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MINIMISING QUADRATIC FUNCTIONALS OVER
CLOSED CONVEX CONES

M. SEETHARAMA GOwWDA

In this article we show that, under suitable conditions a quadratic functional attains its
minimum on a closed convex cone (in a finite dimensional real Hilbert space) whenever it
is bounded below on the cone. As an application, we solve Generalised Linear Comple-
mentarity Problems over closed convex cones.

1. INTRODUCTION

Let H denote a finite-dimensional real Hilbert space. Let T (with adjoint T*)
be a linear operator on H, and let K be a closed convex cone in H. Let ¢ € H and
define f(z) = (T'z +q,z).

If T is coercive on K (thatis 34 > 0 with (Tz, ©) > v||z}|* V2 € K ), then any
minimising sequence for the problem, min{f(x): « € K}, is bounded, and hence has a
subsequence converging to a limit which minimises f(z) over K.

In this paper, we are interested in a generalisation of the Frank-Wolfe Theorem [1]:
If a quadratic function is bounded below on a non-empty polyhedral set then it attains
its minimum. Our generalisation of the Frank-Wolfe theorem, to a closed convex cone,
is stated in Theorem 1. (See [3, 4] for other generalisations). As an application, we

solve a generalised linear complementarity porblem over a cone K.
2. MINIMISING THE FUNCTIONAL f(=z)
In what follows, ¢ ® ¢ denotes the operator on H defined by (¢ ® ¢)(z) = (g, z)g.

THEOREM 1. Suppose that
(i) z€ K, (Tz,z) =0 implies (T +T*)z =0, and
(i) [T +q@q] (K) is closed.
If f(z) = (Tz + q, z) is bounded below on K then there is an ag € K such that
f(ag) = min f(z).
ProOOF: Without loss of generality we can assume that T' = T™. Since the result
is trivial if K = {0}, we assume that K 3 {0}. Let a be a lower bound for f(z) over
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K. Then, forany ¢ € K and A >0, (T'Az + ¢, Az} > a. Dividing by A? and letting

A — o0, we get
(2.1) (Tz,z) 20 (z € K).

Let M =KerTn{g}t ={zx € H: Tx =0 A (g, ) = 0}. n

Case 1. : M n K = {0}. Let {1, 23,...,%,,...} be a dense subset of KA. For
n=1,2,..., let K,, be the closed convex cone generated by {z;, z3,..., ©,}. Then,
each K, is a polyhedral cone (by definition), K,, C Knt1, and given any k € K there
are y, € K, such that y, — k (as n — oo0). By the Frank-Wolfe theorem (stated
in Section 1), applied to T' and K,(n =1, 2,...) there exists an a, € K,, such that
f(z) = flan) (Vz € K,),n=1,2,.... Weclaim that {a,} is bounded. Suppose not,
and without loss of generality, let ||a,|| — oco. Since a; € K3 C Kp,

(2.2) (Tai+q,a1) 2 (Tap+ g, e,) 2 (R=1,2,...).

We can assume that TIZ_:»LH converges to (say) d. Dividing (2.2) by |lan||* and letting
n — oo, we get 0 2 (T'd,d) > 0. Therefore (T'd,d) = 0. Since K,, C K and K
is a closed cone, ]]Z_:H € K and hence d € K. By condition (i), Td = 0. Since
(Tan, an) 20 (n=1,2,...) (by 2.1),

(Tal + Qaal) Z <Ta'n + q,an) 2 (‘Lan) (n =1, 2, )
Once again, divide throughout by ||a.l| and let n — co. Then
(2.3) 03> (g,d).

Since d € K, (TAd+ g, Ad) 2 « (A >0). But Td = 0. Hence A{g,d) 2 a (A >0).
Thus

(2.4) (g,d) > 0.

Since d € K and T'd =0, (2.3) and (2.4) show that d € M. Since MNK = {0},d = 0.
This is a contradiction since ||d|| = 1. Thus, we have proved that {a,} is bounded.
Assume, without loss of generality, that a,, — ag € K. Now for any = € K, there exists
Yn € A, such that y, — z. Since f(y,) = f(a,) for all n, we have f(z) = f(ao).
Thus a¢ minimises f(z) over K.

