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Repeated improper Riemann integrals arise in a variety of contexts, and the
validity of changing the order of integration is often in question. Fubini's theorem
ensures the equality of two repeated Lebesgue integrals when one of them is ab-
solutely convergent. For many years I have assumed that an analogous test is ap-
plicable to repeated improper i?-integrals, since they will be absolutely convergent
and therefore in agreement with the corresponding L-integrals.

There is a fallacy in this reasoning. The assumed absolute convergence
of one of the repeated improper i?-integrals may not ensure absolute convergence
of the other. It certainly ensures absolute convergence and equality of both the
corresponding repeated ^-integrals; but there may be no connection between these
and the other repeated improper i?-integral if this is only conditionally convergent.

The first purpose of this note is to demonstrate by an example that this pos-
sibility must be taken seriously. Example 1 shows that reversal of order in an ab-
solutely convergent repeated improper i?-integral can destroy absolute conver-
gence while preserving convergence; and this even for a continuous integrand.

The other purpose is to give theorems justifying change of order in repeated
improper i?-integrals. In Theorems 1,2, 3 respectively it is assumed that both, one,
neither repeated integral is absolutely convergent. Theorem 2 justifies my former
erring ways, after Example 1 has shown that absolute convergence of both
repeated integrals cannot be proved from that of one. Theorem 3 reduces the
requirements further, after Example 2 has shown that both repeated improper
.^-integrals may be conditionally convergent although the corresponding repeated
L-integrals are absolutely convergent. The test provided by Theorem 3 is even
moderately practicable.

DEFINITIONS. It is sufficient to consider real-valued functions defined on the
open half-line H = (0, oo) or on the open quadrant HxH.

The improper R-integral off on (0, oo) is defined as

(1) I /(*)dx = £ lim f(x)dx+ lim f(x)dx)

provided that there is a subdivision (finite set of points)
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(2) 0 = x0 < Zt < Xi < £2 < x2 < . .. < xt_! < £k < xk = oo

such that / is i?-integrable on each closed sub-interval [a£, 9̂f] of (xi-1,xl)
(i = 1, 2,. . ., k) and the above limits exist.

Consistency theorem. If the improper i?-integral exists, then it is absolutely
convergent if and only if / is L-integrable on (0, oo). If so, the two integrals are
equal:

(3) f f(x)dx = f°°/(x)<fc.
J(O,co) JO

The symbol on the left denotes the 1,-integral, that on the right denotes the impro-
per i?-integral; we use this notation consistently (with (0, oo) often replaced by H
for brevity).

THEOREM 1. Iff(x,y) is measurable (in particular continuous) on the open
quadrant HxH, and the repeated improper R-integrals

(4) rdxrf(x>y)dy and f "dy f "/(*, y)dx
J 0 J 0 J 0 J 0

both exist and are both absolutely convergent, then these integrals are equal.

PROOF. Since the repeated integral on the left exists and is absolutely conver-
gent, its inner integral, g(x) say, exists and is absolutely convergent for all but a
finite set of x e H. So for these x

(5) g(x) = f 7(x, y)dy = f f{x, y)dy,
Jo J H

by the consistency theorem. Similarly with/replaced by | / | , so that

(6) \g(x)\ S fV(x, y)\dy = f |/(x, y)\dy.
Jo J u

Since g has an improper i?-integral there is a subdivision (2) such that g
is jR-integrable on each closed sub-interval of each (xi^1, xt). Thus \g\ is also R-
integrable on these sub-intervals, and in accordance with (1) it has an improper
^-integral finite or infinite. This satisfies, using (6),

r\g(x)\dx ^ f°°dx f"|/(x, y)\dy
Jo Jo Jo

< 00.

Thus g has an absolutely convergent improper i?-integral, and so by the consisten-
cy theorem g is L-integrable on H and

g(x)dx= I g(x)dx;
Jo JH

whence, using (5),
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(7) dx f(x, y)dy =\ dx\ f(x, y)dy.
J 0 J 0 J H J H

Our hypotheses with/replaced by | / | also hold, as an immediate consequence
of the hypotheses themselves. Hence (7) holds with/replaced by | / | ; that is,

(8) f ™dx l"V(x, y)\dy = f dx f |/(x, y)\dy.
Jo Jo JH JH

The equations corresponding to (7) and (8) for integrals in the reverse order
are also true, by the symmetry in x and y of the hypotheses. So it remains only to
prove that the order of integration in the repeated X-integral on the right of (7) can
be reversed.

