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EQUIVALENT CONDITIONS OF A TREE MAP
WITH ZERO TOPOLOGICAL ENTROPY

TAIXIANG SUN, MINGDE XIE AND JINFENG ZHAO

Let f: T — T be a tree map with n end-points, SAP(f) the set of strongly almost
periodic points of f and CR(f) the set of chain recurrent points of f. Write E(f,T)
= {z : there exists a sequence {k;} with 2 < k; < n such that lim fkk2--ki(z) = g}
1—00

and g = f|cgr(s)- In this paper, we show that the following three statements are
equivalent:

(1) f has zero topological entropy.

(2) SAP(f) C E(f,T).

(3) Map wy : £ = w(z,g) is continuous at p for every periodic point p of f.

1. INTRODUCTION

Throughout this paper let N be the set of all natural numbers. Write Z* = NU {0},
N, = {1,2,...,n} and Z, = {0} UN,, for any n € N. Let T be a tree (that is, an
one-dimensional compact connected branched manifold without cycles ). A subtree of
T is a subset of T, which is a tree itself. For any z € T, denote by V' (z) the number
of connected components of T — {z}. D(T) = {a: € T : V(z) > 3} is called the set of
branched points of T and E(T) = {z € T : V(z) = 1} is called the set of end points
of T. Let NE(T) denote the number of end points of T. For any A C T, we use A,
A and [4] to denote the closure of A, the interior of A and the smallest subtree of T
containing A, respectively. For any z,y € T, we shall use |z, y] to denote [{z, y}] Define
(z,9] = [z,9] - {z} and (z,y) = (2,y] ~ {y}. For any z € T and any € > 0, write
B(z,e)={y €T :d(z,y) <e}.

Let C°(T') be the set of all continuous maps from T to T. For any f € C%(T) and
any z € T, the set of fixed points of f, the set of m-periodic points of f, the w-limit set of
z, the set of recurrent points of f, the set of chain recurrent points of f, the topological
entropy of f will be denoted by

F(f), Pu(f), w(z, f), R(f), CR(f), h(f),
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respectively. Write O(z, f) = {f*(z) : k € Z*}, E( f, T) = {z : there exists a sequence
{ki} with 2 < k; < NE(T) such that lim frikrki(z) = g} and P(f U Pn(f). Let
the metric space K(T)={ACT: Ais closed } with the Hausdorff metrlc H

H(A, B) = max{supd(a, B),supd(A,b)}.
a€A beB

DEFINITION 1: (1)) Let f € C*T), z,y € T and ¢ > 0. A finite sequence
{z;}o(m > 1) in T is called an e-chain (under f) from z to y if 2o = z,Zm = y
and d(f(x,_l) ;) < ¢ (for each i € N,,). We say z*/y if for any € > O there is an e-
chain from z to y. CE(z, f) = {y : 2%y and y*®{z} is called the set of chain equivalent
points of z.

The dynamics of a tree map, particularly equivalent conditions which a tree map
has zero topological entropy, have been studied intensively in the recent years [2, 3, 4].
In [5, 6] we obtained the following theorem.

THEOREM A. Let f € C%T) and NE(T) = n. Then the following five statements
are equivalent: :
(1) h(f)>0.
(2) there exist m € N and £ € CR(f) such that CE(z, f) N F(f™) # 0 and
[CB(z, /)] = U (™) #0. |

(3) thereexistm € N,p € F(f™) and s € CR(f)— {J P.(f™) such that s®/p.
i=1
(4) flp¢s) is not equicontinuous.

(5) there exist z € CR(f) — P(f) such that w(z, f) is a finite set.
In this paper we shall continue to study topological entropy of a tree map. Qur aim

is to find new equivalent conditions of a tree map with zero topological entropy. Our
main result is the following theorem.

THEOREM 1. Let f € C°(T) and g = f|cr(s). Then the following three statements
are equivalent:
(1) R(f)=0.
(2) SAP(f) C E(f,T).
(3) Mapw,: z — w(z,g) is continuous at p for every p € P(f).

2. PROOF OF THEOREM 1
In this section we shall give the proof of Theorem 1. To do this we need the following
definition and known results.

DEFINITION 2: ([6]) Let f € C°(T) and M is a closed subset of T with f(M) C M.
M is called divisible if there exist a non-degenerate proper subtree A of T' and mutually
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disjoint subsets
Bl(= BH-I)’ BQ, ey Bl(2 g l S NE(T))

. !
of T — A with M C |J B; such that

i=1
(i) For every i € Ny, B; is the union of some connected components of T — A.
(11) For every i € Ny, f(B,nM) =B;,uNM.

