EQUIVALENT CONDITIONS OF A TREE MAP WITH ZERO TOPOLOGICAL ENTROPY

TAIXIANG SUN, MINGDE XIE AND JINFENG ZHAO

Let $f: T \to T$ be a tree map with n end-points, SAP(f) the set of strongly almost periodic points of f and CR(f) the set of chain recurrent points of f. Write $E(f,T) = \{x : \text{there exists a sequence } \{k_i\} \text{ with } 2 \leqslant k_i \leqslant n \text{ such that } \lim_{i \to \infty} f^{k_1 k_2 \dots k_i}(x) = x\}$ and $g = f|_{CR(f)}$. In this paper, we show that the following three statements are equivalent:

- (1) f has zero topological entropy.
- (2) $SAP(f) \subset E(f,T)$.
- (3) Map $\omega_g: x \to \omega(x,g)$ is continuous at p for every periodic point p of f.

1. Introduction

Throughout this paper let N be the set of all natural numbers. Write $\mathbf{Z}^+ = \mathbf{N} \cup \{0\}$, $\mathbf{N}_n = \{1, 2, \dots, n\}$ and $\mathbf{Z}_n = \{0\} \cup \mathbf{N}_n$ for any $n \in \mathbf{N}$. Let T be a tree (that is, an one-dimensional compact connected branched manifold without cycles). A subtree of T is a subset of T, which is a tree itself. For any $x \in T$, denote by V(x) the number of connected components of $T - \{x\}$. $D(T) = \{x \in T : V(x) \geqslant 3\}$ is called the set of branched points of T and $E(T) = \{x \in T : V(x) = 1\}$ is called the set of end points of T. Let NE(T) denote the number of end points of T. For any $A \subset T$, we use \overline{A} , A and A to denote the closure of A, the interior of A and the smallest subtree of A containing A, respectively. For any A is A and A an

Let $C^0(T)$ be the set of all continuous maps from T to T. For any $f \in C^0(T)$ and any $x \in T$, the set of fixed points of f, the set of m-periodic points of f, the ω -limit set of x, the set of recurrent points of f, the set of chain recurrent points of f, the topological entropy of f will be denoted by

$$F(f), P_m(f), \omega(x, f), R(f), CR(f), h(f),$$

Received 26th September, 2006

Project supported by NSFC (10461001,10361001) and NFSGX 0447004.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

respectively. Write $O(x, f) = \{f^k(x) : k \in \mathbb{Z}^+\}$, $E(f, T) = \{x : \text{there exists a sequence} \}$ with $2 \le k_i \le NE(T)$ such that $\lim_{i \to \infty} f^{k_1 k_2 \dots k_i}(x) = x\}$ and $P(f) = \bigcup_{m=1}^{\infty} P_m(f)$. Let the metric space $K(T) = \{A \subset T : A \text{ is closed }\}$ with the Hausdorff metric H

$$H(A,B) = \max \bigl\{ \sup_{a \in A} d(a,B), \sup_{b \in B} d(A,b) \bigr\}.$$

DEFINITION 1: ([1]) Let $f \in C^0(T)$, $x, y \in T$ and $\varepsilon > 0$. A finite sequence $\{x_i\}_{i=0}^m (m \ge 1)$ in T is called an ε -chain (under f) from x to y if $x_0 = x, x_m = y$ and $d(f(x_{i-1}), x_i) \le \varepsilon$ (for each $i \in \mathbf{N}_m$). We say $x \xrightarrow{ch, f} y$ if for any $\varepsilon > 0$ there is an ε -chain from x to y. $CE(x, f) = \{y : x \xrightarrow{ch, f} y \text{ and } y \xrightarrow{ch, f} x\}$ is called the set of chain equivalent points of x.

The dynamics of a tree map, particularly equivalent conditions which a tree map has zero topological entropy, have been studied intensively in the recent years [2, 3, 4]. In [5, 6] we obtained the following theorem.