The left side of (8) is finite, by data, hence so is the right. Since/(*, y) is mea-
surable on HxH, Fubini's theorem applies, giving the reversibility of the order
of integration on the right of (7), and hence also on the left.

REMARK. It should be noticed that the existence of the repeated L-integral on
the right of (7) does not of itself ensure its absolute convergence. It only ensures
the finiteness of

\f{x,y)\dy (for almost all x), and of dx fix,y)dy
JH JH JH

This is evident from the example

(9) fix, y) = f
l+y

for which

f dx\fix,y)dy= \ \ne~xdx = **;
JH JH JH

r,s, \u f00 |cosu| , . f"/3 . x , . t K|/(x, y)\dy = -^ 1 xdu ^ \ du = | artan — ,

f dx f |/(x, y)\dy ̂  f i artan — dx = oo.
JH JH JO 3X

and so

EXAMPLE 1. There is a function f(x,y), continuous in HxH, for which the
repeated improper R-integrals (4) both exist, one being absolutely convergent but
the other not.

This example does not claim that Theorem 1 is wrong if only one of the inte-
grals is absolutely convergent. It only answers the natural question whether ab-
solute convergence of one of the integrals ensures absolute convergence of the
other. Specifically it shows that, for the four repeated improper i?-integrals
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(10) f"dx {"fix, y)dy
Jo Jo

/•oo /•oo

(11) dy\ f(x,y)dx
Jo Jo

(12) f°°dx f"|/(x, y)\dy
Jo Jo

(13) \°dy \"/(*, y)\dx,
Jo Jo

existence of (10), (11) and (12) does not imply existence of (13), even if/ and
the inner integrals of (10), (11) and (12) are continuous.

Let an and bn be positive constants, bn all different, such that

(14)

and let

(15)

= A < oo, 0 < bn< 1;
n = 2

/(*>
n=2

, ajn(x, y), fn(x, y) = e~ .sin x

supplemented by /B(0, y) = 0.
The above contentions will be justified if an = l/n3 and bn are the terminating

binary decimals in (0,1) arranged as in (30). However most of the proof requires
only the simpler information (14).

We suppose throughout that x and y are in H, the closed half-line [0, oo),
except where otherwise stated. Always n is an integer greater than 1.

(a) Proof that f is continuous in HxH. Since JC~* sin x tends to 0 as x -*• 0 and
as x -> oo, its maximum modulus occurs at one of its stationary points. At these
points tan x = 2x, and so

(16) sin x Ax

l+4x
< 1.

,2 =

Thus \fn(x, y)\ ^ 1. So, by (15),/(x, y) is the sum of a uniformly convergent series
of continuous functions in H x H, and so it is continuous,

(b) Proof that (12) exists. By (15), for xeH,

Jo *„
The sign of /„(*, >>) is independent of M and y. So, by a Lebesgue theorem and
the consistency theorem,

(17)
f \f(x, y)\dy = £ an f |/.(x, y)|dy

Jfl n = 2 JH

oo /"oo

X1 n=2

showing that the integral on the left is finite. By the consistency theorem again,

(18) where =J>,,(2-*-*"").
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Now x is continuous, positive and bounded above (by 2A). So the inner integral
of (12) is continuous in H, and the repeated integral (12) exists.

(c) Proof that (10) exists. The preceding argument with the modulus signs
removed holds as far as (17); the term-by-term integration being valid since (17)
(unaltered) shows that/is L-integrable with respect to y on H. Also the consistency
theorem again applies, giving

(19)
I*00,. . , sinx

f(x, y)dy = ——
Jo x*

As for (18), this is continuous in H and the repeated integral (10) exists,
(d) Proof of the following term by term integration, for y e H:

(20) !"/(*, y)dx = J an f "ft*, y)dx.
Jo n=2 Jo

Suppose 1 ^ 0 and r\ ^ 0, and let F and C be denned such that

(21) F(x)=rS™^dt, |F(x)|£C.
Jo yft

Integrating by parts, and supposing for the moment that r\ > 0,

(22) re-"^dx = -e-"xF(X)+ I"\e-"xF(x)dx;
J J Jx

this gives

(23)

v>
f" , s inx dx ^ 2Ce

and this inequality holds when n = 0 as well as when n > 0.
Given y e H and e > 0, choose p such that 6n # j> for all n ^ />. Thus p may be

chosen as 2 except if y happens to be one of the bn; and the choice is independent
of e. Also choose q > p such that

and define

6 = 8(s, y) = min \bn — y\ > 0.

