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Differential forms for plasma physics
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Differential forms provide a coordinate-free way to express many quantities and
relations in mathematical physics. In particular, they are useful in plasma physics.
This tutorial gives a guide so that you can read the plasma physics literature that
uses them and apply them yourself.
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1. Introduction
Differential forms allow one to go beyond what vector calculus can cope with. For

example, they permit extension of the operator B · ∇ for a magnetic field B in a
principled way to more general objects than scalar functions, powerful generalisations
of Gauss’ and Stokes’ theorems, and generalisations of three-dimensional (3-D) results
like that a curl-free vector field is locally a gradient and a divergence-free one is
locally a curl. These extensions and generalisations are particularly useful in contexts
like Hamiltonian dynamics, where the state space is usually not three-dimensional.

One can write everything about differential forms in index notation (as in Misner,
Thorne & Wheeler (1973)) and index notation generalises to arbitrary tensors
(differential forms are only the antisymmetric covariant tensors). But the concepts
for differential forms are clearer without the reference to coordinate systems that
index notation implies. In particular one can see which relations involve an assumed
volume form or an assumed Riemannian metric and which are independent of these.

Differential forms were developed into a complete theory by Cartan in 1899.
Although they have been used to good effect in electromagnetics (see Warnick &
Russer (2014) for a recent review, including many pointers to the literature, of
which I find Deschamps (1981) particularly good) and in plasma physics (e.g. Cary
& Littlejohn (1983), who gave a tutorial appendix), many plasma physicists are
unfamiliar with them. The aim of this tutorial is to make them accessible to plasma
physicists.

We give a definition of differential forms on a general oriented smooth manifold
M. Loosely speaking, a manifold is a topological space such that every point has a
neighbourhood homeomorphic to either Rn or R+ × Rn−1 (the latter corresponding
to boundary points of M). The integer n is called the dimension of the manifold.
A smooth manifold is a manifold for which the concepts of tangent vectors and
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2 R. S. MacKay

differentiable functions f : M → R are defined and satisfy desirable properties. A
more precise definition is given in appendix A. It is oriented if there is a continuous
choice of set of n linearly independent tangent vectors at each point (called a frame).
Examples of oriented smooth manifolds include Rn, the circle, which I will consider
as T=R/Z, the n-torus Tn (which is the product of n copies of the circle) and the
n-sphere Sn, which is the set of points in Rn+1 such that

∑n
i=0 x2

i = 1 (note that, apart
from n= 1, it is not a product of n copies of the circle).

For integer k between 0 and the dimension n of the manifold (including 0 and n),
a differential k-form on M is an antisymmetric k-linear map from ordered k-tuples of
tangent vectors at any point of M to the reals. Antisymmetric means it changes sign
under interchange of any pair of its arguments. The case of a 0-form is just a scalar
function from M to R. The case k= n is called a top form. If we want to indicate a
differential form ω at a point p∈M, we write ωp. I shall assume whatever degree of
differentiability is required for the results I shall state.

A good introduction to differential forms in the context of Hamiltonian mechanics
is chap. 7 of Arnol’d (1978). A lot more advanced material of relevance to
hydrodynamics and magnetohydrodynamics is given in Arnol’d & Khesin (1998).

The paper starts by developing the main concepts for differential forms in the
context of magnetic fields. It then goes on to use them in charged particle dynamics.
It closes with a short discussion and an appendix on some additional topics.

2. Magnetic fields

A magnetic field B is a volume-preserving 3-D vector field.
There are two ways to view a vector field on a manifold. The first is as a field

of tangent vectors. First define a differentiable parametrised curve to be a map γ

from [−1, +1] → M such that in one or any local coordinate system φ : U → Rn

with U a neighbourhood of the image of γ , φ ◦ γ is a differentiable map from
[−1, +1] → Rn. Then a tangent vector is an equivalence class of differentiable
parametrised curves through a point, where two such curves γ1, γ2 are considered
equivalent if d(γ1(t), γ2(t))= o(t) as t→ 0, using any metric d on M. Intuitively, this
says that γ1 and γ2 pass through the same point at t= 0 and have the same velocity
at t= 0. So a tangent vector is the velocity of a parametrised curve. A vector field is
a continuous field of tangent vectors; think of it as the velocity field of a fluid flow.

The second is as a first-order differential operator (‘derivation’) on scalar functions
on the manifold, i.e. a linear operator L on the set of smooth functions f : M→ R
that satisfies Leibniz’ product rule L( fg)= (Lf )g+ f (Lg).

The link is that a vector field v defined as the velocity of a flow induces a first-order
operator on differentiable functions f :M→R by v( f )=Df (v), where the derivative
Dfp at a point p∈M is the linear map on tangent vectors v at p such that f (p+ εv)−
f (p)= εDfp(v)+ o(ε) as ε→ 0 in any local coordinate system. It is common to write
Df (v) as v · ∇f , but that notation suggests it depends on the choice of a Riemannian
metric g on M, because for vectors a, b, a · b represents g(a, b) and ∇ is defined
using a Riemannian metric. In fact, ∇ is defined by the relation v · ∇f = Df (v) for
all vectors v, so the dependence on the metric cancels out. Thus I prefer to avoid the
v · ∇f notation.

Every first-order differential operator L on functions is of the form L( f )=Df (v) for
some vector field v in the first sense. This can be proved using linearity and Leibniz’
rule.
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Differential forms for plasma physics 3

2.1. Volume preservation and magnetic flux form
The vector calculus way to write the volume-preservation condition is div B= 0. To
explain how to write it in differential forms language will take several steps.

Firstly, we let Ω be the relevant volume form in three dimensions. A volume
form on a manifold is a non-degenerate top form. For a top form, non-degenerate
means that there exists an n-tuple on which it is non-zero. In the 3-D context, the
interpretation is that Ω(ξ, η, ζ ) is the signed volume of the parallelepiped spanned
by any ordered triple of tangent vectors (ξ , η, ζ ). In vector calculus language the
standard Euclidean volume is Ω(ξ, η, ζ )= ξ · (η× ζ ).

The next step is to introduce the flux form β = iBΩ associated with B. This is a
2-form giving the flux of B through any infinitesimal parallelogram. Specifically,

iBΩ(ξ, η)=Ω(B, ξ , η). (2.1)

For a general vector field X, the contraction operator iX on an arbitrary differential
k-form ω (k > 0) is the (k − 1)-form defined by putting X as the first argument of
ω. We extend to the case of 0-forms f by defining iXf = 0. For future reference, non-
degeneracy of a general k-form ω (k> 0) is defined by iXω= 0 H⇒ X = 0.

For some purposes, in particular to work out the magnetic flux through a surface, β
is the more natural view of a magnetic field than B. Given a 2-form β and a volume
form Ω in three dimensions there is always an associated vector field B such that
iBΩ = β and it is unique. This is because Ω is assumed to be non-degenerate.

A k-form ω can be integrated over oriented submanifolds of dimension k.
Heuristically, we subdivide the submanifold into small parallelepipeds of dimension
k spanned by k tangent vectors ξ1, . . . ξk, sum up ω(ξ1, . . . ξk) and take the limit as
their size goes to zero. For example

∫
S β gives the magnetic flux through a surface

S and
∫

V Ω gives the volume of a region V . Note that in this notation, no variable
of integration is specified; this is because the formulation is coordinate free.

