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ON THE FREQUENCY OF 3-CONNECTED

SUBGRAPHS OF PLANAR GRAPHS

NICHOLAS C, WORMALD

The concept of dependence of subgraphs of a plane graph is defined,

as a measure of how much they overlap. It is shown that if M is

a 3-connected plane graph, then the number of copies of M in a

plane graph which are dependent on a given copy is bounded above

by a constant a(M) . The number of copies of M in any n-vertex

plane graph is at most nc(M) .

1. Introduction.

Hakimi and Schmeichel [2] gave bounds on the number of fe-cycles in

a maximal planar graph with n vertices. Let f(n,G) denote the

maximum number of copies of a graph G (that is, subgraphs isomorphic to

G) occuring in any planar graph on n vertices. Alon and Caro [?]

studied f(n,G) for various G , determining it precisely if G is

complete bipartite or a maximal planar graph with no non-facial triangles,

and obtaining bounds for other triangulations G . From their results

it follows that f(n,G) is less than 12n for any triangulation G .

The main object of this article is to prove the conjecture, attributed in

[/] to Perles, that f(n,G) i cjl for all 3-connected planar graphs G
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and a l l n. Here and in what follows, c~ denotes a pos i t ive constant
Is

depending only on the graph G , perhaps different at different occurrences

of the notation, even within the same formula. It is interesting to

compare this with the results of [4], which state that if F is

one of four sets of triangulations (2-connected or 3-connected or 2-face-

colourable 2-or 3-connected), then almost all n-vertex elements of F

contain at least ojl copies of G for any particular G e F ,

On the way to deriving the main result in Section 3, we find that

the number of copies of G which overlap a given copy (in a certain sense)

is at most O- . In Section 4, bounds on this constant are given if G

is a wheel, and a general bound is conjectured.

2. Notation.

Unless otherwise specified, G denotes a 3-connected planar graph

and v(G) is the cardinality of its vertex set. Our graphs have no

loops or multiple edges. A plane graph is as usual a proper embedding of

a planar graph in the plane, and its faces are the connected components of

the plane remaining when the vertices and edges are removed. In a 2-

connected plane graph, the cycle of vertices and edges around the boundary

of a face is called the bounding cycle of that face; the 2-connectedness

ensures that no vertex appears at two different places in the bounding

cycle. The bounding cycle of the unbounded face of a plane graph M is

called the bounding cycle of M . The vertices of M not on its bounding

cycle are called interior vertices. Also, M is internally 3-connected

if it is 2-connected and removal of any two or fewer vertices (together

with incident edges) leaves every remaining vertex of M connected (by

a path along vertices and edges) to at least one vertex in the bounding

cycle of M .

By an embedding of a plane graph M in a plane graph N , we mean

an isomorphism from the underlying graph of M to a subgraph of the under-

lying graph of N , which is induced by a homeomorphism of the plane from

M to N . We may regard the embedding as a superposition of M onto N,

and accordingly we may speak of the vertices and faces of the embedding.

Given two embeddings M and M. of a plane graph in a plane graph, the

distribution of the interior vertices of Mo into the faces and vertices
3
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of AL determines a function between these two sets. We denote this

3. The main results.

function by DiM^ M) .

First a lemma is given which is the key to the main result. Then

in Theorem 1 the number of copies of a plane graph which can overlap a

given copy is bounded. Theorem 2 relates this bound to the maximum

number of copies of G is a plane graph.

LEMMA. Let M be an internally 3-oonneated plane graph, and

suppose an embedding of the bounding cycle of M in a plane graph N is

specified. Then there are at most e,, different ways to complete this

embedding to an embedding of M of N.

Proof. This is by induction on the number, say m , of interior

vertices of M . If m = 0 then the result is immediate, since it only

remains to map certain edges of M to edges of N , and since our graphs

have no multiple edges this can be done in at most one way. So suppose

m > 1.

Let M. and Mo denote two distinct completions of the embedding

of the bounding cycle to an embedding of M . Then the number of

possibilities for D(M~, M ) , for a given M , is at most c . Also,

for any face F of M, , the portion of M. lying within F , together

with the bounding cycle of F , determine a plane graph P(F) which is

clearly internally 3-connected. Given U. and D(M , M.) , the

isomorphism type of P(F) and the embedding of its bounding cycle in N

are determined. Since M is internally 3-connected., not all of its

interior vertices can lie in F . Hence P(F) has fewer than m

internal vertices, and so by induction there are at most cp,_. distinct

ways to complete the embedding of the bounding cycle of P(F) to an

embedding of P(F) in N. Since this holds for each face F , it follows

that there are at most C ways to complete the embedding of M~ , given

D(M.tM0) . Hence, given M~ , the number of possibilities for Mn is at

most c , and the lemma follows. D
M
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We say that two embeddings M and A7_ of plane graphs in a plane
J. Ci

graph are independent (of each other) if the vertices of one are contained

entirely in the unbounded face and bounding cycle of the other. Otherwise

they are dependent (on each other).