Then, using (23) with r\ = \bn— y\,
OO /*0O

E °n MX,
n = p J X

9 - 1

n = p
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provided that X > 5'1 log (ACAz"1). This proves that

(24) £ an !/„(*, y)dx - £ an f 7»(x, 30<** as A -» co.
n=p Jo n = p Jo

This conclusion also holds with/? replaced by 2, by adding a fixed number of terms
to each side.

By the uniform convergence proved in (a) we have, for each X > 0,

/•A oo oo

Z anL(x> y)dx = Z flJ
n=2 n = 2 J 0

Using (24) with /> replaced by 2, this gives

/•A 00 ^ 0 0

(25) / ( x , y)dx -> Z o» /B(x, y)£?x as A -» co.
JO n=2 Jo

Thus the left side of (20) exists and is equal to the right side.
(e) Proof that all the integrals in (20) are continuous in H. The integral on

the left of (22), with X = 0, is a Laplace transform; and its continuity as a func-
tion of r\ in r\ ^ 0 is analogous to the conclusion of Abel's continuity theorem for
power series. We can prove this by a minor modification to (22) and (23). Writing

#(x) = F(oo)-F(x) = -=- dt

(compare (21)), there is A(e) > 0 such that

|$(x)| < e whenever e > 0 and x > A(s).

Putting (22) in terms of <P,

e~vx dx = e~nX^(X)- rie~''x<P(x)d
Jx ^Jx Jx

whenever s > 0, X > A(^s) and r\ >. 0.
Thus the integral

^ e

/•oo

e-" S - ^ dx

is uniformly convergent on r\ ^ 0. So it represents a continuous function of /? in
n ^ 0, since its integrand has the requisite continuity.

From (15) it now follows that the integrals on the right ot (20) are continuous
functions of y in H. They are also uniformly bounded, by (23) with X = 0. So the
series in (20) is a uniformly convergent series of continuous functions, whence the
left side of (20) is also continuous.
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(f) Proof that (11) exists. Writing \y-bn\ = r\n and

(•oo fa
(26) 0,(30 = / .(x, y)dx =

Jo Jo

,._. , , x. . f °° _. , Isin xl , ^ f
(27) |^n(3')l ^ e ""*—-—dx ^

Jo .Jx J(

v* dx,

e~1|""x*dx =
o JJ* (y —1)*

for j> > 1 and all n; here we have used (14). Also by (23) with A = 0, we have
\gn(y)\ ^ 2C for all y and all n.

By these two inequalities, there is a> eL(0, oo) such that

l7nO0l = Cj) ^ ^ n-
Further

(28) | E "n9n{y)\ ^ E an\9n{y)\ ^ ^«»M for all y,
n=2 n=2

establishing the L-integrability on H of the function on the left. So, by a corollary
of the dominated convergence theorem,

/ * OO / • OO

I E Qn9n(.y)dy —* I E Qn9n(.y)dy as A —> oo.
J(0,A)n = 2 JHH = 2

Also (28) ensures absolute convergence of the expression on the right, so by
another corollary of the dominated convergence theorem, this may be written

/* 00 00 /•

E an9n{y)dy -* E a-\ 9n{y)dy as A -> oo,
J(0,A)n = 2 11 = 2 Jff

the existence of the right side being assured by that corollary. The integrands on
both sides are continuous by (e), so the integrals can be written as J?-integrals,
proper on the left and improper on the right. Observing (20) and (26), this gives

(29) [dy Vfix, y)dx - £ an f"dy f "/.(x, y)d>
Jo Jo n=2 JO JO

as A -> oo.

This proves the existence of the repeated improper i?-integral (1 l).We already know
from (e) that its inner integral is continuous.