For any k-form ω, 06 k< n, there is a (k+ 1)-form dω such that for any oriented
(k+ 1)-submanifold V with boundary ∂V (with associated orientation),∫

V
dω=

∫
∂V
ω. (2.2)

This was called Stokes’ theorem by Cartan, because it encompasses the usual Stokes’
theorem (we will get to the differential forms version of curl later), but it also includes
Gauss’ theorem and Green’s theorem. The operator d, called exterior derivative, can
be defined by

dω(ξ1, . . . ξk+1)= lim
ε→0

ε−k
∫
∂Wε

ω, (2.3)

where Wε is the parallelepiped spanned by (εξ1, . . . εξk+1) in some local coordinate
system. This definition of d makes Stokes’ theorem obvious. On 0-forms f (scalar
functions), d is just the usual derivative: applied to a vector ξ it gives df (ξ)=Df (ξ),
the directional derivative along ξ . As already discussed, this is commonly written as
ξ · ∇f . The point of the definition of d is to extend it to k-forms with k > 0. The
definition of d can be extended to act on top forms by sending them all to 0.

Now consider dβ for β = iBΩ . It is a 3-form in three dimensions. The space of top
forms at a point is one-dimensional, and Ω is non-degenerate, so dβ is a multiple of
Ω . div B is defined to be that multiple:

dβ = divB Ω. (2.4)
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Thus, in differential forms, the volume-preserving condition is written as dβ = 0.
Any differential form whose exterior derivative is zero is called closed. Thus the flux
form for a magnetic field is closed.

Note how the Cartan version of Stokes’ theorem includes Gauss’ theorem: for any
vector field X, volume form Ω and top-dimensional volume V , apply it to iXΩ and
use the definition of div; it says

∫
V divX Ω =

∫
∂V iXΩ .

2.2. Magnetic 1-form
In addition to the magnetic field B and its flux form β = iBΩ , it is useful to consider
the associated 1-form B[. This is defined by

B[(ξ)= B · ξ (2.5)

on any tangent vector ξ . Here · denotes the inner product of two vectors. For a
general Riemannian metric g, this is defined by a · b= g(a, b). Equivalently we can
write B[ = iBg, by extending the contraction notation from differential forms to any
covariant tensor, such as a metric tensor (a covariant tensor is a multilinear map from
the tangent space to the reals, without the antisymmetry condition).

The inverse operation to [ is denoted ], taking a 1-form to a vector field. It is
well defined because any Riemannian metric is assumed to be non-degenerate (in fact
positive definite, but one can extend both operations to Lorentzian metrics too).

It is also convenient to define |B| =
√

g(B, B). Using the above, one can write
|B|2 = iBB[.

Finally, we revisit the relation df (v)=v ·∇f for a scalar function f . Using the above
notation we see we can write

(∇f )[ = df , ∇f = (df )]. (2.6a,b)

3. Cross-product
The cross-product of vectors enters many formulae involving the magnetic field,

e.g. the Lorentz force1 F = J × B, where J is the current-density vector field. The
cross-product is specific to three dimensions. There are two ways of writing it in
differential forms, which are equivalent if the assumed volume form Ω is natural for
the Riemannian metric g, i.e. applied to any orthonormal ordered triple, Ω produces
±1 according to the orientation of the triple.

The first way is that J × B is the vector such that

(J × B)[ = iBiJΩ. (3.1)

Note the reversal of order and the explicit dependence of the cross-product
on a volume form Ω and a Riemannian metric (through [). One could write
J × B= (iBiJΩ)

], but it is natural to consider forces as covectors rather than vectors,
because the work done by a force vector F moving through a displacement ξ is
F[(ξ). So I prefer the first formulation. Similarly, momenta are naturally covectors
p, with Newton’s law ṗ= F[ and p(q̇) tells how fast the action integral changes for
velocity q̇ of configuration.

The second way is that
iJ×BΩ = J[ ∧ B[, (3.2)

1Some call it Laplace force.
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where the wedge product of a k-form ω and an m-form η is defined to be the
(k+m)-form

(ω ∧ η)(ξ1, . . . ξk+m)=
∑

σ∈Sh(k,m)

sgn(σ ) ω(ξσ(1), . . . ξσ(k)) η(ξσ(k+1), . . . ξσ(k+m)), (3.3)

with Sh(k, m) being the set of permutations σ of {1, . . . k + m} such that σ(1) <
· · · σ(k) and σ(k+ 1)< · · · σ(k+m) (shuffles). This definition of J×B again depends
explicitly on a volume form and a Riemannian metric.

It is worth mentioning at this stage how d and iB act on wedge products,

d(ω ∧ η)= dω ∧ η+ (−)kω ∧ dη, (3.4)

where k is the degree of ω, and the same for iB. Note the case of the wedge product
with a 0-form f is just multiplication: f ∧ η= fη= η ∧ f .

4. Curl and de Rham cohomology
Written in differential forms, the curl of a 3-D vector field B is the vector field J

such that
iJΩ = dB[. (4.1)

So it depends on both the volume form Ω and the Riemannian metric (via [). We see
that the flux form j= iJΩ is the natural object here.

Note that the above expresses the relation between a current density J and a
magnetic field B in units for which the magnetic permeability µ0 = 1. We shall take
that convention throughout.

A fundamental ingredient of the theory of differential forms is that d2
= 0. One

way to see this is if α is an arbitrary (k− 1)-form, then let β = dα. Applying Stokes’
theorem twice starting with an arbitrary (k+ 1)-submanifold V gives

∫
V dβ =

∫
∂V β =∫

∂∂V α = 0 because the boundary of a boundary is empty. So d2α = dβ = 0.
So for example, the flux form j defined above is automatically closed (dj= 0). This

expresses that div of a curl is zero. I used the notation B for an arbitrary 3-D vector
field, which might suggest that I was assuming it is volume preserving, but that was
not used above.

As a second example, if B is a gradient vector field ∇f then its curl is automatically
zero. This is because (∇f )[ = df , so j= d2f = 0.

Now the question arises for a differential k-form β, if dβ = 0 then is β = dα for
some (k− 1)-form α? In the positive case, β is called exact. In a contractible subset
of a manifold this is true (Poincaré’s lemma). It generalises the standard results that
(i) if curl v= 0 then v is locally the gradient of some function φ, and (ii) if div B=
0 then B is locally curl A for some vector field A. The latter is usually derived as
a global result in R3 via Helmholtz’ theorem, but Poincaré’s lemma can be proved
in a bounded contractible subset, analogous to the standard way for proving (i) (see
appendix A).

There can be global topological obstructions, however. For example, for the flux
form β = iBΩ for a volume-preserving field B we have β is closed. So locally, there
is a 1-form a such that β = da; A = a] is known as a vector potential2 for B, so
the relation is that β = dA[. But if there is a (non-contractible) closed surface S over

2It would be more natural to regard the 1-form a as a potential for B, and this is done in some of the
literature and is then often denoted by A, but I stick with plasma physics convention.
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which
∫

S β 6= 0 then there cannot be a globally defined vector potential for B. In
practice for physical magnetic fields this appears never to occur, though maybe in a
big enough piece of the universe we will find it does. Note that the vector potential
for B is not unique: one can add any gradient to A.