LEMMA 1. (3, 6, 7)) Let f € C%T), p € P(f) and NE(T) = n. Then

(1) P(f) = R(f).
(2) Ifh(f)=0, then w(z, f) is divisible for each z € T.
(8) Ifh(f) =0, then there exist 2 < iy,1a, ..., < n such that firiz-*(p) = p.
For f € C°(T) and any subtree S of T, let r5 : T — S denote the natural retraction
from T to S and gs =rso fls.
LEMMA 2. ([8]) Ifh(f) =0, then h(gs) = 0.
PROPOSITION 1. Let f € CUT). Ifh(f) =0, then SAP(f) C E(f,T).
PROOF: Suppose hA(f) =0 and £ € SAP(f).
If z € P(f), then it follows from Lemma 1 that there exist 2 < 4y,4y,...,i < nsuch
that fir%2-%(z) = z. Hence lim firte-42 (g} =z which implies z € E(f,T).
If z ¢ P(f), then by theorem A, we know that w(z, f) is an infinite set. Let
S = [w(z, f)], m = NE(S) and g = gs, then w(z, g) = w(z, f) and h(g) = 0. Now we
show the proposition by induction on m.
(1) If m = 2. As g is an interval map, it follows from [9, Proposition VI.19] that
T = ’l_i_)rgogz'(x) = ’llr&fz'(a:). Hence z € E(f,T).
(2) Suppose that the proposition holds for 2 € m < k. We need only to prove the
proposition still holds for m = k + 1.
Since h(g) = 0, it follows from Lemma 1 that there exist a non-degenerate proper
subtree A of S and mutually disjoint subsets

B(= Bi141),By,...,Bi(2 <1< k+1)
of S such that
(i) z€eBandw(z,f)CS-A= LIJBi.
(ii) For every i € Ny, B, is the unio;l_;f some connected components of S — A.
(iii) For every i € Ny, f(B; Nw(z, f)) = Biy Nw(z, f). 0

Case 1. If
NE([Binw(z, N)]) <k,

then
B Nw(z, f) = w(z, f)
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and h(f') = 0. By inductive hypothesis, we know that there exists a sequence {k;} with
2 < k; < k such that lim fl%ik2k: (7)) = z. Thus z € E(f,T).
$—00

Case 2. If
NE([Binw(z, f)]) =k+1,

then [ = 2,
NE([B:Nw(z, f)]) =2
and B Nw(z, f) = w(f(z), f2). Let S = [w(f(x),fz)] and g; = gs,, then

w(f(:::), gl) = w(f(l‘)’ f2)

and g; is an interval map. By [9, Lemma VI.14], we know that for any ¢t € N, there exist
mutually disjoint closed subintervals Cf,C3,. .., C%, of Sy such that

2t
() w(f@ha)c UCt
(i) Cf, C[CtUCE,,) for any i€ Nae_,.

(i) ¢¥(Cli_1 Nw(f(z),qm)) = C% Nw(f(z),g1) and ¢ (CY; N w(f(z), @1))
=C,_1 Nw(f(x), ¢1) for any j € Nye-1.

(iv) C}_,UCE C Ci7) for any j € Ny,
It is easy to see that for any t € N,

ot
Bl ﬂw(z,f) = Uf(cfmw(f(x)afz))v

i=1

and for any 7,5 € Nyt (i # j),
F(CEnw(f(z), ) NF(Cinw(f(z), f*) = 0.
Choose i; € Nyt such that
z € My(z) = f(C}, nw(f(z), f*))
Put M(z) = ﬁ M,(2), then Mi(z) D My(c) D --- and z € M(z).

CrLaM 1. z%fu for any u € [M(z)] and any z € w(z, f).
PROOF OF CLAIM 1: Take B, = C; > C} D CZ D --- such that

cit
diam(C},) < diam -(—’2i“—)(t € N),

then ﬁ Cl, = {w} € w(z, f).
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For any ¢ > 0, there exists 8 > 0 such that d(f(:v), f(¥)) < € whenever d(z,y) <8
with z,y € T. Since M(z ﬂ M,(z) and ﬂ = {w}, we may choose s,t € N such

that C%, C B(w,§) and f’( ) D [M(z)]. Thus for any u € [M(z)] there exists v € C,

such that f*(v) = u, therefore w, f(v), f2(v),..., f*(v) is an € chain from w to u, which

implies 2% w/y for any z € w(z, f). Claim 1 is proven. 1]
By Claim 1 and theorem A, we obtain the following.

CLamv 2. [M x)] NP(f)=0.

CrLam 3. M(z) = {z}.

PROOF OF CLAIM 3: Assume on that contrary that M(z) — {z} # 0. Lety
€ M(z) — {z}, then y € R(f) since M(z) is a closed subset and w(z, f) is a minimal set,
it follows from Lemma 1 and Claim 2 that z,y € 3([M(2)] ).

