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MINIMISING QUADRATIC FUNCTIONALS OVER
CLOSED CONVEX CONES

M. SEETHARAMA GOWDA

In this article we show that, under suitable conditions a quadratic functional attains its
minimum on a closed convex cone (in a finite dimensional real Hilbert space) whenever it
is bounded below on the cone. As an application, we solve Generalised Linear Comple-
mentarity Problems over closed convex cones.

1. INTRODUCTION

Let H denote a finite-dimensional real Hilbert space. Let T (with adjoint T*)
be a linear operator on H, and let K be a closed convex cone in H. Let q £ H and
define f(x) = {Tx + q,x).

If T is coercive on K (that is 3 7 > 0 with (Tx, x) > 7 ||a;||2 Vx € K), then any
minimising sequence for the problem, min{/(;c): x € K}, is bounded, and hence has a
subsequence converging to a limit which minimises f(x) over K.

In this paper, we are interested in a generalisation of the Frank-Wolfe Theorem [1]:
If a quadratic function is bounded below on a non-empty polyhedral set then it attains
its minimum. Our generalisation of the Frank-Wolfe theorem, to a closed convex cone,
is stated in Theorem 1. (See [3, 4] for other generalisations). As an application, we
solve a generalised linear complementarity porblem over a cone K.

2. MINIMISING THE FUNCTIONAL f(x)

In what follows, q®q denotes the operator on H defined by (q (g> q)(x) = (q, x)q.

THEOREM 1. Suppose that

(i) x G K, {Tx, x) = 0 implies (T + T*)x = 0, and

(ii) ^:Li~ + q ® q] {K) is closed.

If f(x) = {Tx + q, x) is bounded below on K then there is an a0 G K such that
f(a0) = ndaf(x).

PROOF: Without loss of generality we can assume that T = T* . Since the result
is trivial if K = {0} , we assume that K ^ {0}. Let a be a lower bound for f(x) over
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K. Then, for any x £ K and A > 0, (TXx-hq, Xx) ^ a. Dividing by A2 and letting
A —> oo, we get

(2.1) {Tx, x}>0 {x £ AT).

Let M = K e r T n {q}± = {x € H: Tx = 0 A {q, x) = 0} . |

Case 1. : M D K = {0}. Let {xly x2, . . . , » „ , . . . } be a dense subset of if. For
n = 1 ,2 , . . . , let A"n be the closed convex cone generated by {x\, x2,-.., xn}. Then,
each Kn is a polyhedral cone (by definition), Kn C Kn+i , and given any k £ K there
are yn E Kn such that yn —+ k (as n —> oo). By the Frank-Wolfe theorem (stated
in Section 1), applied to T and Kn(n = 1 , 2 , . . . ) there exists an an £ Kn such that
f{x) ^ f(an) (Vx G -K\,), n = 1, 2, . . . . We claim that {an} is bounded. Suppose not,
and without loss of generality, let ||an|| —* °° • Since ai E iiTi C ii"n ,

(2.2) (Ta!+q, ai) > {Tan-{-q, an) >a (n = l, 2, . . . ) •

We can assume that i|°ni| converges to (say) d. Dividing (2.2) by ||an||2 and letting

n -> oo, we get 0 > (Td, d) > 0. Therefore (Trf, d) = 0. Since /fn C K and A"

is a closed cone, M°"|| £ K and hence d € A'. By condition (i), Td = 0. Since

(Tan,an) > 0 (n = l , 2, . . . ) (by 2.1),

qtai) > {Tan + 9 , a n ) > (q,an) (n = 1, 2, . . . ) .

Once again, divide throughout by ||ara|| and let n —> oo. Then

(2.3) 0 > ( g , d ) .

Since d 6 K, {TXd + q, Ad) > a (A ^ 0). But Td = 0. Hence A(g, d) ^ a (A ^ 0).

Thus

(2.4) ( 9 ,d)^0.

Since d £ A' and Td = 0, (2.3) and (2.4) show that ( i e M . Since MnK = {0}, d = 0.
This is a contradiction since ||d|| = 1. Thus, we have proved that {an} is bounded.
Assume, without loss of generality, that an —• a0 € K . Now for any x £ K, there exists
yn £ A'n such that yn —* x. Since /(#„) ^ /(«n) for all n , we have f(x) > /(«o)-
Thus ao minimises / ( K ) over K.