As a second example, however, suppose B is a vacuum magnetic field, i.e. curl B=
0, equivalently dB[ = 0. Then B[ is locally the derivative of a 0-form (i.e. scalar
function) φ, i.e. B[= dφ or equivalently B=∇φ. But it may well fail to be a gradient
globally. For example, if the region in which B is a vacuum field is a solid torus, as
would arise by generation of B by currents in coils surrounding it, then for any closed
curve γ going the non-contractible way in the solid torus,

∫
γ

B[ =
∫
A j where A is a

disc in the surrounding 3-D space spanning γ , and this is the total external current
Iext through the hole in the solid torus, whereas if B[= dφ then its integral along any
closed curve is zero. In this example there is an easy solution: B=∇φ in the solid
torus for a multivalued function φ, which increases by Iext for each revolution around
the solid torus.

The discussion above introduces the fascinating topic of de Rham cohomology. The
kth de Rham cohomology group Hk of a manifold M is defined to be the quotient of
the set of all closed k-forms on M by the set of all exact ones, i.e. consider two closed
forms to be equivalent if they differ by an exact one. It is a group under addition.
Actually it is a real vector space. Its dimension βk(M) is called the kth Betti number;
H1 will play a role when we come to the Hamiltonian version of Noether’s theorem.

Now that we have learnt about the wedge product and Poincaré’s lemma we can
formulate the Clebsch representation of a volume-preserving vector field in differential
forms, namely dβ = 0, for β the flux 2-form, implies β = da locally, for some 1-form
a, as above. Every 1-form a can be written locally as fdg for some functions f and g.
So β = d( fdg)= df ∧ dg, which is the differential forms version of B=∇f ×∇g in
three dimensions. There are usually global topological obstructions, however.

5. Lie derivative

The Lie derivative LB of differential forms (or more general tensors, to be defined
later in this section) along a vector field B is one of the most useful concepts,
describing how the differential form changes as viewed along the flow of the vector
field. I call the vector field B, but no 3-D or volume-preserving conditions are
assumed.

We begin with the simple case of a 0-form, i.e. scalar function f . Then LBf is
defined by

LBf = df (B)= iBdf =Df (B)= B · ∇f . (5.1)

So LB is just the first-order operator view of the vector field B. It is so important in
plasma physics, however, that my PhD supervisor John Greene chose car registration
B ·GRAD (using a screw for the dot). Equations of the form LBf = g with vector field
B and function g given are called magnetic differential equations.

The real power of the Lie derivative is to describe how fast other objects like
k-forms with k > 0 or vector fields change along a vector field B. In Euclidean
space one can get away with writing expressions like B · ∇B but they require careful
interpretation (e.g. in curvilinear coordinates) and do not always behave how you
might expect. The nice way to define how fast a general tensor field varies along a
vector field is via the flow of the vector field.
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Given a smooth vector field B on M, it defines a flow φ :R×M→M, (t, x) 7→φt(x)
(at least locally around t= 0) by

∂tφt(x)= B(φt(x)), (5.2)

with φ0(x) = x. As a shorthand, write the derivative Dφt with respect to x ∈ M as
φt∗ (note the asterisk is subscripted, indicating that it pushes tangent vectors forward).
Define the pullback operator φ∗t of the differentiable map φt on differential forms (note
superscript), e.g. k-form ω, by

(φ∗t ω)p(ξ1, . . . ξk)=ωφt(p)(φt∗ξ1, . . . φt∗ξk). (5.3)

Define
LBω= ∂tφ

∗

t ω|t=0. (5.4)

Cartan proved the ‘magic formula’

LB = iBd+ diB (5.5)

for LB on differential forms. We recover the above definition on 0-forms, LB = iBd,
because of the convention that iB= 0 on functions. For top forms, we see that LB= diB
because of the convention that d= 0 on top forms. Thus an alternative way to write
the definition of div with respect to a chosen volume-form Ω is

LBΩ = divB Ω. (5.6)

One of the main points of the Lie derivative is to articulate how the integral of a
form over a surface moving with the flow of a vector field B evolves. The answer is

∂t

∫
φtS
ω=

∫
φtS

LBω. (5.7)

The two terms of Cartan’s magic formula capture how ω changes as viewed along the
flow and the effect of how the boundary of φtS changes.

Some nice properties of the Lie derivative on forms are,

dLB = LBd, (5.8)
LB(α ∧ β)= (LBα)∧ β + α ∧ LBβ, (5.9)

LλBω= λLBω+ dλ∧ iBω. (5.10)

Note the case of (5.9) where α is a 0-form f gives

Lu( fβ)= (Luf )β + fLuβ, (5.11)

and the case of (5.10) where ω is a 0-form f gives

LλBf = λLBf . (5.12)

The definition (5.4) extends to all covariant tensors, defined to be multilinear maps
on ordered sets of vectors. An example that is not a differential form is a metric
tensor, because it is symmetric rather than antisymmetric. The magic formula does
not work, however, for general covariant tensors.

https://doi.org/10.1017/S0022377819000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000928


8 R. S. MacKay

It is convenient to extend the definition of the Lie derivative to contravariant tensors
(multilinear maps on ordered sets of covectors) and mixed tensors (multilinear maps
on ordered sets of vectors and covectors) too. The main example that will concern us
is just vector fields, so we restrict attention to that case. A formula to compute the
Lie derivative of a general tensor is given in appendix A. The pullback of a vector
field Y under the flow φt of vector field B is

φ∗t Y|p = φ−t∗Y|φt(p). (5.13)

Then we define
LBY = ∂tφ

∗

t Y|t=0. (5.14)

An alternative way to write LBY is the commutator [B, Y]. To understand this,
think of a vector field X as the associated first-order operator iXd on functions. Then
[B, Y] = BY − YB is interpreted as iBdiYd − iYdiBd. Although this looks second order,
the second-derivative terms cancel and it is actually first order and equals LBY . An
alternative way to think of the commutator [B, Y] is to flow from a point p for time t
along B followed by time s along Y and compare the result with flowing from p along
Y for time s followed by B for time t. The difference in any local coordinate system
is of order st and if one takes the limit of the quotient as s, t→ 0 one obtains a vector
at p, which we call [B, Y]. In vector calculus language, [B, Y] = B · ∇Y − Y · ∇B.
The commutator is antisymmetric.

