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Abstract

Let Gq be the group of permutations of the finite field Fq of odd order q that can be represented by
polynomials of the form axiq+v>/2 + bx with a, b e Fq. It is shown that Gq is isomorphic to the
regular wreath product of two cyclic groups. The structure of Gq can also be described in terms of
cyclic, dicyclic, and dihedral groups. It also turns out that Gq is isomorphic to the symmetry group of a
regular complex polygon.

1980 Mathematics subject classification (Amer. Math. Soc): 12 C 05, 20 B 25, 20 E 22, 51 F 15

1. Introduction

Let F be the finite field of order q. Then every mapping from Fq into itself can be
uniquely represented by a polynomial in Fq[x] of degree less than q,
and composition of mappings corresponds to composition of polynomials
mod(jc* — x) (see [9, Chapter 7]). In particular, every group of permutations of Fq

can be represented by a set of polynomials in Fq[x] of degree less than q that is
closed under composition vao&(xq — x). According to a well-known definition
(see [8, Chapter 4], [9, Chapter 7]), a polynomial / over Fq for which the
corresponding polynomial mapping c e Fq -* f(c) is a permutation is called a
permutation polynomial of Fq. Numerous papers have been written on the
structure of permutation groups represented by a given group of permutation
polynomials of F under composition mod(x'7 — x); see for example Carlitz [1],
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Fryer [6], Lausch and Nobauer [8, Chapter 4], Lidl and Niederreiter [9, Chapter
7], Nobauer [12], and Wells [15], [16].

In the present paper we determine the structure of a group of permutation
polynomials that was discovered recently by Niederreiter and Robinson [11]. In
Remark 2 on page 205 of that paper it is pointed out that for odd q the set of
polynomials in Fq[x] of the form ax(q+V)/2 + bx with a, b e Fq is closed under
composition mod(jc<? - x). In particular, the set of permutation polynomials of Fq

of this form is a group under composition mod(x? — x), and we shall denote this
group by Gq. We will establish some preparatory results in Section 2. These will
enable us to determine the structure of Gq in Section 3. In fact, several descrip-
tions of the structure of Gq will be given. We are grateful to the referee for
pointing out that Gq can also be described in terms of wreath products.

It is convenient to identify a polynomial over Fq with the corresponding
polynomial mapping, so that an identity / = g with / , g e Fq[x] means f = g
modC*17 — x). Throughout the rest of this paper, q will be an odd prime power
and n will denote the value (q — l ) /2 . The group Gq can then be described as the
group of permutations of Fq of the form axn+l + bx with a, b e Fq.

2. Preparatory results

We determine first the order of the group Gq. We write \G\ for the order of a
finite group G.

LEMMA 1. \Gq\ = In2.

PROOF. Let N be the number of permutations of Fq of the form/(x) = xn+1 +
bx with b G Fq. Clearly, f(x) is a permutation of Fq if and only if af{x) is a
permutation for a e Fq, a ± 0. If a ^ 0 is fixed, then the set of polynomial
mappings ax"+1 + bx with b e Fq also contains exactly N permutations. If a = 0,
then bx is a permutation if and only if b =t 0. It follows that

(1) \Gq\ = ( q - l ) N + q - l = ( q - 1 ) ( N + 1 ) = 2 n ( N + 1 ) .

By Theorem 5 of [11], xn+l + bx is a permutation polynomial of Fq if and only
if ^{b2 — 1) = 1, where $ is the quadratic character defined by ^(0) = 0 and

= 1 or -1 depending on whether c is a nonzero square or a nonsquare in Fq.
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Consequently,

N= E ^[1 + Hb2 - i)] = -l + \ E [i + Hb2 - i)]

where we used Theorem 5.48 in [9] to evaluate the character sum. The lemma
follows now from (1).

In order to determine the structure of Gq, we make use of the following law of
composition observed in [11, p. 205]: iffy(x) = ax" + 1 + bx and/2(x) = cxn + 1 +
dx with a, b, c, d e Fq, then

(2) (fi'fi)(x) = (ae + bc)x"+l +(ah + bd)x,

where ° denotes composition and

(3) e = He + d)"+l + \{d - c)"+\ h = \(c + d)"+l - \(d - c)" + 1.

We construct now a special element of Gq which will preve useful in the sequel.
We recall that a generator of the cyclic multiplicative group of F is called a
primitive element of Fq.

