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ABSTRACT. Supraglacial dust (cryoconite) is an important but poorly understood component of the
glacial system. There is a lack of primary data on cryoconite form, extent and dynamics. Here we
present a suite of rapid, low-cost methodologies for quantification of granule geometry and supraglacial
cryoconite coverage using image data captured by commercially available digital cameras. We develop
robust, transferable protocols for analysis of (1) cryoconite granule geometry (major axis, Feret
diameter, circularity); (2) centimetre–metre scale supraglacial extent (m2

cryoconitem
–2

surface); and
(3) temporal change in supraglacial extent at hourly intervals over several days. Image-processing
methodologies were developed using the public domain software ImageJ. Manual (supervised) controls
were used to estimate sources of error, and measurements then automated using simple scripting tools
(macros). Fully automated processing successfully identified �90% of a sample of isolated granules
ranging between 2.5 and 39.2mm, with uncertainties of <20%. Particle sphericity (inferred from
circularity) decreased as particle size increased. Supraglacial cryoconite extent was obtained with a
mean uncertainty of 37% and 22% for data from field sites in Greenland and Svalbard, respectively.
These methods will facilitate acquisition and analysis of datasets for cryoconite across a range of spatial
scales, supporting research into cryoconite impacts on supraglacial hydrological connections, nutrient
and carbon cycling, and initiation of primary succession in deglaciating environments.

INTRODUCTION
Dust on glacier surfaces is a controlling factor of ice albedo
and imparts significant influence on ablation rates, surface
water volumes and supraglacial weathering crust develop-
ment (e.g. Cutler and Munro, 1996; Adhikary and others,
2000). Surface dust frequently comprises significant quan-
tities of organic material, algae and bacteria (Takeuchi and
others, 2001; Hodson and others, 2008). Biological activity
binds organic and inorganic material together in character-
istically small (typically <1 cm) aggregate granules (Takeuchi
and others, 2001; Takeuchi, 2002). This biogenic dust is
commonly termed cryoconite. The presence of low-albedo
humic substances in cryoconite further reduces the overall
mineral dust albedo (e.g. Takeuchi and others, 2001;
Takeuchi, 2002, 2009; Takeuchi and Li, 2008). Conse-
quently, cryoconite deserves increased research attention
because its presence enhances ice melting and wastage over
a range of spatial scales from valley glaciers to ice sheets
(e.g. Kohshima and others, 1993; Bøggild, 1998; Takeuchi
and others, 2001; Takeuchi and Li, 2008; Bøggild and
others, 2010). The occurrence of cryoconite has potential
impacts on supraglacial hydrological connections (Fountain
and others, 2004; Irvine-Fynn, 2008; MacDonell and
Fitzsimons, 2008) and nutrient and carbon cycling (Bagshaw
and others, 2007; Hodson and others, 2007, 2010) as well as
influencing primary succession in deglaciating environ-
ments (e.g. Kaštovská and others, 2005).

Despite the growing research interest in cryoconite, there
are few primary data available in key areas of interest
(Takeuchi, 2002; Hodson and others, 2007). These include
quantitative assessment of the morphology and genesis of
cryoconite granules in different glacial contexts, and the
temporal variability of cryoconite extent and transport across
the ice surface over spatial scales from centimetres to

kilometres. Previous laboratory analysis of cryoconite
granule geometry used digital images of cryoconite acquired
through microscopy (Takeuchi and others, 2001). Individual
granule dimensions in each microscope image were meas-
ured manually using computer image-processing software
(personal communication from N. Takeuchi, 2009). In the
field, an imaging approach was also proposed by Hodson
and others (2007) using unmanned aerial vehicles (UAVs)
supported by ground-truth surveys to quantify supraglacial
cryoconite distribution. Both existing methodologies are
limited in effectiveness by the requirement to use specialist
equipment (e.g. microscopy, UAVs); the large number of raw
data generated by high-resolution digital imaging; and a
dependence on manual image processing and/or the use of
proprietary (high-cost) software to perform supervised classi-
fication of image components (e.g. Hodson and others,
2007). Furthermore, UAV field data have relatively low
spatial resolution and are subject to variable imaging
geometries and lighting conditions.

Here, building upon the earlier work of Hodson and
others (2007), we present a set of robust, semi-automated
data-processing protocols to support increased use of low-
cost imaging methodologies to collect primary datasets for
(1) cryoconite granule morphology; (2) variation in spatial
extent of supraglacial cryoconite over an altitude transect in
the field; and (3) temporal variation in supraglacial
cryoconite at a single location in the field. The datasets
were acquired in Arctic settings exhibiting surface cryoco-
nite forms, using standard commercial digital cameras and
the protocols developed using public domain software. The
aim of this work is to establish transferable, rapid measure-
ment tools to make practical the collation of comparable,
standardized datasets for cryoconite morphology and
occurrence over a wide variety of glacial environments.
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MATERIALS AND METHODS

Cryoconite sources and sampling

Granule morphologic analysis (laboratory)
Cryoconite granules (Fig. 1a) were collected from Long-
yearbreen, Svalbard (7881004900 N, 1583002100 E), during a
field campaign in summer 2008 (for details see Hodson and
others, 2010). In the laboratory, samples were placed in
water-filled glass Petri dishes overlying standard 2mm
square graph paper. Five granules in each dish were
carefully isolated for analysis (Fig. 1a). Digital colour (red-
green-blue, RGB) images (uncompressed JPEG) were
acquired using a 6.08-megapixel Fuji FinePix-S6500 camera

mounted vertically above each Petri dish under standard
room illumination with no flash.