A useful relation is that on differential forms

i[J,B] = iJLB − LBiJ = LJiB − iBLJ, (5.15)

which we shall use shortly.
We give some examples of how the Lie derivative shows up in plasma physics. I

say a magnetohydrostatic (MHS) field3 is a 3-D volume-preserving field B such that
J × B=∇p for some scalar function p, where J = curl B. In differential forms these
equations are written as iBiJΩ = dp and iJΩ = dB[. One can eliminate mention of J
to obtain iBdB[ = dp. Now diBB[ = d|B|2, so it can also be written as

LBB[ = d(p+ |B|2). (5.16)

Continuing further, apply (5.15) to Ω to obtain

i[J,B]Ω = iJLBΩ − LBiJΩ. (5.17)

Now LBΩ = 0 by div B= 0. Also iJΩ = dB[ and d commutes with LB on forms, so

i[J,B]Ω =−dLBB[ =−d2(p+ |B|2)= 0 (5.18)

for a MHS field. As Ω is non-degenerate, we deduce that [J, B] = 0.
Conversely, for a 3-D volume-preserving vector field B that commutes with its curl,

J, there is a possibly multivalued scalar function p such that J × B = ∇p. This is
because the hypotheses imply dLBB[ = 0 so LBB[ is locally df for some function f
and then we can set p= f − |B|2. One can interpret solutions of [J, B] = 0 as MHS
fields subject to a possible additional force round each non-contractible loop, like an
electromotive force for a charged plasma.

3This is not universal terminology. The concept of MHS field lies between a magnetostatic field, being
a magnetic field resulting from a prescribed steady current distribution (curl B = J, div B = 0), and a
magnetohydrodynamic equilibrium, which allows steady mean flow of plasma and anisotropic pressure.
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6. So what?
A nice consequence of the equation iBiJΩ = dp for MHS fields and the resulting

commutation relation [J, B] = 0 is that bounded regular components of level sets of
p are tori, B and J are tangent to them and the flows of B and J are simultaneously
conjugate to rotations of different winding ratios on them. A component of a level
set of p is regular if dp 6= 0 everywhere on it. The flow φB of B on a 2-torus T is
conjugate to a rotation if there exists h : T→R2/Z2 such that h(φB

t (x))= h(x)+ rt for
all x∈ T , for some r ∈R2, called the rotation vector. The map h is called a conjugacy.
Simultaneous conjugacy for B and J means they use the same conjugacy but may
have different rotation vectors. These results are known, but the following derivation
is slick.

Firstly, a regular component of a level set of any scalar function in three dimensions
is a 2-D submanifold. Secondly, applying iB or iJ to iBiJΩ = dp produces iBdp= 0 and
iJdp= 0 because Ω is antisymmetric, so B and J are tangent to the regular level sets
of p (this is the same as taking the inner product of J × B = ∇p with B or J, but
gets rid of the irrelevant apparent dependency on a Riemannian metric). Thirdly, if
dp 6= 0 everywhere on a submanifold and iBiJΩ = dp then J and B are independent
everywhere on it. Finally, the Arnol’d–Liouville theorem (e.g. Arnol’d (1978)) implies
that for a bounded 2-D submanifold invariant under the flows of two commuting
vector fields that are independent everywhere on it, the submanifold is a torus and the
flows are simultaneously conjugate to rotations of different winding ratios on them.
The latter conclusion is along the lines of the construction of magnetic coordinates
such as Boozer and Hamada coordinates but makes it more natural. Indeed, [J,B] = 0
leads directly to Hamada coordinates.

The Arnol’d–Liouville theorem is usually presented for integrable Hamiltonian
systems, but the above key step applies more generally. Note that many people
deduce the submanifold is a torus just from its being bounded, supporting a
nowhere-zero vector field (both J and B satisfy this as it is a consequence of
their being independent), and orientable (which is a consequence of being a regular
component of a level set of a function in an orientable space). One just computes
the Euler characteristic of the submanifold to be zero by Poincaré’s index theorem
and then uses the classification of surfaces. That proof does not, however, give the
additional information that J and B are simultaneously conjugate to rotations.

The winding ratio ι of the magnetic field on a flux surface can be expressed nicely
using differential forms. It is defined as the long-time limit of the ratio of the number
of turns a fieldline makes in the poloidal direction to the number in the toroidal
direction. So it is the ratio of the components of the rotation vector. In differential
forms,

ι=−

∫
γt

iBinΩ∫
γp

iBinΩ

, (6.1)

where n=∇ψ/|∇ψ |2, over any cycles γj on the flux surface such that γt makes one
toroidal turn and no poloidal ones and vice versa for γp.

7. Applying diffeomorphisms
If B is a vector field on a manifold M, or ω a differential form on it, and ϕ is a

diffeomorphism from M to another manifold N (or possibly the same one), there is a
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natural way to produce a corresponding vector field and differential form on N. Firstly,
let ϕ∗ denote the derivative Dϕ of ϕ, as in § 5. Then B̃=ϕ∗B is a vector field on N. As
an example, h a conjugacy of the flow of B on a torus T to a rotation says h∗B= r,
constant on R2/Z2. One might think that ϕ∗ could be used to make new magnetic
fields from old ones, but the volume-preservation condition might not be satisfied. If
we suppose B preserves volume form Ω on M then diBΩ = 0. Applying ϕ∗ to this
we obtain diB̃ϕ∗Ω , where the definition of ϕ∗ has been extended to the pushforward
on k-forms ω by

(ϕ∗ω)p(ξ1, . . . ξk)=Ωϕ−1(p)(ϕ
−1
∗
ξ1, . . . ϕ

−1
∗
ξk), (7.1)

and we note that ϕ∗ passes through d and through contractions (in the sense that
ϕ∗iBΩ = iϕ∗Bϕ∗Ω). Thus B̃ preserves a volume form on N, but perhaps not the one
you had in mind. If one has a prior choice Ω̃ of volume form on N then B̃ preserves
it if ϕ∗Ω = Ω̃ .

Let us consider instead the action of ϕ∗ on the magnetic flux-form β = iBΩ . We
know that div B = 0 if dβ = 0. We let β̃ = ϕ∗β on N. Applying ϕ∗ to dβ = 0 we
deduce that dβ̃=0. So ϕ∗ takes a magnetic flux form to one on N, without any further
conditions. This is one of the reasons to consider the magnetic flux form to be more
fundamental than the magnetic field.

Such diffeomorphisms ϕ (with N =M) arise as the flow φt of the velocity field v
of a perfectly conducting fluid (which can be time dependent). The induction equation
∂tB = curl(v × B) implies ∂tβ = −Lvβ for the magnetic flux form. The definition of
Lv on forms used the pullback, but one can equally use the pushforward with change
of sign. So the flow applies φt∗ to β. This is Alfvén’s frozen flux theorem.

It is common to restrict attention to incompressible flows, in which case the
induction equation implies that ∂tB = [v, B] so φt∗ then also gives the evolution of
B. This is often referred to as preservation of the topology of the magnetic field, but
is much stronger than that term suggests, because of Alfvén’s theorem. In general
the induction equation for B is ∂tB = −[v, B] − (div v)B so there is an additional
stretching effect on B from convergence of v, beyond that implied by φt∗.

8. Coordinates
The point of differential forms is to be coordinate free. If you are desperate to

connect to index notation, however, here is the correspondence.
A coordinate system or chart on an open subset U of a manifold M of dimension

n is a set of n functions x1, . . . xn
: U→ R such that the map p 7→ (x1(p), . . . xn(p))

is a diffeomorphism from U to its image in Rn. It is conventional to use superscripts
for the coordinate functions.