THEOREM A. Let $f \in C^0(T)$ and NE(T) = n. Then the following five statements are equivalent:

- (1) h(f) > 0.
- (2) there exist $m \in \mathbb{N}$ and $x \in CR(f)$ such that $CE(x, f) \cap F(f^m) \neq \emptyset$ and $\left[CE(x, f^m)\right] \bigcup_{i=1}^n P_i(f^m) \neq \emptyset$.
- (3) there exist $m \in \mathbb{N}, p \in F(f^m)$ and $s \in CR(f) \bigcup_{i=1}^n P_i(f^m)$ such that $s \xrightarrow{ch, f} p$.
- (4) $f|_{P(f)}$ is not equicontinuous.
- (5) there exist $x \in CR(f) P(f)$ such that $\omega(x, f)$ is a finite set.

In this paper we shall continue to study topological entropy of a tree map. Our aim is to find new equivalent conditions of a tree map with zero topological entropy. Our main result is the following theorem.

THEOREM 1. Let $f \in C^0(T)$ and $g = f|_{CR(f)}$. Then the following three statements are equivalent:

- (1) h(f) = 0.
- (2) $SAP(f) \subset E(f,T)$.
- (3) Map $\omega_g: x \to \omega(x,g)$ is continuous at p for every $p \in P(f)$.

2. Proof of Theorem 1

In this section we shall give the proof of Theorem 1. To do this we need the following definition and known results.

DEFINITION 2: ([6]) Let $f \in C^0(T)$ and M is a closed subset of T with $f(M) \subset M$. M is called divisible if there exist a non-degenerate proper subtree A of T and mutually

disjoint subsets

$$B_1(=B_{l+1}), B_2, \ldots, B_l(2 \leqslant l \leqslant NE(T))$$

of $\overline{T-A}$ with $M\subset\bigcup_{i=1}^l B_i$ such that

- (i) For every $i \in \mathbb{N}_l$, B_i is the union of some connected components of $\overline{T-A}$.
- (ii) For every $i \in \mathbb{N}_l$, $f(B_i \cap M) = B_{i+1} \cap M$.

LEMMA 1. ([3, 6, 7]) Let $f \in C^0(T)$, $p \in P(f)$ and NE(T) = n. Then

- (1) $\overline{P(f)} = \overline{R(f)}$.
- (2) If h(f) = 0, then $\omega(x, f)$ is divisible for each $x \in T$.
- (3) If h(f) = 0, then there exist $2 \le i_1, i_2, \dots, i_k \le n$ such that $f^{i_1 i_2 \dots i_k}(p) = p$.

For $f \in C^0(T)$ and any subtree S of T, let $r_S : T \to S$ denote the natural retraction from T to S and $q_S = r_S \circ f|_S$.

LEMMA 2. ([8]) If h(f) = 0, then $h(g_S) = 0$.

PROPOSITION 1. Let $f \in C^0(T)$. If h(f) = 0, then $SAP(f) \subset E(f,T)$.

PROOF: Suppose h(f) = 0 and $x \in SAP(f)$.

If $x \in P(f)$, then it follows from Lemma 1 that there exist $2 \le i_1, i_2, \ldots, i_k \le n$ such that $f^{i_1 i_2 \ldots i_k}(x) = x$. Hence $\lim_{n \to \infty} f^{i_1 i_2 \ldots i_k 2^s}(x) = x$, which implies $x \in E(f, T)$.

If $x \notin P(f)$, then by theorem A, we know that $\omega(x, f)$ is an infinite set. Let $S = [\omega(x, f)]$, m = NE(S) and $g = g_S$, then $\omega(x, g) = \omega(x, f)$ and h(g) = 0. Now we show the proposition by induction on m.

- (1) If m=2. As g is an interval map, it follows from [9, Proposition VI.19] that $x=\lim_{s\to\infty}g^{2^s}(x)=\lim_{s\to\infty}f^{2^s}(x)$. Hence $x\in E(f,T)$.
- (2) Suppose that the proposition holds for $2 \le m \le k$. We need only to prove the proposition still holds for m = k + 1.