Field analysis of spatial variability in supraglacial
cryoconite extent
Supraglacial cryoconite coverage over a transect at the
margin of the Greenland ice sheet (GrIS), at a site near
Kangerlussuaq (6780900500 N, 9880101600 W), was investi-
gated using image acquisition methods similar to those
detailed in Hodson and others (2007). Digital colour images
(uncompressed JPEG) were acquired from �1.5m above the
ice surface with 1.92-megapixel (1600�1200) images
captured using a Fuji FinePix-S6500 camera and a field of

Fig. 1. Example images of (a) cryoconite granules and (b) in situ extent as used in analyses presented here, schematically illustrated in
sequence.
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view encompassing a 40�40 cm quadrat placed on the ice
(Fig. 1b). Between 16 and 50 images were taken in a grid
formation at each of seven survey locations (250 images in
total) spanning a 70m elevation range over the period
28–30 August 2008.

Field analysis of temporal variation in supraglacial
cryoconite extent
A time-lapse sequence of 216 images was collected at a
single point on the ice surface at hourly intervals over a
period of 9 days (20–29 July) at Longyearbreen, Svalbard
(7881004900 N, 1583002100 E) in summer 2008. The site was
considered to be typical of ablating glacier ice exhibiting an
irregular, time-variable surface texture, pitted with numer-
ous small (centimetre-scale) cryoconite holes. Digital col-
our images (uncompressed JPEG) were captured using a
7.08-megapixel (3072�2304) Pentax Optio WP30 digital
camera. The camera was fixed to a vertical pole drilled and
frozen into the glacier ice and remained immobile as the
ice surface ablated around the mount. The distance from
the camera to the ice surface increased from 0.5m to
�1.0m over the imaging period. A subset of these data and
field site details are presented in Hodson and others (2010).

Digital image processing
ImageJ software
All analyses were undertaken using the public domain
image-processing software ImageJ (Rasband, 2009). ImageJ
is widely used in the biological and environmental sciences
as a powerful tool for manipulating and analysing images as
arrays of data (e.g. Bridge and others, 2006). Each pixel
within an image constitutes a single data point, having a
brightness or colour intensity proportional to its magnitude
relative to the whole dataset. Image processing involves
performing logical and mathematical operations on the
dataset to extract information. An extensive scripting
language and compatibility with the Java programming
environment enable the development and dissemination of
‘plug-in’ tools to facilitate complex task-oriented processing
routines. Full documentation and download of the software
is available from http://rsb.info.nih.gov/ij/ (accessed
13 November 2009).

Computer hardware
Digital image processing and software scripting was carried
out on laptop and desktop PCs. The critical factors
determining hardware selection are sufficient non-volatile
memory to store raw and processed datasets; and sufficient
volatile memory to load and manipulate tens of images
simultaneously, which is a prerequisite for efficient auto-
mated (batch) image processing. For the digital camera
datasets described here, these criteria were easily met by
standard commercial hardware specifications.

Image pre-processing
Raw digital images in 24-bit RGB colour space were
converted to 8-bit greyscale (256 brightness intervals, DN)
by splitting into three images, each representing a single
colour channel. For granule geometry (laboratory) data, only
the red channel was retained for analysis since this channel
showed the greatest contrast between cryoconite and Petri
dish and minimized the signal from the underlying graph
paper which had lines printed in brown. For supraglacial
extent (field) data, analyses were performed on the blue

channel image since an analysis of published data indicates
that the greatest reflectance contrast between cryoconite
and glacier ice occurs in the blue spectrum (Fig. 2).

Method development
For both laboratory and field applications we employed four
discrete steps: (1) calibration of spatial scale (image
resolution, mm pixel–1) and associated uncertainties;
(2) manual identification and measurement of cryoconite
dimensions for use as control datasets; (3) ‘supervised’,
semi-automated measurement of cryoconite using standard
image-processing functions in ImageJ; and (4) rapid, auto-
mated processing of multiple images using custom scripts to
identify and measure cryoconite. These steps are schematic-
ally illustrated in Figure 1. Each step establishes a set of
reference data against which the output of successive steps is
compared.