The linear operators ∂i = (∂/∂xi) (keeping the other xj fixed) form a basis for the
tangent space TpM at a point p ∈ U (in the differential operator view of vectors). It
is conventional to use subscripts for these partial derivative operators. So a vector B
at p can be expanded as B=

∑n
i=1 Bi∂i. It is conventional to use superscripts for the

components of a vector. It is convenient to adopt the summation convention that in an
expression with an index appearing once as a subscript and once as a superscript, there
is an implied sum over the possible values of that index, so B= Bi∂i, for example.

The 1-forms dxi at a point p form a basis of the cotangent space T∗p M, so B[

can be expanded as B[ = Bidxi, using subscripts for its components, and summation
convention.
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It is common to think of a vector field B and its associated 1-form B[ as being the
same object and refer to the Bi as being its contravariant components and the Bi as
its covariant components. They are related, as in the definition of [, by an assumed
Riemannian metric. A metric tensor g can be expanded as g(ξ , η)= gijξ

iηj on pairs
of vectors ξ, η with respect to their components in a coordinate system. Then the
relation between B and B[ can be written Bi= gijBj. The notation [ corresponds to the
operation of lowering indices in index notation. The operation ] corresponds to raising
them. If α is a 1-form αidxi then α] is a vector field αi∂i with αi

= gijαj, the matrix
gij being the inverse of the matrix gij.

A minor caution: many plasma physicists use the term ‘contravariant representation’
of a vector field B to mean the flux form β, rather than the vector field itself. They
agree, however, that the ‘covariant representation’ of a vector field B is the 1-form B[.

A basis for 2-forms at a point is given by the dxi
∧dxj with i< j to avoid duplication.

It can be tidier to think of the basis elements as being dxi
∧ dxj

− dxj
∧ dxi with i< j,

which are twice the preceding ones. So one can expand a 2-form like β as β=βijdxi
∧

dxj, with βij antisymmetric. Similarly, a volume form Ω in three dimensions can be
written as Ω =Ωijkdxi

∧ dxj
∧ dxk with Ωijk being completely antisymmetric, although

of course there is only one independent 3-form in three dimensions, say dx1
∧dx2

∧dx3

so Ωijk is a multiple J −1 of the usual εijk (J is often called the Jacobian of the
coordinate system).

The contraction operator iB is easily written in index notation, e.g. iBΩ is the
2-form with components BiΩijk. The fact that Ω is a multiple of ε is a possible
reason for plasma physicists to refer to β as the contravariant representation of B,
but the Jacobian must be taken into account too.

The condition for a volume form Ω to be natural for a Riemannian metric g can
be written in coordinates as Ω =±

√
det g dx1

∧ . . . dxn, where det g is the determinant
of the matrix for the covariant representation of g in coordinates x1, . . . xn. The two
possible signs for Ω correspond to the two possible orientations of a connected
orientable manifold.

For a simple k-form fdxI , where I is an ordered set of k distinct indices i1, . . . ik
and dxI

= dxi1 ∧ . . . dxik , the exterior derivative has the formula

d( fdxI)= (∂if )dxi
∧ dxI. (8.1)

A general k-form is a linear combination of simple ones.
On a k-form ω,

(LBω)i1···ik = Bc∂cωi1···ik + (∂i1B
c)ωci2···ik + · · · + (∂ik B

c)ωi1···ik−1c. (8.2)

On a vector field Y ,
LBY = (Bj∂jY i

− Y j∂jBi)∂i. (8.3)

9. Charged particle motion in a magnetic field
We now turn to the dynamics of a charged particle in a magnetic field B. Denote

its mass by m and its charge by e. The equation of motion in Euclidean space is

mq̈= eq̇× B(q). (9.1)

It is fruitful to put this into Hamiltonian form. The standard way is to choose a vector
potential A for B and introduce a momentum variable p= mq̇+ eA(q, t) and let the
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Hamiltonian be H(q, p, t)= (1/2m)|p− eA(q, t)|2. The canonical Hamilton equations
q̇= ∂pH, ṗ=−∂qH, reproduce the right equations of motion.

It is better, however, to abandon the canonical view of Hamiltonian systems. Instead,
a Hamiltonian system ẋ=X(x, t) (possibly time dependent) on a manifold M is defined
by

iXω= dH, (9.2)

for a function H : M × R→ R called the Hamiltonian, and symplectic form ω on
M. A symplectic form is a non-degenerate closed 2-form. This equation defines
(existence and uniqueness) the vector field X because ω is non-degenerate. Note that
non-degeneracy of ω requires M to have even dimension; denoting it by 2n, we call
n the number of degrees of freedom (DoF).

The standard example is that M is the cotangent bundle T∗Q of a manifold Q,
i.e. the set of covectors to Q. One can write a covector as (q, p) where q ∈Q and p
is a covector at q, i.e. p : TqQ→R and is linear. T∗Q has a natural symplectic form,
as follows. Define the natural 1-form α on T∗Q by α(q,p)(δq, δp)= p(δq). In a local
coordinate system qi on Q we define associated coordinates pi so that p(δq) = piδqi

(with summation convention). Then α = pidqi. Finally, let ω = −dα. It is a closed
(indeed exact), non-degenerate 2-form. In the above coordinates ω= dqi

∧ dpi.
A simple mechanical system on T∗Q is defined by this symplectic form ω and

H(q, p) = 1
2 pTM−1p + V(q) for some positive definite ‘mass’ matrix M, which takes

vectors to covectors, and ‘potential’ V :Q→R. Solving iXω= dH for X= (q̇, ṗ) gives

q̇=M−1p, (9.3)
ṗ=−dVq, (9.4)

so Mq̈ = −dVq. One can allow M to depend on q, which is important to treat
mechanical linkages for example, but it adds extra terms to the equations of motion,
analogous to centrifugal and Coriolis forces. An equivalent way to put this is that
for a linkage with configuration space Q the kinetic energy is half the norm squared
of the momentum covector for some Riemannian metric g on Q, |p|2q = gij(q)pipj in
local coordinates.

Let us treat the motion of a charged particle in a magnetic field. We will do it on a
general oriented 3-D manifold Q with Riemannian metric g. The Riemannian metric
gives |v|2= gq(v, v)= gij(q)vivj for a vector v, and for a covector p the length squared
is defined to be |p|2 = gij(q)pipj, as above. The dynamics is on the cotangent bundle
T∗Q. We take H = (1/2m)|p|2 and4

ω=−dα − eπ∗β, (9.5)

where α is the natural 1-form on T∗Q, β= iBΩ , π :T∗Q→Q is π(q, p)= q and π∗ is
its pullback from Q to T∗Q (recall (5.3)). So the dynamics (q̇, ṗ) is given by solving

ω((q̇, ṗ), (ξq, ξp))= dH(ξq, ξp) ∀ξ . (9.6)

Specialising to the case of Euclidean metric, this gives q̇ = p/m, so p = mq̇, the
ordinary kinetic momentum, and −ṗ(ξq) − eβ(q̇, ξq) = 0 for all ξq. Now β(q̇, ξq) =
Ω(B, q̇, ξq), so this says that ṗ=−eB× q̇, which indeed recovers the right equations
of motion.