THEOREM 1. For each Z-connecbed plane graph M 3 there is a

constant r(M) with the following property: For any plane graph N and

any embedding M of M in N ̂  there are at most r(M) distinct

embeddings of M in N which are dependent on M .

Then

Proof. -Let M- be an embedding of M in N dependent on M .

by the 3-connectedness of M , for each face F of M~ , the

portion of M9 lying within F , together with the bounding cycle of F ,

can be assumed to determine a plane graph P(F) which is internally 3-

connected. (This is not immediate when F is the unbounded face of M

In this case, we can either re-define "internally 3-connected"

appropriately or argue that with regard to the examination of F , M~

can be projected onto the sphere and then re-projected onto the plane so

that F becomes bounded and the assumption holds.) Hence, it now follows

by the Lemma that, given M, and D(M~.Mn) , there are at most on,..

1 16 f\c)

ways to complete the embedding of P(F) . Since this holds for each face

F of Mn , there are at most c ways to choose M. . As the number of
potential D(M-,MJ is at most a , the theorem follows. Q

If v(G) = p then G can be embedded in the plane in at most

4(p-2) ways. This is because it has at most 2(p~2) faces, and each

face can be the unbounded face in at most two distinct ways in view of

Whitney's theorem [6] that G is uniquely embeddable in the sphere.

(For our present purposes, we regard the plane as possessing an orientat-

ion.) Let r(G) denote the sum of r(M) over all the different

embeddings of G in the plane. An upper bound on f(n,G) can now be

given as follows.

THEOREM 2. If v(G) =p then f(n,G) < (n-p+l)r(G) .

Proof. Let 5 be a planar graph with \>(H) = n and let N be any
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proper planar embedding of R . Then each copy of G in R corresponds

to an embedding of some plane graph M in IV , where the underlying

graph of M is G . We bound the maximum number, say g(n,M) , of

embeddings of M in any plane graph with n vertices, and then sum over

all plane graphs M with underlying graph G to bound f(n,G) .

Let M. denote an embedding of M in N , and denote the faces of

W7 by F.j...jF. . For i = 1,..., f 3 let k. denote the number of

vertices of N lying in F. or on its bounding cycle. Then the number

of embeddings of M in N which are independent of M- is at most

\ g(k.,M) . This summation and the following ones are for i = 1,..., f
Is

unless otherwise indicated.

As M is 3-connected, we have k. £ n-1 for each i . Let

t-,..., tj. denote the valencies of F-3..,, F- respectively. Then

k. 2 t. for each i, , and as M is 3-connected, p > t. for each i

and so g(k.,M) = 0 if k. = t. . Also £ (k. - t.) = n-p . Thus by
Is 1r Is If If

Theorem 1,

g(n,M) < r(M) + max \ g(k.,M)

1s

where the maximum is over all sequences k^,...,k~ for which

y k. = n-p+ Tt. , and k. S t. for each i . Let t = max t., so
t < p-1 , and say t = t . Define a function d on the non-negativew
integers by d(j) = 0 for j < p and

d(j) = r(M) + max. \ d(k.) (3.1)
0 I'

for j > p , where the maximum of the empty set is taken as 0 , and max.
3

denotes the maximum over all sequences k^a.. . yk~ with k. 2 t. for each
-*• J Is Is

i and \ k. < j-t-1 + £ t. .

Then

d(j) * g(3,M) . (3.2)

For j t p we have

https://doi.org/10.1017/S0004972700010182 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010182


314 Nicholas C. Wormald

d(o') - d(o'-l) * max. I d(k.) - max. £ (fffej

£ max.._2(d(k +1) + I d(k.) - I d(kJ)

= max. Jd(k+1) -d(kj)
Q-1 w w

> d(o'-D - d(o'-2)

since if k. = t. (i ̂  w) and k = j-2 , then £ k. = j-tS+^t. .

Hence d is convex, and it follows that the maximum in (3.2) is achieved

when k = j-1 and k. = t. otherwise, and is thus equal to d(j-l).
UJ Is Is

So d(n) = (n-p+1) r(M) . The theorem now follows from (3.2), as f(n,G)

is at most the sum of g(n1M) over all M whose underlying graph is G. Q

4. Refinements.

Although the proof of Theorem 2 can give a slightly better result

than that stated, it seems unlikely that the result can be improved

considerably without substantial modifications of the proof. Clearly

f(n,G) S In/pl , and so our bounds on f(n,G) are perhaps best summarised

as CJJ < f(n,G) < cji .