Isolation of cryoconite using image thresholding
Digital image thresholding involves constraining analysis to
a subset of the image data for which pixel brightness values
fall within a specified range. Since after image pre-
processing cryoconite appears darker than other image
elements, we assumed that cryoconite granules (laboratory
data) or regions on the ice surface (field data) could be
isolated by thresholding for those pixels with brightness
values which fall below a specified threshold level. This
level was specified by a supervised classification in which
the threshold was iteratively adjusted until the isolated
image pixels best coincide with the locations and limits of
cryoconite within the field of view (illustrated in Fig. 1).

Error analysis
Total uncertainty in measurements on vertically oriented
(plan-view) images was determined by combining the two
key uncertainties derived from (1) calibration of spatial
resolution, and (2) operator error in selection of threshold
values. We report procedures to estimate both these
uncertainties in each protocol. In field data, these meth-
odological uncertainties are compounded by variations
arising from changing camera position, surface aspect,
ambient lighting and so on. Additional uncertainty arises
when reducing spatially distributed data to singular values
(e.g. a value for cryoconite coverage averaged over the set of
images at any grid-surveyed site). Explicit consideration of
all these errors is a non-trivial exercise. Therefore, where
applicable, we report uncertainty in field data as simply the
standard error (E) on cryoconite area at each survey site,
using the standard deviation derived from threshold sel-
ection in measurements of cryoconite area from control
images (�) and a t value (p=0.05) dependent on the control
image sample size (n):

E ¼ t
�ffiffiffi
n

p
� �

: ð1Þ

ANALYSES AND RESULTS
Cryoconite granule morphometry
Calibration and spatial resolution
The total sample size was 18 digital images, each showing
one Petri dish containing five discrete cryoconite granules.
The ImageJ LINE tool was used to assess variations in spatial
scale by measuring the length (in image pixels) of the 2mm

Irvine-Fynn and others: Rapid quantification of cryoconite 299

https://doi.org/10.3189/002214310791968421 Published online by Cambridge University Press

https://doi.org/10.3189/002214310791968421


grid squares in both x and y directions at random locations
within each image. There was minimal radial distortion
within the images, with a root-mean-square error (RMSE) of
0.06mm when comparing x- and y-grid dimensions across
the area of interest, and a maximum uncertainty of 0.2mm.
Variations in camera height between images were also small
and yielded a mean image resolution of 0.09� 0.01mm
pixel–1, equivalent to an 11% uncertainty in length
measurements.

Manual measurement of granule size
The longest distance across individual granules (A-axis
lengths) was measured manually as in previous work (e.g.
Takeuchi and others, 2001). The A-axis for each particle was
determined visually and measurements (LINE tool) were
repeated three times to provide an estimate of mean user
error (�1.3%). The resulting mean granule size for the 90
particles isolated in this analysis was 8.59� 6.67mm.
Population mean granule dimensions were reported pre-
viously by Takeuchi (2002) and Takeuchi and Li (2008) for
elsewhere in the Arctic (0.50�0.29mm), the Himalaya
(0.54� 0.21 mm), Tibet (0.80�0.35 mm) and China
(1.4�0.47mm). However, we emphasize that the granules
isolated for this study were selected for the purpose of
developing the image-processing methodology rather than

to be statistically representative of the sampled population.
Importantly, the pixel resolution reported above readily
permits measurements in these size ranges using the
methods presented here (see below).

Semi-automated measurement of granule dimensions
A random selection of five images (25 granules) was analysed
using digital image thresholding to isolate cryoconite
granules within each image. The threshold level was selected
to ensure that the perimeters of the isolated pixel regions
coincided exactly with the observed cryoconite granule
perimeters. Once this was achieved, the image was
converted to a binary (two-colour) image where thresholded
regions (cryoconite) were set to black and all other parts of
the image set to white (Fig. 1). An OPEN filter was applied to
reduce the roughness of the binary ‘particle’ edges. The
ANALYZE PARTICLES tool in ImageJ runs an algorithm which
scans a binary image to locate and measure discrete pixel
areas (‘particles’) which meet specified criteria (e.g. limits on
granule area and circularity). It then calculates and returns
the dimensions of an ellipsoid best-fitting each particle thus
identified (Fig. 1). The tool was applied to the threshold
binary images to obtain the Feret diameter (FD), granule area
(A) and A-axes of ellipsoids fitted to the cryoconite granules.
The minimum particle length dimension measurable by this

Fig. 2. Apparent ranges of spectral reflectivity of several supraglacial surfaces. The cryoconite data are drawn from A.J. Hodson and
R.G. Bryant (unpublished) and (for dry cryoconite) from Takeuchi (2002), the snow reflectance sourced from the US Geological Survey
(USGS), while the two sets of data for Arctic glacier ice are taken from Alaska (Takeuchi, 2009) and northeastern Greenland (Bøggild and
others, 2010). The latter two studies present spectral response of glacier ice with a range of impurity coverage, so ‘cleaner’ glacier ice
reflectance is likely to lie in the upper regions of the range of spectral responses, for which reflectivity in the red channel (centred at R)
decreases rapidly in contrast to the increasing response for cryoconite at similar wavelengths. The spectral response of dry cryoconite is
likely to be reduced further when the material becomes wet. Note the theoretical basis for differentiating ice and cryoconite in the blue
channel (centred on B) where contrast between reflectance is greatest.
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automated process was 0.27mm, equal to a granule with
plan-view area of 0.07mm2.