Advantages of the differential forms formulation iXω= dH of Hamiltonian dynamics
are that it makes it easy to see that:

4If B has a vector potential A, or better a 1-form potential a, this can be written as ω=−d(α + eπ∗a).
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(i) If H is time independent then H is conserved along X: iXdH = iXiXω = 0 by
antisymmetry (in the time-dependent case, along solutions we obtain dH/dt =
iXdH + ∂tH, so dH/dt= ∂tH).

(ii) ω is conserved along X: LXω= iXdω+ diXω= 0 because dω= 0 and d2H = 0.
(iii) It automatically takes care of acceleration in arbitrary coordinate systems

(which otherwise requires introducing the Levi-Civita connection into Newton’s
equations, e.g. centrifugal and Coriolis forces).

(iv) It allows to obtain conservation laws and reductions from continuous symmetries.

Let us expand on the latter point. We say a vector field U on M is a continuous
symmetry of (H, ω) if LUH = 0 and LUω = 0. Then the second equation shows that
diUω= 0, thus U is locally Hamiltonian, i.e. iUω= dK for some function K :M→R
locally. Furthermore, iXdK= iXiUω=−iUdH=0 from the first condition of a symmetry.
So K is conserved by X. This is a version of Noether’s theorem.

There remains the question whether K is globally defined. Let M̃ be the universal
cover of M, i.e. the set of equivalence classes of curves from a chosen base point,
under the equivalence relation of continuous deformation fixing the ends of the curve.
Then the dynamics can be lifted to M̃ and K is globally defined (up to a constant)
on M̃. Next, note that [X,U] = 0 because

i[X,U]ω= iXLUω− LUiXω= 0, (9.7)

using LUω = 0, iXω = dH and LUH = 0. As ω is non-degenerate, it follows that
[X, U] = 0. Thus X and U are commuting vector fields on each level set of K. If
the first homology group H1(M) (1-D cycles modulo boundaries of 2-D surfaces) is
spanned by closed trajectories of the set of vector fields of the form aU + bX for
arbitrary choices of functions a, b then the change in K around any non-contractible
loop is zero and so K is well defined on M. To see this, let γ be a closed orbit of
aU + bX, then∫

γ

iUω=

∫
iUω(γ̇ ) dt=

∫
iUω(aU + bX) dt=

∫
ω(U, aU)+ω(U, bX) dt= 0, (9.8)

because of antisymmetry for the first term and the second is b dH(U)= 0. It follows
that the change in K round such a loop is zero. It is not even necessary to find closed
trajectories. Asymptotic cycles in the sense of Schwartzmann will do (Fried 1982).

The homology group H1(M) is dual to the de Rham cohomology group H1(M) in
the sense that given γ ∈H1 and α ∈H1, there is a natural scalar 〈α, γ 〉 =

∫
γ
α. It is

well defined despite the freedom to deform γ and add any exact 1-form to α.
This version of Noether’s theorem is more sophisticated than the usual one for

Lagrangian systems, where the symmetry is restricted to being on configuration space.
Hence the need for the additional step of checking whether K is global.

Note the trivial case of U = X, which achieves nothing. If U, X are independent
almost everywhere, however, then so are dK, dH, so we obtain a genuine reduction
of the dynamics by one dimension by restricting to level sets of K.

Actually, one can reduce by two dimensions, by also quotienting by the flow φ

of U if its orbit space is a manifold. The resulting vector field of X on K−1(k)/φ is
Hamiltonian with respect to the reduced symplectic form ω and Hamiltonian H, which
we denote by the same symbols. Note that the symplectic form indeed reduces to the
quotient because ω(u, ξ)= 0 for all ξ ∈ ker dK.
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Does the symplectic form have physical manifestations? The answer is yes,
e.g. (MacKay 1992). One manifestation is that Liouville volume Ω = ω∧n/n! is
conserved by a system of n DoF (here ω∧n is the wedge product of ω with itself
n times, and the factor n! is conventional). Since H is also conserved, we deduce
conservation of energy-surface volume µE on H−1(E) defined uniquely by taking any
(2n − 1)-form µ such that µ ∧ dH =Ω and restricting it to H−1(E). One can write
µ = inΩ , with n = ∇H/|∇H|2 for any Riemannian metric. This is the basis for the
theory of entropy for classical mechanical systems. Another is the action S =

∫
A ω

for any area A spanning a closed curve γ , which is also conserved under the flow
of X. Perhaps the action of a closed curve is not considered physical, but bear in
mind that if γ is a periodic orbit of a Hamiltonian system then it is generically part
of a family of such, parametrised by the value E of H, and the period T = dS/dE.
Furthermore, if the Hamiltonian has slow time dependence then a periodic orbit drifts
in energy in such a way as to preserve its action to high order of approximation (an
‘adiabatic invariant’).

10. Charged particle in an axisymmetric magnetic field
We give an example of application of Noether’s theorem to charged particle

motion in a magnetic field in Euclidean space. Recall that it is Hamiltonian with
H = (1/2m)|p|2 and ω = −dα − eπ∗β on T∗R3, where α is the natural 1-form for
a cotangent bundle and β = iBΩ . Let vector field u = ∂φ on T∗R3 with respect to
cylindrical coordinates (r, φ, z) on R3. This uses the first-order operator view of
a vector field, but we could write it as a velocity field rφ̂ = (0, r, 0, 0, 0, 0) in
(r, φ, x, pr, pφ, pz). The momentum coordinates are defined so that the natural 1-form
α = pidqi. Then H = (1/2m)(p2

r + r−2p2
φ + p2

z ).
Say B is axisymmetric if Luβ = 0 (an alternative definition is [u, B] = 0, but since

B and the chosen u are volume preserving, this reduces to Luβ = 0). Then diuβ = 0
because dβ = 0. So iuβ = dψ for some function ψ locally, called a flux function.
In fact, ψ is global because R3 is contractible. But if for some reason the field was
defined or axisymmetric only on some axisymmetric solid torus, for example, then ψ
would still be global, because iudψ = iuiuβ = 0 by antisymmetry so ψ is independent
of φ.

An alternative approach to deriving a flux function for an axisymmetric magnetic
field is to use a vector potential A for B and define axisymmetry by LuA[ = 0. Then
iuβ = iudA[ =−diuA[, so we get a global flux function ψ =−iuA[ =−A · u=−rAφ .

The relation iuβ = dψ implies iuiBΩ = dψ . This is written in vector calculus as
B× u=∇ψ . Since u= rφ̂ we deduce that

Bz =−
1
r
∂ψ

∂r
, (10.1)

Br =
1
r
∂ψ

∂z
. (10.2)

Note this is a 1 DoF Hamiltonian system for the reduction of fieldline flow by
axisymmetry: H = ψ(r, z), ω = rdz ∧ dr. To get the full fieldline flow one just adds
φ̇ = (1/r)Bφ .