Let

£= min{d(u,v)/3 Tu,U € 6([M(:c)]),u # v},
then M(z) C Mi(z) C B(M(z),e) and f2* (My(x)) = M,(z) for some t € N. Since
z € SAP(f) = SAP(f*""), there exists N € N such that f2"'Vi(z) € B(z,¢) — [M(z)]
for all j € N. Again since y € R(f) = R(f¥*"'")), there exists j; € N such that
f¥Nn(y) € Bly,e) — [M(z)]. Thus z € [f*"'Ni(z),y] and y € [z, f¥7N(y)].
By [10, Lemma 1] we get [M(z)] N P(f) # 0, which contradicts Claim 2. Claim 3 is
proven. 0

Since M(z) = {z}, for any ¢ > 0, we may choose N € N such that M;(z) C B(z,¢)
for all ¢ > N. On the other hand, d(f**'(z),z) < € since f2*' (M,(z)) = M,(z). Thus
lim f¥(z) = z. Thus z € E(f, 7).

PROPOSITION 2. Let f € C%T) and g = flcr()- If h(f) = 0, then for every
p € P(f), map wy : £ — w(z, g) is continuous at p.

PROOF: Assume on the contrary that there exists p € Pn(f) such that w, is not
continuous at p. Then there exist ¢ > 0, sequence {z,} in CR(f) with z, — p such that

H(w(Zn, g),w(p, g)) > 2¢o.

Without loss of generality we may suppose (by taking a subsequence) that either
(i) SUPacu(z,.g) 4(a O(p, 9)) 2 2e0 for each n € N or
(il) SUPpeo(p,g) d(b; w(Tn,g)) 2 2e0 for each n € N.

CLAaIM 4. We can suppose that there exist r € Z,,, and k, — oo such that

d(g™"*" (za), (D)) > €0

Proor oF CLAIM 4: If (i) holds, then for each n € N we can choose [, € N such
that d(g™(zn), O(p, 9)) 2 €o With I, > I,_;. By taking a subsequence, we may assume
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that I, = mk, + r for some r € Z,,_, and all n € N. Thus we have

d(g™*"*"(za), f7(p)) 2 €o.

If (ii) holds, then by taking a subsequence, we may assume that there exists r € Z,,_;
such that
d(9"(p), w(Zs,g)) 2 26 for all n e N.

Thus, for each n € N, there exists k, > ko_; such that d(g*(z,), g"(p)) > €0 whenever
k > k,. Hence we have

d(gmk"+r(xﬂ)! fr(p)) 2 €o.

Claim 4 is proven. 0

Since CR(f) = CR(f™) and f(CR(f)) C CR(f), we may assume that r = 0 and
G = g™. Then p € Fix(G), z, € CR(G), z, — p and

d(p, G*(z,)) = €.

For convenience, we may assume that G**(z,) — b. It is easy to see that b € CE(p,G).
Let J = [CE(p, G)]. Since h(G) = 0, by theorem A, we may assume that for each n € N,
O(z,, G) is an infinite set and (U O(mn,G)) nJ=40.

n=1
Let T, and T are the connected components of T — J containing p and b, respec-
tively. By taking a subsequence, we may assume that {z,} C T, {G*(z,)} C To.
Put
sn = min{k > 0: G*(z,) € v},
then there exist a connected component T3 of T — J and a subsequence {s;,} of {s,}
such T3 N Ty = @ and G*»(z;,) € T3. For convenience, we may assume that s;, = sy,
G**(z,) — y and G**~!(z,) — 2. It is easy to show that y,z € CE(p,G). Hence
z = p = G(z) = y, which contradicts T3 N T} = @. Proposition 2 is proven.
PROPOSITION 3. Let f € C%T) and g = f|cr(y). If h(f) > 0, then
(1) there exists x € SAP(f) such that z & E(f,T).
(2) there exists p € P(f) such that w, : £ = w(z, g) is not continuous at p.
PROOF: Since h(f) > 0, it follows from [11] that there is the closure J of a connected
component of T — D(T), s € N and [a, b],[c,t] C J such that:
(i) (a8 Nfc,t) =0 and f*([a,b]) N f*([c.2]) D [a,b] U e, 1.
(ii) f*(a) = f°(t) =a and f°(b) = f*(c) =1t.
(iii) fi(z) € (z,t) if € (a,b) and f*(z) € (a,t) if z € (c,2).
(1) it is easy to see that f° has a periodic point z with period [ for each prime
number [ > NE(T). Obviously z & E(f,T).
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(2) Choose points {bs}2, such that

Fo(bx) = bx—y, f2(by) = b by € (a,bk—1), f7[b,b1) C [br—1,b]

for each k 2 2, then lim by = a. Since

k—o0

fED(b) = a, D (brir) =1,

it follows from [10, Lemma 1] that there exists axy1 € (bry1,br) such that axis
€ Fix(f**+?) and klirn ary1 = a. For any k € N, there exists iy € N; such that
—+00

f**(ax) € [b1,b]. Thus

H (w(an, g9),w(a,g)) > min{d(b,a),d(b,b1)}.

Which implies that w, is not continuous at a. 0
PROOF OF THEOREM 1: (1)<(2) follows from Proposition 1 and Proposition 3.
(1)<(3) is from Proposition 2 and Proposition 3. 0
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