Figure 3a shows that FD measurements obtained using
the semi-automated ANALYZE PARTICLES approach were
not significantly different (p< 0.01) from the manually
identified A-axis length, for granules <30mm in diameter.
The same result was achieved for semi-automated measure-
ment of the ellipse A-axes (data not shown). For larger
particles the tendency of the semi-automated method to
overestimate granule dimensions relative to the manual
dataset led to significant discrepancy between the two
approaches, although we note that typical cryoconite
population bias is towards the smaller (<15mm) granules
for which this issue does not apply. Image processing was
replicated independently and yielded an average variance in
choice of threshold level of approximately eight digital
brightness units (DN). Repeating the image processing using
a range of �5DN about the mean threshold value enabled
the maximum relative error of thresholding to be estimated
as 16.6�6.02% and 10.0� 3.51% for granule area and
FD values, respectively. Probabilistically combining these
values with the uncertainties in image resolution, noted
previously, yielded total errors in granule area and FD
measurements of <20%.

Fully automated (batch) measurement of granule
dimensions
We developed a simple automation algorithm (macro)
coded in the ImageJ scripting language. The objective was
to enable rapid, standardized quantification of cryoconite
granules in a set of images obtained under identical
conditions. The macro (Appendix A) collates a set of raw
images as a STACK, performs the pre-processing outlined
earlier and sets ImageJ measurements to include FD, area
and the A-axis of ellipses fitted to cryoconite granules. The
user is given the option of using automated thresholding in
individual images or entering a single supervised threshold
value applicable to the entire dataset. The macro then
performs on each image in turn the THRESHOLD, CON-
VERT TO BINARY and ANALYZE PARTICLES routines
described above.

Unsupervised (auto-thresholding) batch processing of
the entire image set using the macro yielded an 86%
success in identifying granules. Figure 3b shows that there
was no significant difference from a 1 : 1 relationship
(p=0.01) between measurements of granule FD by fully
automated and manual techniques, despite respective
methodological uncertainties of �10.1% and 1.3%. Super-
vised processing (requiring a user-defined threshold) in-
creased the success of granule identification to 91%.
Failure to identify granules, or instances of substantial
deviation between automated and manual measurements
for individual granules, was attributed to the presence of
shadows, particularly around larger granules, reflecting
non-ideal lighting conditions and demonstrating how the
method may be readily improved.

Critically, supervised or automated thresholding is
operator- or image-dependent and therefore represents a
major potential source of error in reported measurements.
To illustrate the sensitivity of the measurements to threshold
selection, we performed the batch processing with the
choice of supervised threshold spanning ten brightness
levels (i.e. �5DN about the specified ‘optimum’). Figure 4a
shows the effect of variation in threshold on the mean and

standard deviation of FD measurements. It is obvious that in
laboratory data the variation in threshold makes little
impact on the measurement of cryoconite granule geom-
etry, in particular in comparison to the size variation in the
sample as a whole (characterized by standard deviation
error bars). This is a function of the high brightness contrast
between dark cryoconite and bright background image
pixels (Fig. 4a).

Correlation between granule dimensions and
morphology
We observed that the granules appeared more elliptical in
shape as their dimensions increased. To quantify this we
measured the circularity of the granules. ImageJ includes an
algorithm for circularity, C, determined as:

C ¼ 4�
A
P2

� �
ð2Þ

for which P is the granule perimeter. A plot of granule
circularity against A-axis (Fig. 5) showed a clear trend for
larger granules to be less circular (and, by inference, less
spherical). We emphasize that our analyses are limited to
the two-dimensional (2-D) shape of the circumference of the
upper surface of each granule presented to the camera lens.
However, these observations imply that the processes of

Fig. 3. Plots of (a) semi-automated measurement of cryoconite
granule FD against manually measured granule long axis; and
(b) manual measurements against the fully automated batch-
processed retrieval of FD using ImageJ’s internal auto-threshold.
The dashed lines indicate confidence limits for the TLS regression
(p=0.01) and the solid line indicates the 1 : 1 relationship.
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cryoconite granule growth may not be uniform across the
granule surface; this indicates an area for future research.
Cryoconite granules grow through the activity of bacteria
and algae on the granule surface (Takeuchi and others,
2001; Hodson and others, 2010), and the non-spherical
form may therefore reflect a biologically mediated balance
between growth (and erosion) kinetics and heterogeneous,
physical aggregation properties.

Spatial variability in supraglacial cryoconite extent

Calibration and spatial resolution
From each of the seven GrIS survey sites, images were
selected at random (up to six images per site) for use as
control data. In each image, the scale on the quadrat
placed on the ice surface was manually measured four
times in the vertical and horizontal. The average RMSE
when comparing a total of eight x and y dimensions across
the area of interest was <0.32mm, indicating little
distortion over a region of interest (ROI) �40�40 cm
centred on the image centre. Mean pixel resolution across
all images was 0.03�0.002 cmpixel–1, with a range of
0.021–0.039 cmpixel–1 across the seven survey locations.