LEMMA 2. Let r be a primitive element of Fq. Then

f{x) = \{\-r2)x»^ + h{\+r*)x

is an element of Gq of order n.

PROOF. For g(x) = axn+1 + bx with a, b e Fq we calculate g° f. The ap-
propriate values of e and h from (3) are e = \{\ + r2) and h = \{\ — r1), so that
(2) yields

( * • / ) ( * ) = i[fl(l + r2) + 6(1 - r2)]x»+1 + H«(l - r2) + b{\ + r*)]x.

A straightforward induction on m shows then that the w-fold composition/"1 is

given by

(4) fm(x) = Hi - r2m)xn+1 + Hi + rlm)x.

It follows that fm is the identity mapping if and only if rlm = 1, and since the
order of r is 2M, the least positive m for which fm is the identity mapping is
m = n. In particular,/is a permutation of Fq and thus an element of Gq.

Let r be a fixed primitive element of Fq and let X denote the element of Gq

constructed in Lemma 2. Furthermore, let Y be the element of Gq given by the
linear permutation polynomial rx of Fq. This notation will be used throughout the
rest of this section.
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LEMMA 3. Every element of Gq can be represented uniquely in the form X'YJ with
0 < / < n,0 <7 < In.

PROOF. Since \Gq\ = 2n2 by Lemma 1, it suffices to show that the elements
X'YJ, 0 «£ / < n, 0 =$7 < In, are all distinct. Suppose X'YJ = XkYl with 0 < /,
k < n and 0 <y, / < 2«, where we can assume (with no loss of generality) that
1 > k. With m = i - k we get then Xm = Y'~j, so that Xm is represented by a
linear polynomial. The formula for Xm in (4) shows that this is only possible if
r2m = 1. Since 0 < m < n, it follows that m = 0, hence / = k. Then YJ = Y1, and
since Y is an element of order In, we gety = /, and the proof if complete.

The following lemma gives a set of generators and relations for the group Gq.
The symbol 1 will henceforth also denote the identity element of a group. The
correct interpretation of the symbol 1 will always be clear from the context.

LEMMA4. Gq = (x,Y\Xn = Y2n = (X^Y)2 = \,XY2= Y2x).

PROOF. The fact that X and Y generate Gq follows already from Lemma 3.
Now X" = 1 follows from Lemma 2 and Y2" = 1 is clearly satisfied. Moreover,
X~l = X"~l is represented by

i ( l - r2*"-1*)*^1 + Kl + r2*"-1))* = Hi - r-2)x"+1 + ±(1 + r~2)x
according to (4). Hence X~XY and Y'XX are both represented by

Kr"1 - r)x"+1 + H'"1 + 0 *
since r" = - 1 . This implies (X'XY)2 = 1. The remaining relation XY2 = Y2X
can be checked easily.

On the basis of the relations in Lemma 4 we can calculate the group law for Gq.

LEMMA 5.

Xi+kYj+i if j is even,
(5)

PROOF. The first part of (5) is clear since Y2 commutes with X by Lemma 4.
Next we note that (YX'1Y'1yk = YXkY\ and since YX^Y'1 = (YX-1Y)Y~2

= XY'2 by the third relation in Lemma 4, we have

YXk = (YX-xY-lykY = (XY-2)'kY = X-kY2k+1.

The second part of (5) follows now, since for oddy we get

(X'YJ)(XkY') = XtYJ-lYXkY'= (X'YJ
_ ^i-kyj + l+lk

where we used the first part of (5) in the last step.
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3. The structure of the group

We convert now the presentation in Lemma 4 into a simpler one. It is clear that
Gq is also generated by X and R = X~XY. From Lemma 4 we have R2 = 1, and
the relation XY2 = Y2X can be rewritten as X(XR)2 = (XR)2X, or (AT?)2 =
(RX)2. From the fact that X commutes with (AT?)2, one obtains easily by
induction that (AT?)2* = (XkR)2 for all positive integers k. In particular, the
relation Y2" = 1 in Lemma 4 follows. Hence Gq has the presentation

= (x, R\X" = R2 = 1, (AT?)2 = (RX)2).

Thus Gq is the group w[4]2 in the notation of Coxeter and Moser [4]. More
generally, for any positive integer m the group w[4]2 is defined by

m[4]2 = (* , R\Xm = R2 = 1, (AT?)2 = (RX)2).

