iνd

ω

)
= 0. (23)

Thus, the DLH instability for ωci � νiky|Li| is given by

ω

ωdlh

=
1 + i√

2

(
νiky|Li|
ωci

)1/2

− iνd

2ωdlh

. (24)

Obviously, the long-wavelength DLH wave possesses
instability in the inhomogeneous dusty plasma.

Next, we consider iνi �Ωi and iνd �ω. Thus, from
(13) we have

1 +
ωci

ky|Li|(ω − kyuDi)
− ω2

dlh

ω2
= 0. (25)

For kyuDi > ω, we obtain a purely growing DLH
instability from

ω2 = −
ω2

dlh k
2
y |Li|uDi
ωci

. (26)

The growth rate of the purely growing DLH instability
depends on the diamagnetic drift velocity of ions.

In summary, we have investigated the DA and DLH
diamagnetic drift wave instabilities in the presence of
a static ambient or an applied magnetic field in a
collisional non-uniform quantum dusty plasma. For the
high-density plasma, the quantum effect on DA drift
instability arises through the Fermi degenerate pres-
sure. However, for a relatively low-density quantum
plasma (e.g., nano-scale microelectronics, semiconductor
plasmas, or laser-produced plasmas) and for short
wavelength, the quantum effect is taken through the
Bohm potential of quantum plasma. Various possible
instability conditions are found for the diamagnetic
DA wave instabilities. The linear dispersion relations
of DA wave are also found in quantum plasma (cf.
Opher et al. 2001; Shukla and Stenflo 2006a). In the
long wavelength approximation, we find conditions for
the DLH diamagnetic ion drift instabilities where the
quantum effect is not significant for the inhomogeneous
quantum dusty plasma.

We would like to stress here that in quantum dusty
magnetoplasmas, such as dense astrophysical environ-
ments, microelectronics, nano-structured materials,
high-density laser-produced plasmas, etc., the spatial
non-uniformity of parameters, particularly the plasma
densities of species, may be obviously quite common.
Equilibrium density non-uniformity in the presence of

magnetic fields gives rise to electrostatic drift waves in
quantum systems. Various possible instability conditions
are found for electrostatic diamagnetic drift instabilities.
These instabilities would excite possible electrostatic
drift waves, which give rise to the fundamental proper-
ties of non-uniform quantum plasmas. Electromagnetic
drift waves must also be explored in quantum dusty
magnetoplasmas which are beyond the scope of the
present paper. The nonlinear wave–wave interactions at
large-amplitude appear to be of interest also giving new
properties of non-uniform dusty quantum magnetoplas-
mas. The parametric cascading of electromagnetic drift
waves at large amplitudes in the presence of electrostatic
drift waves may also lead to the turbulence of quantum
plasmas, giving rise to various nonlinear effects.
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