Fig. 4. Graphs illustrating the influence of uncertainty in threshold value (DN) on (a) the mean geometry (FD) for a sample of 84 granules,
and (b) the mean cryoconite area taken from a 16-image survey. Error bars are given as the standard deviation of all measurements. Sample
histograms for the two image types are given for comparison.

Fig. 5. Plot of elliptical A-axis against actual granule (plan-view)
circularity illustrating a significant negative relationship between
the variables. The dashed lines indicate confidence limits for the
TLS regression (p=0.01), and the solid line indicates the 1 : 1
relationship.
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Manual measurement of cryoconite area
Control images were manually thresholded as described
previously to carefully define regions of cryoconite, and this
supervised threshold value recorded for each individual
image. The ImageJ MEASURE tool was used to quantify the
area occupied by cryoconite (m2

cryoconitem
–2

surface) within
the field of view (steps illustrated in Fig. 1). Independent
replication of threshold selection yielded a range of �5DN.
This range was used to estimate the uncertainty due to
threshold selection on measurements of cryoconite area in
each control image. The mean uncertainty over all control
images was used as a measure of the likely errors within the
survey as a whole. This assessment gave an overall mean
uncertainty of �22.7% on measurements of cryoconite area,
with values ranging from �10% to �48% within each of the
seven survey sets. Combination of these errors with the
resolution uncertainty yielded a mean methodological error
of 23.3% in cryoconite area estimates across the control
image set.

Semi-automation of image analysis
All images from each survey were processed using an ImageJ
macro (Appendix B) to automate the analysis. Due to the
variations in exact quadrat position in each image, measure-
ments of cryoconite coverage were limited to an ROI
measuring 25�25 cm centred on the centre of the image.
The mean supervised threshold value obtained from the
manual analysis of control images at each survey site was
applied to all images at that site, and the area identified as
cryoconite in each image was obtained using the MEASURE
tool. Fully automated processing (i.e. unsupervised thresh-
old selection to isolate pixels corresponding to cryoconite in
each image) was not possible in these data due to the lower
contrast between ice surface types in field data, as discussed
in the methods section.

To demonstrate the sensitivity of threshold selection on
cryoconite area estimates, we performed the processing
routine with supraglacial images for a single survey and
employed a threshold range �5DN about the mean
‘optimum’ derived from the corresponding control images.
Over the 16 field images, the 10DN variation in threshold
led to a 50% increase in the average area identified as
cryoconite, with a similar trend in the variation of sample
image measurements as a whole (Fig. 4b). The sample
histogram, combined with inspection of Figure 1, shows that
there is typically much lower brightness contrast between
cryoconite regions and other ice surface types in these
images. Thus, in field data, careful supervision of the image
threshold selection is critical to the accuracy of measure-
ments, and an allowance for operator error during this
supervision may contribute to a substantial uncertainty in
measurements of supraglacial cryoconite area.

Results for the GrIS transect are presented in Figure 6,
which shows the variation in mean supraglacial cryoconite
extent for each survey site against distance from the ice
margin. Uncertainty in a singular, representative cryoconite
area for each survey was estimated using the standard error
(E in Equation (1)) derived from the control images, which
yielded a mean uncertainty of 0.154m2

cryoconitem
–2

surface, or
�37% across all seven survey sites. The results presented in
Figure 6 indicate reductions in cryoconite extent above
�550ma.s.l. and below �510ma.s.l. The actual elevational
loading of cryoconite material could be readily estimated
from our data by using calibration images containing a
known mass of cryoconite (refer to Hodson and others
(2007) for method) but is not explored further here.
However, if the strong linear relationship between debris
mass and apparent surface area coverage found by Hodson
and others (2007) for midtre Lovénbreen, Svalbard, is
applicable to GrIS, the results here indicate highly varied

Fig. 6. Plot of cryoconite extent (m2m–2) against distance from ice margin across an up-glacier transect in the ablation zone on GrIS.
Elevation for the same transect is indicated by the dashed line. Cryoconite extent is given as the mean determined by batch processing of all
images collected on a grid-based survey at each site, and uncertainty bars are given as the standard error (E) derived from the subset of
control images for each survey estimating spatial uncertainties. Methodological uncertainty limits are indicated with ‘�’.
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debris concentrations over elevation in the ablation area at
the study site.

Placed in context, our results appear to corroborate
earlier observations by Oerlemans and Vugts (1993) who
were the first to highlight a darker zone in the upper ablation
area of GrIS. Similarly, more recently Bøggild and others
(2010) report a lowered albedo in the upper ablation zone
away from the ice margin at another site on GrIS in response
to cryoconite volume and dispersal. The glaciological
application of the method presented allows rapid quantifi-
cation of imagery, in combination with meteorological,
radiation or reflectance measurements, to explore empirical
relationships and test assumptions regarding the character-
istics of ice surface materials and processes: for example,
whether dust and debris (cryoconite) is greatest at the lowest
elevations in the ablation zone (e.g. Oerlemans, 1992;
Brock and others, 2000); or whether cryoconite or meltwater
present primary controls on supraglacial albedo (cf. Bøggild,
1998; Greuell, 2000).