(g) Proof that (13) does not exist when an = l/«3 and bn are the terminating
binary decimals in (0, 1), as follows:

b2 = -1,

(30) b3 = -01, fe4 = -11,

b5 = -001, b6 = -Oil, bn = -101, b8 = -111,
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and so on. We prove that the inner integral of (13) is divergent for y = bn, for all n.
Let y = bk, where bk has h + l binary digits; thus 2" < k ^ 2h+1. By the

two middle steps of (27),

n = 2*+l \y—l

2 h + 2

< V + (l/2*

(31) < W + 2(2 A

using the inequality

4-•
2(2"

4.

£ S I f00 1 , 1
I an< I 1 < - 3 dx = —-j .

n=m+l n = m + l H J m X 2 m

The geometric series (31) is convergent, with sum 2(^/2+1)/2*\
For any A > 0, using (a) and (15),

^ f %*/»(*, y)|dx- [\akfk{x, y)-f(x, y)\d*
Jo Jo

^ "k \\h(*, y)\dx- f £ an\fn(x, y)\dx
JO Jo n*k

fc3

(32)

sin x

sin x

V* n*k JO

The integrals in the summation in (32) are all convergent when y = bk,
since bn ^ bk whenever n # k. So the series is convergent, as proved above using
(31). Also its sum is independent of A. So the whole expression (32) tends to infinity
with X. Thus the improper i?-integral

Jo
, y)\dx

is divergent for y = bk, where bk is any of the terminating binary decimals in (0, 1).
That is, it is divergent in a dense set of y-values in (0, 1). Consequently it has no
improper J?-integral, and (13) does not exist.

THEOREM 2. If fix, y) is measurable on the open quadrant HxH, and the re-
peated improper R-integrals

(33) \°dx\*f(x,y)dy and !* dy ! "/(*, y)dx
J 0 J 0 J 0 J0

both exist and one is absolutely convergent, then they are equal.
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Thus the requirement in Theorem 1 that both integrals be absolutely conver-
gent can be reduced. Example 1 shows that this reduction is significant, and
Theorem 2 shows that the integrals in Example 1 are equal.

PROOF. Suppose the absolutely convergent integral is that on the left. The
proof of Theorem 1 omitting the last two paragraphs still applies, establishing
(7) and (8).

The left side of (8) is finite, by the absolute convergence hypothesis; hence
so is the right side. This, with the measurability of/(x, y) on H x H, gives the fini-
teness and equality of

(34) f dx f |/(x, y)\dy = f dy f |/(x, y)\dx < oo
JH JH JH JH

by Fubini's theorem; and it follows that

(35) 4> 6 L(0, oo), where r^y) = f |/(x, y)\dx.
JH

Since the expression on the right in (33) exists, its inner integral exists for all
but a finite set of y in H. Also by (35) the corresponding L-integral exists for al-
most all y in H. So, by the consistency theorem, the improper i?-integral is ab-
solutely convergent for almost all y in H, and the integrals are equal:

(36) | f(x, y)dx = f(x, y)dx for almost all y e H.
JO J H

Again since the expression on the right in (33) exists, its outer integral exists
and there is a subdivision (2) such that it is equal to

lim £ ( + \dy\ f(x, y)dx;
n-><x> >=1 W X f - i + l / n J $t I J o

here the meaningless upper terminal xk—\\n is to be read as £k+n. These several
outer integrals are proper i?-integrals, and so equal to the corresponding L-inte-
grals. Abbreviating the union of their intervals of integration thus

In = U {(*«-1 +1/«. Q U («i' *« - !/»)}>
i = l

and using an L-integral on /„, the integral on the right in (33) is

\ dy) f(x, y)dx = lim f dy f /(x, y)dx
Jo Jo n-> oo J ln J 0

= lim dy f(x, y)dx using (36),
n-»oo J In JH

(37) =\ dy[f{x,y)dx
JH J H
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by a corollary of the dominated convergence theorem, since the inner integral is
L-integrable by (34).

Finally, the right sides of (7) and (37) are equal by Fubini's theorem and (34),
hence the left sides are equal as required.