Case 2. : MnK ^ {0} . Let P denote the orthogonal projection from H onto ML =

Ran T + spa.n{q}. Since (ii) implies that K + Ker (T -{- q® q) = K + Ker P is closed,

we see that P(K) is a closed convex cone in M1-. Let x £ P(K) and (Taj, i ) = 0.
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Upon writing x ~ Pk for some k £ K, we see that (TPk, Pk) = 0. Since P is a pro-
jection and k - Pk £ k e r T , we have (Tk, k) = (TPk, Pk) =0. By (i), Tk =0 which
implies that T(Pk) = 0. Hence we have proved that x £ P(K) and (Tx, x) = 0 imply
Tx = 0. We also have for any x £ K, / ( x ) = (Tx + ?, x) = (TF.T. + q, Px) = / ( F x ) .
Clearly M n P ^ f ) = {0}. Thus by Case 1, applied to T and P ( A ) , there exists a
60 G P(K) such that f(z) > f(b0) (Vz £ P( f f ) ) .

Writing 60 = Pa0 for some a0 £ /f,' we see that f(x) = f(Px) > /(&o) =

/(o0) (VxeK).
The following example shows that if condition (ii) in the above theorem were to be

omitted then the result need not be true.

Example. In R3 , let K = {(x,y,z): x,z > 0A2a:z ^ y2} . T is defined by T(x,y,z) =
(x,y,0) and q — (1,1,0). Since T is a projection, (Tk, k) = 0 implies Tk = 0. For
k = (x,y, z) £ K , we have (Tk + q,k) = x(x + l)+y(y + 1) = (a; + | ) +(j/+^) — | ^

- | . Hence the quadratic functional f(k) = (Tk + q, k) is bounded below on K . Now

. . „, 1 .
\ + inf{||(x,y) - ( - ^ , - | : (*)«) = (0, 0) or x > 0},

II \ * ^ /
1 1

but this inf is never attained, since the distance between (—5, — f) and the open
right half plane U{(0, 0)} is never attained. We finally observe that (T + q ® g)A' is
not closed. (For example, (1, 2, 0) is a limit point of (T + q ® q)K that is not in
{T + q®q)K.)

Remark. Here is a minimisation result that is valid in a reflexive Banach space. Let B
be a reflexive Banach space (with dual B* ) . Let T : B —• B* be linear and continuous,
let K be a closed convex cone in B, and q € B*. Suppose that

(i) K is separable and 0 ^ weak-closure {x £ K : ||x|| = 1},
(ii) x »—» (Tx, x) is weak-lsc on K, and

(iii) {xeK:(Tx,x}=0, (q,x}= 0} = {0} .

If f(x) = (Tx + g,x) is bounded below on K then f attains its minimum on K.

We sketch a proof:

(a) If B is finite dimensional and K is polyhedral, we can identify B (and
B" ) with (some) Rn and use the Frank-Wolfe Theorem.

(b) If K is polyhedral in B then X = K — K is a finite dimensional subspace
of B. Let J denote the inclusion map from X into B. Then J*T maps
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X into X* , and /(*) = {Tx + q,x} = (J'Tx + J"q, x) (V x G K). We
can now use (a).

(c) If if is a (general) closed convex cone in B then the result is obtained
by appropriately modifying the proof of Theorem 1 (and using the fact
that a bounded sequence in B has a weakly convergent subsequence).

3. AN APPLICATION TO GENERALISED LINEAR COMPLEMENTARITY PROBLEMS

Given T,K,q, we define a Generalised Linear Complementarity Problem as follows:

GLCP{T,K,q): Find x0 £ K such that (Tx0 + q,k}^0 (Wk EK),

and (Tx0 + q,x0) = 0.

If there is an x g K such that (Tx + q,k) ^ 0 (Vfc G K) then we say that
GLCP(T,K,q) is feasible. If

(i) (r*,*) ^ 0 (VfcG J0 ,and
(ii) k £ K, {Tk,k) = 0 implies (T + T')k = 0, then we say that T is

copositive plus on K .