Temporal variability in supraglacial cryoconite extent
Calibration and spatial resolution
As the distance between the fixed camera and the ice
surface increased due to ablation, the spatial resolution of
images changed over the time series. To quantify this
variation, the apparent maximum diameter of a 47mm
white filter paper, placed on the ice surface, was measured
in each image to obtain the pixel resolution (mmpixel–1).
Since the pixel resolution changed significantly and system-
atically within the dataset (0.13–0.17mmpixel–1), the size
of the ROI corresponding to an area of 20�20 cm varied
from image to image. However, using the known image
resolution, the dimensions (in pixels) of a scale-consistent
ROI centred on the source image centre point could be
readily calculated and defined using the ImageJ MAKE
RECTANGLE script.

Manual measurement of cryoconite area
Calibrated images at 6 hour time intervals were manually
thresholded to isolate regions of cryoconite as described
earlier. This supervised threshold value was recorded for
each individual image. The MEASURE tool was used to
quantify the area occupied by cryoconite. Note that this

procedure therefore measures the pixel area in the image
occupied by material identified colorimetrically as cryoco-
nite; it is not a measure of the area of the holes in which
cryoconite particles may reside. Uncertainty in the area
retrieved for each ROI was estimated using the �5DN
variance in the threshold level assumed from the previous
analyses, and validated, again independently, by replicate
analyses: for each image, uncertainty was given as 2� in
area measurements over the range of threshold values. The
mean uncertainty in cryoconite area across the 41 images in
the time series was estimated to be �22%.

Automated measurement of cryoconite area
The custom macro (Appendix B) was extended to perform
supervised and fully automated measurement of cryoconite
area. Supervised measurements require the user to input the
mean cryoconite threshold level based on manual analysis
for a given set of images; automated measurements use the
AUTO-THRESHOLD function in ImageJ.

Figure 7 illustrates the results of the time-series analysis at
6 hour time intervals. There was typically a relatively small
difference between amounts of cryoconite measured using
manual, supervised or automated techniques, within the
limits of error established for the imaging in general.
However, instances occurred where the fully automated
approach showed substantial deviations from the manual
results. Post hoc examination showed these deviations
tended to coincide with significant changes in imaging
conditions (colour levels, lighting and shadowing) as had
been seen with the GrIS images. Nonetheless, removal of
these outlying data should be a simple process using a series
of manually processed control images. Over the 9 day
duration of observations at the Longyearbreen site, the data
demonstrate an apparent trend of decreasing extent of
cryoconite (r2=0.23, slope of the regression significant at
p=0.05). The apparent variability at shorter time-steps
indicates some form of temporal dynamics: these may
(1) relate to variations in lighting and shadowing as solar
position changes with respect to the ROI or (2) reflect
differing melt processes as relative fluxes of incident and
turbulent energy co-vary with changing meteorological
conditions resulting in the melt-in and melt-out of cryoco-
nite debris (Hodson and others, 2008, 2010). However,

Fig. 7. Chart illustrating the temporal change in supraglacial cryoconite extent (m2m–2) on Longyearbreen during 2007 as indicated by
points. Error bars, for area determined for each image, were estimated from analysis of the variance of area in response to the �5DN range
of uncertainty in threshold value. The trend in extent over time is shown as a dashed line based on a linear regression and includes the r2.
The solid line shows the results for fully automated batch processing of the same suite of images, illustrating close agreement in some areas
and marked divergence (dotted line) in others suggestive of the issues relating to environmental conditions (especially lighting).
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further analysis is required before causal mechanisms or
feedbacks can be identified.

Acquisition of time-lapse imagery of the ice surface, as
demonstrated here, could be used to test the notions of
cryoconite mobility within the supraglacial environment
suggested by Hodson and others (2010). With respect to the
larger-scale glaciological impacts, variability in cryoconite
coverage clearly has implications for albedo (e.g. Bøggild
and others, 2010), and short-term spatial and temporal
variability in albedo has been widely documented (e.g.
Brock, 2004). Sub-centimetre scale image data afford the
opportunity to explore redistribution of supraglacial debris
by ‘surface washing’ during heightened melt or precipitation
events (Brock, 2004) and to examine the complex interplay
between cryoconite coverage, meteorology and surface
albedo at a variety of timescales.