The axisymmetry of B makes the charged particle dynamics axisymmetric too:
Luω= 0, LuH= 0. We determine the resulting constant of the motion by noting that

iuω= dpφ − edψ. (10.3)
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Thus the motion conserves L = pφ − eψ , a modified angular momentum. As usual,
pφ =mr2φ̇. So we deduce that φ̇ = (1/mr2)(L+ eψ(r, z)). We can reduce the system
by axisymmetry to a family of systems on (r, z, pr, pz) with pφ − eψ = L constant,

H =
1

2m

(
p2

r + p2
z +

(L+ eψ)2

r2

)
(10.4)

ω= dr ∧ dpr + dz∧ dpz − eBφ(r, z)dz∧ dr. (10.5)

This is the basic Hamiltonian system for the motion of charged particles in a tokamak.
To proceed further, however, it is good to notice a further approximate symmetry:
gyro-phase rotation. We will tackle that in the next section, for fields that are not
necessarily axisymmetric.

11. Magnetic moment and guiding-centre motion
If B(q(t), t) seen by a charged particle changes slowly on the time scale of one

gyroperiod 2π/Ω (gyrofrequency Ω = −e|B|/m), then the magnetic moment µ =
m|v⊥|2/2|B| is an adiabatic invariant. This means that it remains close to its initial
value for an exceedingly long time (depending on the smoothness of the variation
of B).

This is a consequence of the Hamiltonian structure of the dynamics and is most
simply revealed using the differential forms approach (as was shown by Littlejohn
(1983) though he used a variational formulation on extended state space). We treat
the time-independent case, but almost no change is required for the time-dependent
case.

The idea is to change coordinates from (q, p) to (X, ρ, p‖) with guiding centre
X ∈ R3, gyroradius vector ρ perpendicular to B(X) and parallel momentum p‖ ∈ R,
given by solving the following system of equations:

p= eB(X)× ρ + p‖b(X) (11.1)
q= X + ρ, (11.2)

where b=B/|B|. For e|B| large, there is a unique solution with ρ small (approximately
p × B/e|B|2 evaluated at q), by the implicit function theorem. More precisely, this
works if |ρ| is less than the radius of curvature of the fieldlines.

Then the dynamics has approximate rotation symmetry of ρ about B. In particular,

H =
|p|2

2m
=

1
2m
(p2
‖
+ e2
|B(X)|2|ρ|2) (11.3)

is exactly rotation invariant in ρ. The symplectic form requires more work

ω=−dα − eβ, (11.4)

where I have dropped the π∗ in front of β because it is obvious what is meant. In
these (X, ρ, p‖) coordinates and choosing perpendicular components (ρ1, ρ2) for ρ and
denoting the parallel component of X by X3,

α = e|B|ρ2(dX1 + dρ1)− e|B|ρ1(dX2 + dρ2)+ p‖dX3. (11.5)

The proposed symmetry vector field is u= (0,0,0,−ρ2, ρ1,0) in (X, ρ,p‖) coordinates.
We will compute Luα and Luβ and then combine them to deduce that Luω is small.
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Using Cartan’s formula for Lu on differential forms,

Luρ2dρ1 = iudρ2 ∧ dρ1 + d(−ρ2
2)= ρ1dρ1 + ρ2dρ2 − d(ρ2

2) (11.6)
Lu(−ρ1dρ2)=−iudρ1 ∧ dρ2 − d(ρ2

1)= ρ2dρ2 + ρ1dρ1 − d(ρ2
1). (11.7)

They sum to zero. Also Lu(p‖dX3)= 0 and Lu|B(X)| = 0. So we are left with

Luα = e|B|Lu(ρ2dX1 − ρ1dX2)

= e|B|iu(dρ2 ∧ dX1 − dρ1 ∧ dX2)= e|B|(ρ1dX1 + ρ2dX2). (11.8)

Thus
Lu(−dα)=−e|B(X)|(dρ1 ∧ dX1 + dρ2 ∧ dX2). (11.9)

For Luβ, we have to take into account that β = |B(q)|dq1 ∧ dq2 with q= X+ ρ. So

eβ = e|B(X + ρ)|(dX1 ∧ dX2 + dX1 ∧ dρ2 + dρ1 ∧ dX2 + dρ1 ∧ dρ2). (11.10)

Recalling that β is closed,

Lu(−eβ) = −ediuβ = ed (|B(q)|(ρ1dX1 + ρ2dX2 + ρ2dρ2 + ρ1dρ1))

= e|B(q)|(dρ1 ∧ dX1 + dρ2 ∧ dX2)

+ ed|B(q)| ∧ (ρ1dX1 + ρ2dX2 + ρ2dρ2 + ρ1dρ1). (11.11)

The first term almost cancels Lu(−dα), the difference being just due to where |B|
is evaluated, but ρ is small and B varies slowly in space. The second term is small
because it is proportional to d|B| and B varies slowly in space. Specifically it is

e
(
(ρ2∂q1 |B| − ρ1∂q2 |B|) dq1 ∧ dq2 + ∂q3 |B| dX3 ∧ (ρ1dq1 + ρ2dq2)

)
. (11.12)

Hence Luω is small and u is an approximate symmetry of the dynamics.
It follows that iuω is approximately d of some function and that function is

approximately conserved. It is conventionally written as −mµ/e where the magnetic
moment

µ=
e2

2m
|B||ρ|2 =

m|v⊥|2

2|B|
. (11.13)

The proof is that, ignoring the dependence of |B| on position,

iuω=−e|B|(ρ1dρ1 + ρ2dρ2)=−
e|B|

2
d|ρ|2 =−

m
e

dµ. (11.14)

Reducing by the approximate symmetry u produces a 2 DoF system called first-
order guiding-centre motion, on the space of (X, p‖) ∈R3

×R,

H =
1

2m
p2
‖
+µ|B(X)| (11.15)

ω=−d(p‖b[)− eβX = b[ ∧ dp‖ − p‖db[ − eiBΩ. (11.16)

Let c= curl b, so icΩ = db[. Then ω can be written

ω= b[ ∧ dp‖ − eiB̃Ω, (11.17)
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with the modified magnetic field

B̃= B+
p‖
e

c. (11.18)

The 2-form ω is closed; it is non-degenerate except where B̃ · b= 0. Then the equation
of motion is given by solving

i(Ẋ,ṗ‖)ω= dH. (11.19)

Applying to a vector of the form (0, δp‖), we deduce that

Ẋ‖ = p‖/m. (11.20)

Applying to a vector of the form (ξ , 0):

e(B̃× Ẋ) · ξ = ξ · (µ∇|B| + ṗ‖b). (11.21)

So
eB̃× Ẋ =µ∇|B| + ṗ‖b. (11.22)

Taking the inner product with B̃ yields

ṗ‖ =−µ
B̃ · ∇|B|

B̃ · b
. (11.23)

Finally, taking the cross-product of (11.22) with b and using (11.20) we obtain

Ẋ =
1

B̃ · b

(µ
e

b×∇|B| +
p‖
m

B̃
)
. (11.24)

Equations (11.23) and (11.24) are the guiding-centre equations.
One sees there is a repulsion from increasing |B| along b (which corresponds exactly

to conservation of H in (11.15)), and there is a perpendicular drift driven by µ∇⊥|B|
and (p2

‖
/me)b · ∇b (coming from the curl b term of B̃).