EXAMPLE 2. There is a function f(x, y), continuous in HxH, for which the
repeated improper R-integrals (33) both exist but neither is absolutely convergent,
and yet the corresponding repeated L-integrals are absolutely convergent and equal.

Let g(x, y) be the function discussed in Example 1, defined in (15) and (30)
and labelled f(x, y); and let / (x, y) now be the continuous function

f(x,y) = g(x,y) + 2g(y,x).

The existence of (10) and (11) and the linearity of the integrals ensure the exis-
tence of both integrals (33).

Now
\f(x,y)\Z\g(x,y)l-2\g(y,x)\,

/•co

\g(x, y)\dx is divergent at a dense set of y in (0,1),
Jo

, x)\dx is convergent for all y by (18);
' 0

from these we infer that

\f(x, y)\dx is divergent at a dense set of y in (0,1).
Jo

Thus the integral on the right in (33) is not absolutely convergent. Neither is
that on the left, by a similar argument.

Since g fulfils the hypotheses of Theorem 2, (34) gives

f dx f \f(x, y)\dy g \ dx f \g(x, y)\dy+2 ! dx f \g(y, x)\dy
JH JH JH JH JH JH

= 3 | dx\ \g(x,y)\dy < co;
J H J H

so the two repeated L-integrals of /are absolutely convergent and therefore equal.

THEOREM 3. Iff(x,y) is measurable on the open quadrant HxH, the repeated
improper R-integrals (33) both exist, and there is 0 e L(0, oo) such that

poo
(38) \f(x, y)\dy g <j>(x) for almost all xeH,

Jo

then the integrals (33) are equal.
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Although it looks like a re-statement of Fubini's theorem, this theorem is sig-
nificant in that neither of the integrals (33) need be absolutely convergent. It would
prove the equality of the integrals of Example 2, via (18), if this were not already a
consequence of the application of Theorem 2 to Example 1.

PROOF. By (38) and the consistency theorem, f(x, y) is L-integrable on H
with respect to y for almost all x e H, and

(39) f f(x, y)dy = \ f(x, y)dy for almost all x e H.
J 0 J H

The same equation holds with/replaced by | / | , and this with (38) shows that the
integral on the left of (34) is finite; whence (34) holds.

It follows from (34) that/(x, y) is L-integrable on H with respect to x for al-
most all y e H. Then by the consistency theorem

(40) f(x, y)dx = f(x, y)dx for almost all yeH.
Jo J H

The long paragraph in the proof of Theorem 2 now applies, the role of (36)
being supplied by (40); the result is (37). The same paragraph applies again with
repeated integrals in the reverse order, the role of (36) being supplied by (39); the
result is

("dx f 7(x, y)dy = I* dx f f(x, y)dy.
J 0 Jo J H J H

Since the right sides of this equation and (37) are equal, by (34) and Fubini's the-
orem, the left sides are equal; this proves the theorem.

Acknowledgment

Mr. J. J. Koliha has pointed out to me that the theorems in this paper are
related to a Fubini-type theorem on Perron-Stieltjes integrals proved by Mafik
[1, p. 125-7]. This theorem states the equality of repeated Perron-Stieltjes inte-
grals on compact intervals X and Y (the inner integrals being upper or lower) when
the corresponding dimetric Perron-Stieltjes integral on 1 x 7 exists. From this
we can deduce the cases of our theorems in which the half-line H is replaced by a
compact interval /, as follows.

The foregoing proofs show that in each of Theorems 1, 2 and 3 f(x, y) is
L-integrable on 77x77, and hence on 7x7. Consequently it is P-integrable on
7x7 and the above theorem is applicable. Now improper 7?-integration on 7 is
included in ^-integration [l ,p. 132-3]. Thus our repeated improper 7?-integrals
are repeated TMntegrals, and so are equal by the above theorem.

Another related result is a Fubini-type theorem formally similar to Mafik's,
given for variational integrals by Henstock [2, p. 109].
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However no references have been found to consider the primary question dis-
cussed in this paper, namely whether absolute convergence of a repeated improper
i?-integral implies absolute convergence of the reversed repeated integral. The sti-
mulus for this came in part from the practical importance of improper i?-integrals,
since these are so widely used. But in fact a truncated form of Example 1 also ans-
wers the corresponding question about absolute convergence of repeated Perron
integrals.
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