CONCLUSIONS
In summary, we demonstrate a novel measurement method-
ology, and report associated errors, which enables rapid,
semi-automated batch processing of digital images to obtain
cryoconite granule geometry and in situ supraglacial areal
extent in Arctic settings. The methods provide standardized
tools for handling the large quantities of data sourced from
field studies that sample the ice surface at high spatial and
temporal resolution and at a large number of survey sites. The
method is shown to be feasible for surface cryoconite as
found in Arctic (and more temperate) environments, but its
use in Antarctic settings where ice lids typically cover cryo-
conite aggregations remains to be explored. Useful data can
be obtained using inexpensive, lightweight digital cameras,
making intensive studies more viable. Such an approach
enables quantitative exploration of both the spatial and tem-
poral variations in cryoconite coverage and form which can
be readily linked to the potential impacts on ice-sheet surface
mass balance or the physical and biogeochemical dynamics
of this important ecological niche. In supporting this, these
methods facilitate the key step change from research at few
sites on the valley-glacier scale to research spanning many
sites across the ice-sheet scale (Hodson and others, 2008).

We have identified several key factors determining the
quality of the data analysis: ambient lighting and its
variability between images is critical. In the laboratory, this
particularly affected larger granules; their shadows made
accurate identification of granule edges by a brightness
threshold challenging. Improved results could be achieved
by using a light table such that the granules are lit from both
above and below, thereby eliminating shadows. The use of
portable USB microscopes (e.g. Veho VMS-004 Discovery)
capable of directly capturing images means that our
methodology could be applied in temporary field labora-
tories and for granules considerably smaller than those
reported here. Variability of environmental conditions in the
field dictates that ambient light cannot be readily controlled
or constrained. Nonetheless, the methodologies presented
here allow rapid extraction of information pertaining to the
dynamics of supraglacial cryoconite distribution with
remarkably little data loss. The quantitative image analyses
presented here facilitate the acquisition of primary data to
support studies of cryoconite granule growth mechanisms
and constraints; supraglacial debris formation, mobility and
evolution; and assessment of ice surface albedo variations
linked to the dynamics of cryoconite coverage.
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APPENDIX A
//Automated identification and measurement of
//pre-separated cryoconite granules in laboratory
//conditions.
//MACRO for ImageJ (http://rsb.info.nih.gov/ij).
//Published by Irvine-Fynn, Bridge and Hodson, 2010

//MACRO enables user to process a set of ‘raw’ images
//collected under similar lab conditions.
//Note ambient lighting, materials and imaging
//device should be the same for each image in a set.
//If significant differences, split images into
//several subsets or process manually.

//MACRO requests user to choose whether to specify
//a predetermined threshold value for the set of
//images or use auto-thresholding.

jobname = getTitle();
jobdirectory = getDirectory("image");
jobnamemod = indexOf(jobname, ".");
jobname = substring(jobname, 0, jobnamemod);

Dialog.create("Measure granule dimensions");
Dialog.addCheckbox("Pre-ordered RGB stack?",
false);
Dialog.addCheckbox("Auto-threshold?", false);
Dialog.show();
stackyes = Dialog.getCheckbox();
threshyes = Dialog.getCheckbox();;

// If images are not already stacked and converted
//from RGB, do this now.
if (stackyes == false) run("Images to Stack");

// Converts images from RGB to greyscale and retains
//only the RED channel as discussed in text.
run("RGB Split");
selectImage("Stack (blue)");
close();
selectImage("Stack (green)");
close();
selectImage("Stack (red)");

//Processing if user has not selected auto-threshold
//– a dialog box is displayed asking user to enter
//threshold value.
if (threshyes == false) {

run("Set Measurements...", "area fit
circularity feret’s slice stack limit redirect=None
decimal=3");

thresh_val = getString("Enter a threshold
value for this set of images", "100");

setThreshold(0, thresh_val);
run("Convert to Mask", " ");
run("Open");
run("Analyze Particles...", "size=500–70000

circularity=0.1–1.00 show=Outlines display exclude
clear include stack");
}
//Processing if user has selected auto-threshold.
//The ‘Make Binary’ routine automatically defines a
//threshold.
if (threshyes == true) {

run("Set Measurements...", "area fit
circularity feret’s slice stack limit redirect=None
decimal=3");

run("Make Binary", "calculate");
run("Open");
run("Analyze Particles...", "size=500–70000

circularity=0.1–1.00 show=Outlines display exclude
clear include stack");
}

//Save results

Dialog.create("Save results");
Dialog.addString("Enter a name for processed
dataset", jobname+"_analyzed", 32);
Dialog.addMessage("If source directory is
read-only or full, processing data will be
discarded.")
Dialog.addCheckbox("Write to same directory as
source images?", false);
Dialog.show();

jobname = Dialog.getString();
jobdir = Dialog.getCheckbox();

if (jobdir == false) {
jobdirectory = getDirectory("Choose a

Directory");
}

//Save processed stack using name chosen by user
save(jobdirectory + jobname + ".tif");

// Save the Analyze particle measurements to a.txt
//file in thespecified jobdirectory

String.resetBuffer;
String.append(jobdirectory);
String.append(jobname + "_meas" + ".txt");
saveAs("Measurements", String.buffer);
String.resetBuffer;

showMessage("Processing complete. Files saved to:
\n\n" + jobdirectory);
// MACRO ends.
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APPENDIX B
//Automated identification and measurement of

//supraglacial cryoconite extent in field

//conditions.
//MACRO for ImageJ (http://rsb.info.nih.gov/ij).