There are alternative forms for the guiding-centre equations, agreeing to first order
in 1/e, but the advantage of the above approach is that the resulting drift equations
retain Hamiltonian structure, allowing deeper understanding of their behaviour and
extension to gyrokinetic theory (e.g. Qin et al. 2007).

12. Discussion
We have shown how differential forms can make some results in plasma physics

simpler and more intuitive. They also open up the possibility of new discoveries.
An example is the interaction of two charged particles in a magnetic field. We found

a new constant of the motion in the case where the particles have the same e/m
(including sign), corresponding to a novel symmetry that I call ‘locomotive coupling
rod symmetry’ (MacKay & Pinheiro 2006, 2008). This is an important case because
it includes the interaction of two electrons or of two protons.

The topic in plasma physics where I have found differential forms most useful is
that of quasi-symmetry. Quasi-symmetry just means integrability of guiding-centre
motion, but without assuming the symmetry corresponds to an isometry. It is a good
principle for stellarator design (Helander 2014). Using differential forms, we have
gone considerably beyond what was known before (Burby, Kallinikos & MacKay
2019), though we have not yet a complete understanding of quasi-symmetry.
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Appendix A
A.1. Smooth manifolds

Here is a slightly more formal introduction to smooth manifolds. A topological
manifold of dimension n is a second countable Hausdorff topological space such
that every point has a neighbourhood homeomorphic to Rn or R+ × Rn−1. A
neighbourhood of a point is an open set containing that point. Second countable
means there is a countable set of open sets such that any open set can be obtained
by finite intersections and arbitrary unions of them. Hausdorff means that for any two
points x, y there are disjoint neighbourhoods Ux,Uy of x, y. A differentiable manifold
M is a topological manifold with an open cover Uα, α ∈ A, and maps φα : Uα→ Rn

which are homeomorphisms to their images such that the change-of-chart maps
φα ◦ φ

−1
β between the subsets of Rn on which they are defined are diffeomorphisms.

The open cover is called an atlas and the maps φα are called charts. It is Cr if the
change-of-chart maps are Cr.

A function f :M→R is differentiable if the maps f ◦φ−1
α :Rn

→R are differentiable
where defined.

A.2. Poincaré’s lemma
This is the statement that if a k-form β is closed on a contractible subset U of a
manifold then β = dα for some (k − 1)-form on U. Here is a proof. U contractible
means there is a vector field X on U with forward flow φ that maps U into itself and
the image φtU contracts to a point as t→∞. Define (k− 1)-form α on U

α =−

∫
∞

0
iXφ
∗

t β dt. (A 1)

Then

dα =−
∫
∞

0
diXφ

∗

t β dt=−
∫
∞

0
LXφ

∗

t β + iX dφ∗t β, (A 2)

using LX = diX + iXd on forms. The second integrand can be written as iXφ
∗

t dβ so is
zero by the hypothesis that β is closed. The first integrand can be written as ∂tφ

∗

t β,
thus dα is minus the change in φ∗t β from t= 0 to ∞. But φ∗t β→ 0 as t→∞ because
of the contraction to a point, and φ∗0β = β. Thus dα = β.

A.3. Hodge star
Although I have chosen not to use it, you may come across the Hodge star
operator ? in your reading, so here is a little introduction to it. In an oriented
Riemannian manifold of dimension n it gives a natural bijection between k-forms and
(n− k)-forms. Let us specialise to n= 3. Then any 3-form ω is a scalar multiple of
the Riemannian volume form Ω , say ω = fΩ , because the space of top-forms at a
point is one-dimensional and Ω is non-degenerate. The relation is denoted by ω= ?f ,
equivalently f = ?ω. Thus for example one could write div B= ?dβ (with β = iBΩ).
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Similarly, we have seen that a vector field B (not necessarily volume preserving)
produces both a 2-form β = iBΩ and a 1-form B[. The relation between the two
is denoted by β = ?B[, B[ = ?β. Thus one can write J = curl B as J[ = ?dB[ and
div B = ?d ? B[. The combination δ = ?d? is called the co-differential, so we could
write div B = δB[. In particular the Laplacian of a function f is ∆f = δdf . The
Laplacian can be extended to k-forms by ∆= δd+ dδ.

I will not give the general definition of ? here, but it has the nice feature that
on odd-dimensional Riemannian manifolds, ?2

= 1, as you have seen in the 3-D
case. Beware, however, that in even dimension or for Lorentzian manifolds, ?2

=±1
depending on the degree of the forms involved.

A.4. Electromagnetism in space–time
A beautiful observation is that in a 4-D Lorentzian manifold, two of Maxwell’s
equations can be expressed as the Faraday tensor being a closed 2-form. Given
electric field E and magnetic field B, the Faraday tensor is the 2-form

F= Bxdy∧ dz+ Bydz∧ dx+ Bzdx∧ dy+ Exdx∧ dt+ Eydy∧ dt+ Ezdz∧ dt, (A 3)

in a local Minkowski coordinate system (i.e. such that the metric is ds2
= dx2

+ dy2
+

dz2
− c2dt2 to leading order). Then Faraday’s law (∂B/∂t = −curl E) and div B = 0

are equivalent to the single statement dF= 0. This is because

F= π∗β + (π∗E[)∧ dt, (A 4)

where π maps space–time to space, so using (8.1), dF = 0 if dβ = 0 and ∂β/∂t +
dE[ = 0.

The electromagnetic force on a charge e with 4-velocity U in space–time is the
1-form f = −eiUF. One can do a relativistic treatment of the reduction of charged
particle motion to guiding-centre motion.

Using the Hodge star, the two remaining Maxwell equations can be expressed as

d ? F= ?J, (A 5)

where J is a 1-form on space–time representing densities of charge and current.
Applying d to (A 5) yields d ? J= 0, which expresses charge conservation. The beauty
of the formulation is that it applies to arbitrary Lorentzian manifolds, taking care
automatically of the effects of curvature.

A.5. Helicity

The helicity integral H =
∫

A · B dV , where A is a vector potential for B, plays an
important role in Taylor’s theory of relaxation of plasma in a magnetic field and also
can be interpreted as an average rate of winding of field lines around each other
(Arnol’d & Khesin 1998). It has a nice representation in differential forms, namely

H=
∫

a∧ da, (A 6)

where a = A[ is the 1-form potential for B. This integrand is a baby version of the
famous Chern–Simons form on 3-manifolds, where the concept of differential form is
extended to take values in a Lie algebra instead of just R (Arnol’d & Khesin 1998).
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A.6. Lie derivative on general tensors
A tensor T of type (p, q) is a multilinear map from the space of p covectors and q
vectors at a point to R. Its Lie derivative along a vector field Y can be computed by

(LYT)(α1, . . . , αp, X1, . . . Xq)= Y(T(α1, . . . , αp, X1, . . . Xq))

−T(LYα1, α2, . . . Xq)− T(α1, LYα2, . . . , Xq)− · · ·

−T(α1, . . . αp, LYX1, X2, . . . Xq)− · · · − T(α1, . . . Xq−1, LYXq), (A 7)

for any 1-forms αi and vector fields Xj.
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