The relation (AT?)2 = (RX)2 can also be interpreted to say that A'commutes with
RXR = R*XR = XR. It follows now from Theorem 5 in Johnson [7, Chapter 15]
that the presentation of w[4]2 is the same as the presentation of the regular
wreath product CmwrC2, where Cm denotes the cyclic group of order m. Thus we
have shown the following result.

THEOREM. The group Gq of all permutations of Fq of the form ax" + l + bx with a,
b e Fq is isomorphic to the regular wreath product Q w r C 2 , where n = (q — l ) / 2 .
More generally, the group w[4]2 is isomorphic to the regular wreath product
Cm wr C2for all positive integers m.

The groups w[4]2 have been studied in the literature in connection with the
theory of symmetries of regular complex polytopes (see [3]). In particular, as
indicated by Shephard [13], [14], the group m[4]2 can be viewed as the symmetry
group of the complex polygon with m2 vertices (61, 82), where 6l and 02 run
independently through the complex wth roots of unity. Further details regarding
the precise definitions of regular complex polytopes and their groups of symme-
tries can be found in [3]. Crowe [5] gives an alternative interpretation of w[4]2 as
a group of equivalence classes of quaternion transformations. The groups w[4]2
belong also to the family of complex reflection groups; see the paper of Cohen [2]
in which the notation G(m, 1,2) is used for w[4]2.

For odd m the group m[4]2 has the direct product form Dm X Cm, where Dm is
the dihedral group of order 2m; see [4, p. 78]. This fact can also be deduced from
the description of m[4]2 as the regular wreath product Cm wr C2. Indeed, Theorem
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7.1 of Neumann [10] shows that Cm wr C2 has a nontrivial direct product decom-
position. An inspection of the proof of this theorem yields a direct factor Q
isomorphic to Cm = ( a ) and a direct factor P consisting of all pairs (b, / ) with
d e C 2 = { ^ and / : C2 -» Cm being a mapping satisfying/(l)/(/?) = 1. Now P
is generated by S = (jB, / 0 ) and T = (1, A), where / 0 ( l ) = / 0 ( £ ) = 1, A(l) = a,
fx(P) = a"1, and S and T satisfy the relations S2 = Tm = (ST) 2 = 1, so that P is
isomorphic to Dm. If w[4]2 is given by the presentation in Lemma 4 (with n
replaced by m), then the direct factors P and Q can be identified explicitly. Using
the group law in Lemma 5, one verifies that P = { X'JYJ: 0 < j' < 2m} is a
normal subgroup of w[4]2 with generators S = X~lY and T = X'2Y2 and
relations S 2 = r m = ( S r ) 2 = l, so that P is isomorphic to Dm. Furthermore,
Q — (Y2) is a normal cyclic subgroup of m[4]2 of order m, and P n g = {1}
since w is odd. Moreover, |P<2| = \P\ \Q\ = 2m2, the order of w[4]2, hence w[4]2
is isomorphic to P X Q. In particular, Gq is isomorphic to Dn X Cn with n =
(q - l ) / 2 provided that q = 3 (mod 4).

For even m the group w[4]2 can also be described in terms of cyclic and
dicyclic groups. Let C2m = (y) be an abstract cyclic group of order 2m, and let

be an abstract dicyclic group of order 4w with generators 8 and e of orders 2w
and 4, respectively (compare with [4]). Then C2m has the subgroup Cm = ( y 2 ) of
index 2, and £ m contains the dicyclic group

as a subgroup of index 2. Hence Cm X Em/2 is a normal subgroup of C2m X Em,
and # m = Lm(Cm X £ m / 2 ) is a subgroup of C2m X Em, where Lm is the cyclic
subgroup of C2mxEm generated by (y, 8~l). The elements of Hm can be
represented uniquely in the form (y2a+d, 82b~dec) with 0 < a < m , 0 < £ > < m ,
0 < c < 2, 0 < rf < 2. One constructs a mapping <p: Hm -> w[4]2 by using the
presentation of w[4]2 in Lemma 4 (with n replaced by in) and setting

(p(y2a + d ^2b-dgC\ _ v-2b + d+mc/2-cy2a+2b+c

By an elementary but lengthy calculation based on the group law in Lemma 5 one
shows that <p is an epimorphism with kernel Km = ((ym,8m)). Therefore, m[4]2
is isomorphic to H^K^ This description of m[4]2 for even m is more explicit
than the one given in Crowe [5].
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