//Published by Irvine-Fynn, Bridge and Hodson, 2010

//MACRO enables user to process a set of ‘raw’ images

//collected at a single sampling point along a

//transect. Images should be collected using a

//camera positioned at similar height above the ice

//surface, taking care to maintain a consistent

//angle of incidence with surface and orientation

//relative to sun.
//Images should be briefly assessed prior to use to

//identify key illumination, orientation or surface

//anomalies to aid interpretation of outliers and

//errors in results.

//This MACRO can also be used to obtain fractional

//areal coverage of cryoconite in a time-series of

//images where the distance between the ice surface

//and a fixed camera may vary. In this application,

//the spatial scale is measured manually as the width

//in pixels of an object of known dimensions placed

//on the ice surface. Choose the middle image of any

//image set to characterise those measurements;

//check that the variance within the set is small

//compared to other sources of error. Note that

//absolute spatial measurements in such time-series

//data require normalization to a common spatial

//scale. This function is NOT present in this

//routine.

//This MACRO offers the possibility to auto-

//threshold an image. However, it is recommended

//that the user should perform initial analysis for

//image scale and identification of a threshold

//value which adequately isolates regions of

//cryoconite, using a subset of images as a control

//dataset. Details in the main text. Once this is

//done, subsequent analysis may be facilitated

//using auto-thresholding, IF this is proved to

//correlate sufficiently with the supervised

//measurement set.

// MACRO starts with a dialog box to set user

//preferences.

jobname = getTitle();
jobdirectory = getDirectory("image");
jobnamemod = indexOf(jobname, ".");
jobname = substring(jobname, 0, jobnamemod);

Dialog.create("Measure supraglacial cryoconite

extent");
Dialog.addCheckbox("Pre-ordered RGB stack?",

false);
Dialog.addNumber("Enter spatial resolution, cm/

pixel:", 0.03);
Dialog.addChoice("Actual size of region of

interest, cm x cm:",

newArray("5","10","15","20","25","30"),"25");
Dialog.addCheckbox("Use auto-thresholding?",

false);

Dialog.addNumber("Enter a threshold value

isolating cryoconite in this image set:", 100);
Dialog.addString("Enter a name for measurement

dataset", jobname+"_measurements", 32);
Dialog.addMessage("If source directory is

read-only or full, processing data will be

discarded.")
Dialog.addCheckbox("Write to same directory as

source images?", false);
Dialog.show();

stackyes = Dialog.getCheckbox();
resnumber = Dialog.getNumber();
autothresh = Dialog.getCheckbox();;
threshnum = Dialog.getNumber();;
ROInumber = Dialog.getChoice();
ROIn = parseInt(ROInumber);
ROInum = ROIn/resnumber;
jobname = Dialog.getString();
jobdir = Dialog.getCheckbox();;;

if (jobdir == true) {
jobdirectory = getDirectory("image");

}
if (jobdir == false) {

jobdirectory = getDirectory("Choose a

Directory");
}

// This caveat converts a group of raw images,

//previously loaded in ImageJ, to a stack ready for

//processing.

if (stackyes==false) run("Images to Stack");

// Processing job is given a name and color channels

//split to leave only the blue

run("Clear Results");
print("\\Clear");

rename("Stack");
run("RGB Split");
selectImage("Stack (red)");
close();
selectImage("Stack (green)");
close();
selectImage("Stack (blue)");

// Set the stack threshold to the value specified in

//the opening dialog.

if (autothresh==false) {
setThreshold(0, threshnum);
run("Set Measurements...", "area slice stack limit

redirect=None decimal=6");
}
if (autothresh==true) {
run("Convert to Mask", "calculate");
setThreshold(0, 254);
run("Set Measurements...", "area slice stack limit

redirect=None decimal=6");

// Define an ROI which is centred on the centre of the

//image, and has the dimensions specified in the

//opening dialog.
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centrex = getWidth()/2;
centrey = getHeight()/2;
originx = round(centrex) – ROInum/2;
originy = round(centrey) – ROInum/2;

//Set the image scale in metres

resnumber = resnumber/100;
run("Set Scale...", "distance=1
known="+resnumber+" pixel=1 unit=m");

// Measure cryoconite area in each slice 1 to n
//throughout stack
// Note measurements are in m^2

n = nSlices;
for (i=1; i<=n; i++) {

setSlice(i);
makeRectangle(originx,originy,ROInum,ROInum);
run("Measure");

}

//Save measurements in a text file

String.resetBuffer;
String.append(jobdirectory);
String.append(jobname + ROInumber + "x" + ROInumber
+ "cm" + ".txt");
saveAs("Measurements", String.buffer);
String.resetBuffer;

showMessage("Processing complete. Files saved to:
\n\n" + jobdirectory);
// MACRO ends.
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