Since h(g) = 0, it follows from Lemma 1 that there exist a non-degenerate proper subtree A of S and mutually disjoint subsets

$$B_1(=B_{l+1}), B_2, \ldots, B_l(2 \leq l \leq k+1)$$

of S such that

- (i) $x \in B_1$ and $\omega(x, f) \subset \overline{S A} = \bigcup_{i=1}^{l} B_i$.
- (ii) For every $i \in \mathbb{N}_l$, B_i is the union of some connected components of $\overline{S-A}$.
- (iii) For every $i \in \mathbb{N}_l$, $f(B_i \cap \omega(x, f)) = B_{i+1} \cap \omega(x, f)$.

CASE 1. If

$$NE([B_1 \cap \omega(x,f)]) \leq k,$$

then

$$B_1 \cap \omega(x, f) = \omega(x, f')$$

and $h(f^l) = 0$. By inductive hypothesis, we know that there exists a sequence $\{k_i\}$ with $2 \leq k_i \leq k$ such that $\lim_{s \to \infty} f^{lk_1k_2...k_s}(x) = x$. Thus $x \in E(f,T)$.

CASE 2. If

$$NE([B_1 \cap \omega(x,f)]) = k+1,$$

then l=2,

$$NE([B_2 \cap \omega(x,f)]) = 2$$

and $B_2 \cap \omega(x,f) = \omega(f(x),f^2)$. Let $S_1 = \left[\omega(f(x),f^2)\right]$ and $g_1 = g_{S_1}$, then

$$\omega(f(x), g_1) = \omega(f(x), f^2)$$

and g_1 is an interval map. By [9, Lemma VI.14], we know that for any $t \in \mathbb{N}$, there exist mutually disjoint closed subintervals $C_1^t, C_2^t, \ldots, C_{2^t}^t$ of S_1 such that

- (i) $\omega(f(x), g_1) \subset \bigcup_{i=1}^{2^t} C_i^t$.
- (ii) $C_{i+1}^t \subset [C_i^t \cup C_{i+2}^t]$ for any $i \in \mathbb{N}_{2^t \sim 2}$.
- (iii) $g_1^{2^t}(C_{2j-1}^t \cap \omega(f(x), g_1)) = C_{2j}^t \cap \omega(f(x), g_1)$ and $g_1^{2^t}(C_{2j}^t \cap \omega(f(x), g_1)) = C_{2j-1}^t \cap \omega(f(x), g_1)$ for any $j \in \mathbf{N}_{2^{t-1}}$.
- (iv) $C_{2j-1}^t \cup C_{2j}^t \subset C_j^{t-1}$ for any $j \in \mathbf{N}_{2^{t-1}}$.

It is easy to see that for any $t \in \mathbb{N}$,

$$B_1 \cap \omega(x, f) = \bigcup_{i=1}^{2^t} f(C_i^t \cap \omega(f(x), f^2)),$$

and for any $i, j \in \mathbb{N}_{2^{i}}$ $(i \neq j)$,

$$f(C_i^t \cap \omega(f(x), f^2)) \cap f(C_i^t \cap \omega(f(x), f^2)) = \emptyset.$$

Choose $i_t \in \mathbb{N}_{2^t}$ such that

$$x \in M_t(x) = f(C_{i_t}^t \cap \omega(f(x), f^2)).$$

Put $M(x) = \bigcap_{t=1}^{\infty} M_t(x)$, then $M_1(x) \supset M_2(x) \supset \cdots$ and $x \in M(x)$.

CLAIM 1. $z \xrightarrow{ch,f} u$ for any $u \in [M(x)]$ and any $z \in \omega(x,f)$.