Case 2. : MNIK # {0}. Let P denote the orthogonal projection from H onto M+ =
RanT + span{q}. Since (ii) implies that K + Ker(T + ¢® ¢) = K + Ker P is closed,
we see that P(K) is a closed convex cone in ML. Let z € P(X) and (T, z) = 0.
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Upon writing = = Pk for some k € K, we see that (T'Pk, Pk) = 0. Since P is a pro-
jection and k — Pk € ker T, we have (Tk, k) = (T'Pk, Pk) = 0. By (i), Tk = 0 which
implies that T(Pk) = 0. Hence we have proved that ¢ € P(K) and (T'z, z) = 0 imply
Tz = 0. We also have for any z € K, f(z) = (Tz+ q,z) = (TPz + q,Pz) = f(Pz).
Clearly M N P(K) = {0}. Thus by Case 1, applied to T and P(K), there exists a
by € P(K) such that f(z) = f(bo) (Vz € P(K)).
Writing by = Pay for some ay € K, we see that f(z) = f(Pz) > f(by) =
flay) (Ve € K).

The following example shows that if condition (ii) in the above theorem were to be

omitted then the result need not be true.

Example. In R? let K = {(z,y,2): =,z > 0A2zz > y*}. T isdefined by T(z,y,z) =
(z,y,0) and ¢ = (1,1,0). Since T is a projection, (Tk, k) = 0 implies Tk = 0. For
k= (z,y,z) € K,wehave (Tk+g,k) =z(z +1)+y(y+1) = (¢ + %)2+(y + %)2—-;— >
—1. Hence the quadratic functional f(k) = (Tk + ¢, k) is bounded below on K. Now

- (4)

2
: (x,y) = (0, 0) or = > 0},

I

inf{f(z): k € K} —%+inf{

+

AN

1
2
1
4
but this inf is never attained, since the distance between (——;—, ~%) and the open
right half plane U{(0, 0)} is never attained. We finally observe that (T + ¢® ¢)K is
not closed. (For example, (1, 2,0) is a limit point of (T 4+ ¢ ® ¢)K that is not in
(T+q¢®q)K.)

Remark. Here is a minimisation result that is valid in a reflezive Banach space. Let B
be a reflexive Banach space (with dual B*). Let T : B — B* be linear and continuous,

let K be a closed convex cone in B, and ¢ € B*. Suppose that
(i) K is separable and 0 ¢ weak-closure {z € K : ||x|| = 1},
(i) zw (Tz,z) is weak-Isc on A, and
(iii) {z e K:(Tz,z) =0, (q, z) =0} = {0}.
If f(z) = (Tz + q,z) is bounded below on K then f attains its minimum on K. -
We sketch a proof:
(a) If B is finite dimensional and K is polyhedral, we can identify B (and
B*) with (some) R™ and use the Frank-Wolfe Theorem.
(b) If K ispolyhedralin B then X = K — K is a finite dimensional subspace
of B. Let J denote the inclusion map from X into B. Then J*T maps
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X into X*, and f(z) = (Tz + ¢,z) = (J*Tz + J*q,z) (Vz € K). We
can now use (a).

() If K is a (general) closed convex cone in B then the result is obtained
by appropriately modifying the proof of Theorem 1 (and using the fact
that a bounded sequence in B has a weakly convergent subsequence).

3. AN APPLICATION TO GENERALISED LINEAR COMPLEMENTARITY PROBLEMS

Given T, K, q, we define a Generalised Linear Complementarity Problem as follows:

GLCP(T,K,q): Find z¢ € K such that (Tzo + ¢,k) > 0 (Vk € K),
and (Txzy + ¢,%0) = 0.