It would be interesting to know the value of a(G)=s\j^f(n,G)/n:n e U}

for various G . As pointed out in [?] , it is easy to see that for the

fe-spoked wheel W, (defined as in Tutte [5,p.78]), we have °^]J > °

for some constant a > 1 (and perhaps k large" enough) . Hence a(G) is

not bounded independently of G even though it is less than 12 if G is

any triangulation. Even if G has all faces of valency 4 , c(G) is

arbitrarily large. For instance, let G be the 2-skeleton of a stack

of k cubes (that is the graph Pj,,7
 x C' ) . Then if H is a suitable

triangulation of G (for example with all diagonals of the faces in the

sides of the stack sloping in the same direction around the stack), we can

find 2k copies of G in H . Thus c(G) > 2k/4(k+l).

All upper bounds on r(G) are upper bounds on c(G) by Theorem 2,

but tight upper bounds seem to be difficult to obtain. However, in view

of the comment above, the next result shows that r^iJ grows essentially
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exponentially.

2k~JTHEOREM 3. For k > 2, r O y < 3.2

Proof. Denote the hub of W* (k > 3) by u , and let v ,...,V,

denote the rim vertices in cyclic order. Let U, denote the graph

obtained by removing the edge V jU, from W-, , and let M denote the

embedding of U, in the plane with all vertices in the bounding cycle.

Let h(k) denote the maximum number of ways of completing an embedding

of M in a planar graph, given an embedding of u, Uj and v, , and

given the orientation of M (which determines whether V^V^... are

embedded in clockwise or anticlockwise order). We find an upper bound on

h(k) , thereby proving its finiteness, and use this to obtain the upper

bound on

Let M denote an embedding of M in a plane graph N . We use

V. . to denote the image of V. in M. , and (by a slight abuse of

notation) V ̂  3 v, and u denote the images of V , V-, and u . Let

1 denote the greatest integer less than k for which some edge of N

joins the vertices V, and V of M-y . Then 2 < % < k-1 . If M^

is an embedding of M which coincides with Afj on u, V^ and U, and

has the same orientation, then U. must equal V . for some

2 S j S k-1 . Hence AL is determined by an embedding of U. (with

Uj V and v. mapped onto u, V. , and V. . respectively) and an

embedding of V, - • (with u, V1 and VT,,-I • mapped onto u, V. .

and U, respectively). If I is 2 or k-1 , we refer here to [/„ ,

which we define to be the triangle uv V , and h(2) is accordingly
1 2

defined to be 1 . It is now evident that

k-1
h(k) < I h(l)h(k+l-l) . (4.1)

1=2

Assume for the moment that equality holds here. Then since

https://doi.org/10.1017/S0004972700010182 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010182


316 Nicholas C. Wormald

h(2) = 1 , this recurrence defines the Catalan numbers and we have

h(k) = . J ) = q. say (see Liu [3/P. 75] for example) . Therefore

q. is an upper bound on h(k) even without assuming equality in (4.1).

Now suppose that M is the plane graph with underlying graph W,

and with unbounded face of valency k , and M and M are dependent

embeddings of M in a plane graph N . Then the hub of M must coin-

cide with a vertex of M. : either the hub or one of the rim vertices. We

consider these two cases separately.

In the first case, some two adjacent vertices in the rim of M^

must be vertices (not necessarily adjacent) in the rim of Af. . Hence

the number of possibilities for M , given M , is in this case at most

k
k £ h(i)h(k+2-i) < kq, . . This count includes the event that M = M .

In the second case, the hub, u , and another vertex, say V , of

Wj are in the rim of AL . The edge uv lies in the unbounded face of

M. or in its bounding cycle. There can be at most 2k-3 such edges in

N . So the number of possibilities for M in this case is at most

(2k-3)q, . , by an argument similar to that used in the first case.

Next suppose M is the other plane embedding of W, , so that the

unbounded face is a triangle. Then a similar argument again gives

r>(M) < 3(k-l)q. . The theorem follows. •

Since r(G) < 12 for any triangulation G by the results of [ 11,

and since W, has a face of largest possible valency amongst those planar

graphs on k+1 vertices, a plausible conjecture is that r(G) is

maximised for p-vertex graphs when G = W 7. This would yield o(G) S 2

whenever v(G) = p , but so far the evidence for this is weak. The

following much weaker conjecture would still, if true, give a nice

description of the nature of a(G) .
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Conjecture. There exists an absolute constant c > 1 such that if

v(G) = p then f(n,G) < (Pn .
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