Proof of Claim 1: Take $B_2=C^0_{j_0}\supset C^1_{j_1}\supset C^2_{j_2}\supset \cdots$ such that

$$\operatorname{diam}(C_{j_t}^t)\leqslant\operatorname{diam}\frac{(C_{j_{t-1}}^{t-1})}{2}(t\in\mathbf{N}),$$

then
$$\bigcap_{t=1}^{\infty} C_{j_t}^t = \{w\} \in \omega(x, f).$$

For any $\varepsilon > 0$, there exists $\delta > 0$ such that $d(f(x), f(y)) < \varepsilon$ whenever $d(x, y) < \delta$ with $x, y \in T$. Since $M(x) = \bigcap_{t=1}^{\infty} M_t(x)$ and $\bigcap_{t=1}^{\infty} C_{j_t}^t = \{w\}$, we may choose $s, t \in \mathbb{N}$ such that $C_{j_t}^t \subset B(w, \delta)$ and $f^s(C_{j_t}^t) \supset [M(x)]$. Thus, for any $u \in [M(x)]$ there exists $v \in C_{j_t}^t$ such that $f^s(v) = u$, therefore $w, f(v), f^2(v), \ldots, f^s(v)$ is an ε chain from w to u, which implies $z^{ch,f}_t w^{ch,f}_t u$ for any $z \in \omega(x,f)$. Claim 1 is proven.

By Claim 1 and theorem A, we obtain the following.

CLAIM 2. $[M(x)] \cap P(f) = \emptyset$

CLAIM 3. $M(x) = \{x\}.$

PROOF OF CLAIM 3: Assume on that contrary that $M(x) - \{x\} \neq \emptyset$. Let $y \in M(x) - \{x\}$, then $y \in R(f)$ since M(x) is a closed subset and $\omega(x, f)$ is a minimal set, it follows from Lemma 1 and Claim 2 that $x, y \in \partial \Big(\big[M(x) \big] \Big)$.

Let

$$\varepsilon = \min \Big\{ d(u, v)/3 : u, v \in \partial \Big([M(x)] \Big), u \neq v \Big\},$$

then $M(x) \subset M_t(x) \subset B(M(x), \varepsilon)$ and $f^{2^{t+1}}(M_t(x)) = M_t(x)$ for some $t \in \mathbb{N}$. Since $x \in SAP(f) = SAP(f^{2^{t+1}})$, there exists $N \in \mathbb{N}$ such that $f^{2^{t+1}Nj}(x) \in B(x, \varepsilon) - [M(x)]$ for all $j \in \mathbb{N}$. Again since $y \in R(f) = R(f^{2^{t+1}N})$, there exists $j_1 \in \mathbb{N}$ such that $f^{2^{t+1}Nj_1}(y) \in B(y, \varepsilon) - [M(x)]$. Thus $x \in [f^{2^{t+1}Nj_1}(x), y]$ and $y \in [x, f^{2^{t+1}Nj_1}(y)]$. By [10, Lemma 1] we get $[M(x)] \cap P(f) \neq \emptyset$, which contradicts Claim 2. Claim 3 is proven.

Since $M(x) = \{x\}$, for any $\varepsilon > 0$, we may choose $N \in \mathbb{N}$ such that $M_t(x) \subset B(x,\varepsilon)$ for all $t \geq N$. On the other hand, $d(f^{2^{t+1}}(x),x) < \varepsilon$ since $f^{2^{t+1}}(M_t(x)) = M_t(x)$. Thus $\lim_{s \to \infty} f^{2^s}(x) = x$. Thus $x \in E(f,T)$.

PROPOSITION 2. Let $f \in C^0(T)$ and $g = f|_{CR(f)}$. If h(f) = 0, then for every $p \in P(f)$, map $\omega_g : x \to \omega(x,g)$ is continuous at p.