If there is an ¢ € K such that (Ts + ¢,k) > 0 (Vk € K) then we say that
GLCP(T,K,q) is feasible. If
(i) (Tk,k) >0 (Vk€ K), and
(i) k € K, (Tk,k) = 0 implies (T'+ T*)k = 0, then we say that T is
copositive pluson K.
THEOREM 2. Suppose that
i T=1~,
(ii) T is copositive plus on K, and
(iti) (T +¢® q)K is closed.
Then the feasibility of GLCP(T, K,q) implies its solvability.

LEMMA. Suppose that T is self-adjoint and copositive plus on
CI[K + KerT n{q}*]. If there is an ay € K such that (Tay + ¢,k) > 0 (Vk € K),
then there is an a € R such that (Tk+q,k) 2 o (Vk€K). '

PROOF OF THE LEMMA: Suppose that there exists an z, € K such that
(Tzn + ¢,zn) < —n (n=1,2,...). Clearly {z,.} is unbounded. Without loss of
generality, we can assume that ||z,|| — o and d:= lim 2o, exists in K . We have

(Tzn + ¢,2n) <0 (n=1,2,...) and
(¢,2n) K ~(Tzn,zn) <0 (n=1,2,...) (since T is copositive plus on K).

We see immediately that (T'd, d) < 0 and (g¢,d) < 0. Since T is self-adjoint and
copositive plus on K, (Td,d) < 0 implies T'd = 0. Further, since (T'ag + ¢,k) >
0 (Vk € K) we have

(g,d) = (Tag + ¢q,d) > 0.
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Thus (g, d) = 0. Hence d € M: = KerTn{g}*. If M = {0}, we have a contradiction
since ||d|| = 1. So assume that M # {0}, and let P be the orthogonal projection from
H onto M{(= RanT + span{q}). We observe that

(i) T is copositive plus on P(K),

(ii) (T(Pao)+ q,Pk) = (Tao + q,k) 20 (Vk € K), and

(i) (T(Pz,)+q,Pzn) = (Tzn+¢,zn) < —n (n=1,2,...).
We can assume that d = lim"—g—:&" exists. Then d € clP(K), (Td,d) = 0, and
(¢, d) = 0. Writing d = Pz for some = € H, we get (Tz,z) = (Td,d) = 0 and
(¢,2) = (¢,d) = 0. Now z belongs to P~!(clP(K)) = cl[K + KerP]. Since T
1s copositive plus on cl[K + Ker P], (Tz, z) = 0 gives Tz = 0. Thus Tz = 0 and
(g,z) = 0. Hence z € M. Since M = Ker P, we have d = Pz = 0 contradicting
|ldll = 1. Hence (Tk + q,k) is bounded below on K. n

PROOF OF THEOREM 2: By the feasibility of GLCP(T, K, q), there exists an
ag € K such that (T'ag + q,k) 2 0 (Vk € K). Thus 2ap € K and (T'(2a0) + 2¢,k) >
0 (Vk€ K). By (iii), K + Ker(T +¢®g¢) = K + KerT'n {g}* is closed. By (ii), T
is copositive plus on K + KerT N {g}*. By the above Lemma, f(k) = (Tk + 2g,k)
is bounded below on K. Now Theorem 1 shows that there is a ky € K such that
(Tk+2q,k) > (Tko +2q,ko) (Vk € K). Since K is a convex cone, ko +#(k — ko) € K
whenever k € K and t € (0, 1]. We replace k, in the above inequality, by k¢ +
t(k — ky). Upon expanding the left hand side, we get, after cancellation of suitable

terms,
t(Tko + 2q,k - ko) + t(T(k - ko),ko) + tz (T(k - ko),k - ko) 2 0.

We divide throughout by ¢ and let ¢ — 0. Since T is self-adjoint; we get
(2Tko+2q,k—kg) > 0 (k € K). Hence (Tko+q,k—ko) > 0. Finally, putting k£ = 0 and
k = 2kq successively, weget (Tko+q,ko) = 0. Also, (Tko+q,k) = (Tlco+q,k—ko) =>0.
Thus ko solves the GLCP(T, K, q). ]

Remark. Theorem 2 also appears in 2] where one finds a direct proof (without using
the quadradic functional). [2] contains more results about Generalized Linear Comple-

mentarity Problems.
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