THEOREM 2. Suppose that

(i) T = T%
(ii) T is copositive plus on K, and

(iii) (T + q <g> q)K is closed.

Then the feasibility of GLCP(T, K, q) implies its solvabih'ty.

LEMMA. Suppose that T is self-adjoint and copositive plus on

Cl[K + KerT D {q}1-]. If there is an o0 € K such that (Ta0 + q,k) > 0 (VJfc € K),

then there is an a € R such that (Tk + q,k) ^ a (Vk G K).

PROOF OF THE LEMMA: Suppose that there exists an xn £ K such that
(Txn + q,xn) ^ — n (n = l , 2 , . . . ) . Clearly {xn} is unbounded. Without loss of
generality, we can assume that \\xn\\ —» oo and d := lirn ^"M exists in K. We have

{Txn + q,xn) < 0 (n = l ,2, . . . ) and

(<Z)£n) < -(Txn,xn) < 0 (n — 1,2,...) (since T is copositive plus on K).

We see immediately that (Td, d) ^ 0 and (g, d) ^ 0. Since T is self-adjoint and
copositive plus on K, (Td, d) ^ 0 implies Td = 0. Further, since (Too + q,k) ^
0 (VJk G /f) we have

(q,d) = (Ta0+q,d)>0.
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Thus (q, d) = 0. Hence d G M: - K e r T n { g } x . If M = {0}, we have a contradiction

since ||rf|| = 1. So assume that M ^ {0} , and let P be the orthogonal projection from

H onto M x ( = RanT + span{g}). We observe that

(i) T is copositive plus on P(K),

(ii) (T{Pa0) + q, Pk) = (Ta0 + q, k) > 0 (V k G K), and

(iii) {T{Pxn) + q,Pxn) = (Txn + q,xn)^-n (n = 1,2,...).

We can assume that 2 = lknjj£f^ exists. Then d G clP(K), (Td,d) = 0, and
{q, d) = 0. Writing d = Px for some x G H, we get (Tx, x) = {Td, d) = 0 and
(q,x) = (q,d) = 0. Now x belongs to ^ ( d P ^ ) ) = <*[K + Ker P]. Since T
is copositive plus on cl\K + KerP], {Tx, x) = 0 gives Tx = 0. Thus Tx = 0 and
(5, E) = 0. Hence x £ M. Since M = KerP, we have d = Px — 0 contradicting
||3|| = 1. Hence (Tk + q, k) is bounded below on K . H

PROOF OF THEOREM 2: By the feasibility of GLCP(T, K, q), there exists an
a0 € K such that (Ta0 + q, k) ^ 0 (Vfc G A'). Thus 2a0 G A" and (T(2a0) + 2g, fc) ̂
0 (Vfc€ JK"). By (iii), ir + Ker(T + 9<8)g) = AT + KerT n {9}-L is closed. By (ii), T
is copositive plus on K + KerT fl {9}"1". By the above Lemma, f(k) = (Tk + 2q,k)
is bounded below on K. Now Theorem 1 shows that there is a fco G K such that
(Tk + 2q, k) > (Tk0 + 2q, k0) (Vfc G A'). Since A is a convex cone, Jfc0 + t(k - k0) 6 K
whenever k G A and t G (0, 1]. We replace k, in the above inequality, by fco +
t(k — k0). Upon expanding the left hand side, we get, after cancellation of suitable
terms,

t(Tk0 + 2q,k-ko)+ t(T(k - t0),*o> + t2(T(k -ko),k- k0) > 0.

We divide throughout by t and let t —» 0. Since T is self-adjoint, we get
(2Tko+2q,k-ko} > 0 (k G K). Hence (Tko+q,k-ko) > 0. Finally, putting fc = 0 and
A; = 2fc0 successively, we get (Tko+q,ko) = 0. Also, (Tko+q,k) = (Tko+q,k-ko) ^ 0.
Thus k0 solves the GLCP{T, K,q). I

Remark. Theorem 2 also appears in [2] where one finds a direct proof (without using
the quadradic functional). [2] contains more results about Generalized Linear Comple-
mentarity Problems.
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