PROOF: Assume on the contrary that there exists $p \in P_m(f)$ such that ω_g is not continuous at p. Then there exist $\varepsilon_0 > 0$, sequence $\{x_n\}$ in CR(f) with $x_n \to p$ such that

$$H(\omega(x_n,g),\omega(p,g)) \geqslant 2\varepsilon_0.$$

Without loss of generality we may suppose (by taking a subsequence) that either

- (i) $\sup_{a \in \omega(x_n,g)} d(a, O(p,g)) \geqslant 2\varepsilon_0$ for each $n \in \mathbb{N}$ or
- (ii) $\sup_{b\in O(p,g)} d(b,\omega(x_n,g)) \geqslant 2\varepsilon_0$ for each $n\in \mathbb{N}$.

CLAIM 4. We can suppose that there exist $r \in \mathbb{Z}_{m-1}$ and $k_n \to \infty$ such that

$$d(g^{mk_n+r}(x_n), f^r(p)) \geqslant \varepsilon_0.$$

PROOF OF CLAIM 4: If (i) holds, then for each $n \in \mathbb{N}$ we can choose $l_n \in \mathbb{N}$ such that $d(g^{l_n}(x_n), O(p, g)) \ge \varepsilon_0$ with $l_n > l_{n-1}$. By taking a subsequence, we may assume

that $l_n = mk_n + r$ for some $r \in \mathbb{Z}_{m-1}$ and all $n \in \mathbb{N}$. Thus we have

$$d(g^{mk_n+r}(x_n), f^r(p)) \geqslant \varepsilon_0.$$

If (ii) holds, then by taking a subsequence, we may assume that there exists $r \in \mathbf{Z}_{m-1}$ such that

$$d(g^r(p), \omega(x_n, g)) \geqslant 2\varepsilon_0 \text{ for all } n \in \mathbb{N}.$$

Thus, for each $n \in \mathbb{N}$, there exists $k_n > k_{n-1}$ such that $d(g^k(x_n), g^r(p)) \ge \varepsilon_0$ whenever $k > k_n$. Hence we have

$$d(g^{mk_n+r}(x_n), f^r(p)) \geqslant \varepsilon_0.$$

Claim 4 is proven.

Since $CR(f) = CR(f^m)$ and $f(CR(f)) \subset CR(f)$, we may assume that r = 0 and $G = g^m$. Then $p \in Fix(G)$, $x_n \in CR(G)$, $x_n \to p$ and

$$d(p, G^{k_n}(x_n)) \geqslant \varepsilon_0.$$

For convenience, we may assume that $G^{k_n}(x_n) \to b$. It is easy to see that $b \in CE(p,G)$. Let J = [CE(p,G)]. Since h(G) = 0, by theorem A, we may assume that for each $n \in \mathbb{N}$, $O(x_n,G)$ is an infinite set and $\left(\bigcup_{n=1}^{\infty} O(x_n,G)\right) \cap J = \emptyset$.

Let T_1 and T_2 are the connected components of $\overline{T-J}$ containing p and b, respectively. By taking a subsequence, we may assume that $\{x_n\} \subset T_1$, $\{G^{k_n}(x_n)\} \subset T_2$. Put

$$s_n = \min\{k \geqslant 0 : G^k(x_n) \not\in T_1\},\,$$

then there exist a connected component T_3 of $\overline{T-J}$ and a subsequence $\{s_{i_n}\}$ of $\{s_n\}$ such $T_3 \cap T_1 = \emptyset$ and $G^{s_{i_n}}(x_{i_n}) \in T_3$. For convenience, we may assume that $s_{i_n} = s_n$, $G^{s_n}(x_n) \to y$ and $G^{s_{n-1}}(x_n) \to z$. It is easy to show that $y, z \in CE(p, G)$. Hence z = p = G(z) = y, which contradicts $T_3 \cap T_1 = \emptyset$. Proposition 2 is proven.

PROPOSITION 3. Let $f \in C^0(T)$ and $g = f|_{CR(f)}$. If h(f) > 0, then

- (1) there exists $x \in SAP(f)$ such that $x \notin E(f,T)$.
- (2) there exists $p \in P(f)$ such that $\omega_g : x \to \omega(x,g)$ is not continuous at p.

PROOF: Since h(f) > 0, it follows from [11] that there is the closure J of a connected component of T - D(T), $s \in \mathbb{N}$ and $[a, b], [c, t] \subset J$ such that:

- (i) $(a,b] \cap [c,t) = \emptyset$ and $f^s([a,b]) \cap f^s([c,t]) \supset [a,b] \cup [c,t]$.
- (ii) $f^s(a) = f^s(t) = a$ and $f^s(b) = f^s(c) = t$.
- (iii) $f^s(x) \in (x,t)$ if $x \in (a,b)$ and $f^s(x) \in (a,t)$ if $x \in (c,t)$.
- (1) it is easy to see that f^s has a periodic point x with period l for each prime number l > NE(T). Obviously $x \notin E(f,T)$.

0

(2) Choose points $\{b_k\}_{k=1}^{\infty}$ such that

$$f^{s}(b_{k}) = b_{k-1}, \ f^{s}(b_{1}) = b \ b_{k} \in (a, b_{k-1}), \ f^{s}[b_{k}, b_{1}] \subset [b_{k-1}, b]$$

for each $k \ge 2$, then $\lim_{k \to \infty} b_k = a$. Since

$$f^{s(k+2)}(b_k) = a, f^{s(k+2)}(b_{k+1}) = t,$$

it follows from [10, Lemma 1] that there exists $a_{k+1} \in (b_{k+1}, b_k)$ such that $a_{k+1} \in \operatorname{Fix}(f^{s(k+2)})$ and $\lim_{k\to\infty} a_{k+1} = a$. For any $k \in \mathbb{N}$, there exists $i_k \in \mathbb{N}_k$ such that $f^{si_k}(a_k) \in [b_1, b]$. Thus

$$H(\omega(a_n,g),\omega(a,g)) \geqslant \min\{d(b_1,a),d(b,b_1)\}.$$

Which implies that ω_g is not continuous at a.

PROOF OF THEOREM 1: $(1)\Leftrightarrow(2)$ follows from Proposition 1 and Proposition 3. $(1)\Leftrightarrow(3)$ is from Proposition 2 and Proposition 3.

REFERENCES

- S. Choi, C. Chu and K. Lee, 'Recurrence in persistent dynamical systems', Bull. Austral. Math. Soc. 56 (1997), 467-471.
- [2] T. Li and X. Ye, 'Chain recurrent points of a tree map', Bull. Austral. Math. Soc. 59 (1999), 181-186.
- [3] L. Alseda and X. Ye, 'No division and the set of periods for tree maps', Ergodic Theory Dynamical Systems 15 (1995), 221-237.
- [4] X. Ye, 'No division and the entropy of tree maps', Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 1859-1865.
- [5] T. Sun, Research of dynamical systems of tree maps, Ph.D. Thesis (in Chinese) (Zhong-shan University, 2001).
- [6] T. Sun, 'Chain recurrent points and topological entropy of a tree map', Appl. Math. J. Chinese Univ. 17 (2002), 473-478.
- [7] X. Ye, 'The center and the depth of center of a tree map', Bull. Austral. Math. Soc. 48 (1993), 347-350.
- [8] L. Alseda, S. Baldwin, J. Llibre and M. Misiurewicz, 'Entropy of transitive tree maps', Topology 36 (1997), 519-532.
- [9] L. Block and W.A. Coppel, Dynamics in one dimension (Springer-Verlag, New York, 1992).
- [10] A.M. Blokh, 'Trees with snowflakes and zero entropy maps', Topology 33 (1994), 379-396.
- [11] J. Llibre and M. Misiurewicz, 'Horseshoes, entropy and periods for graph maps', Topology 32 (1993), 649-664.

Department of Mathematics Guangxi University Nanning Guangxi 530004 People's Republic of China

e-mail: stxhql@gxu.edu.cn