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1. Introduction

The family <?(R) of all endomorphisms of a ring R is a semigroup under com-
position. It tollows easily that if R and T are isomorphic rings, then < (̂i?) and $(T)
are isomorphic semigroups. We devote ourselves here to the converse question:
'If $(R) and $(T) are isomorphic, must R and T be isomorphic?' As one might
expect, the answer is, in general, negative. For example, the ring of integers has
precisely two endomorphisms - the zero endomorphism and the identity auto-
morphism. Since the same is true of the ring of rational numbers, the two endo-
morphism semigroups are isomorphic while the rings themselves are certainly not.

One might expect, however, that there exist nontrivial classes of rings such
that any two rings from the same class are isomorphic if and only if their endomor-
phism semigroups are isomorphic. One purpose of this paper is to show that the
tamily of all Boolean rings is such a class. This is the content of Theorem A in
section 2. By a Boolean ring, we mean any ring with identity with the property that
every element is idempotent.

In section 3, we derive a result for endomorphisms of finite Boolean rings
which is analogous to Howie's Theorem for transformations on a finite set. In [3],
Howie has shown that any transformation on a finite set which is not bijective, is
the product of idempotent transformations (where multiplication is composition).
It is shown here in Section 3 that any endomorphism of a finite Boolean ring which
is not an automorphism is the product of idempotent endomorphisms. We remark
that Howie's Theorem implies immediately that any such endomorphism is the
product of idempotent transformations. The task is to show that the transfor-
mations can, in fact, be taken to be endomorphisms.

2. The isomorphism theorem

THEOREM A. Two Boolean rings R and T are isomorphic if and only if the en-
domorphism semigroups (o(R) and S(T) are isomorphic.

It seems to be convenient to record as lemmas several facts which play an
important role in the proof of the theorem. First, we settle on some notation. The
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symbol &(X) is used to denote the Boolean ring of all clopen subsets (sets which
are simultaneously both closed and open) of a topological Hausdorff space X
where addition and multiplication are defined by

A+B = (A u B)-(A nB),AB = An B.

The symbol P(X) is used to denote the semigroup, under composition of all con-
tinuous functions whose domain is a clopen subset of X and whose range is con-
tained in X. The 'empty function' will belong to this semigroup and will be denoted
by the letter e.

LEMMA 1. Let X be a compact totally disconnected space. Then the semi-
group $(J%1(X)) of all endomorphisms of 3§(X) is anti-isomorphic to P(X).

PROOF. Suppose cp is any endomorphism of 88{X). Then for any A e SS(X),
we have

(1)

and

(2) 4> = cp(<t>) = q>(A • VXA) = <p(A)

where r€xA denotes the complement of A with respect to X. Therefore, if we denote
(p(X) by Y, it follows from (1) and (2) that

(3) <p(VxA) = Vrcp(A).

We assume that cp is a nonzero endomorphism and since X is the identity of
@(X), it follows that Y = q>(X) * <j>.

Next, we define a function h from Y into X. For each point y e Y, let

(4) M={Ae&{X):yiq>{A)}.

IfA<£M, then y e q>{A) and it follows from (3) that y $ (p(^xA). Hence ^xAeM
and since X = A +^XA, we conclude that the ideal generated by M together with
A is all of &(X). Thus, M is a maximal ideal of @(X). By theorem 16.17 [2, p.
247], the clopen subsets of X form a basis and it follows that X is O-dimensional
in the sense of [5, p. 755]. Consequently, theorem (2.6) of [5, p. 757] implies that
there exists a (necessarily unique) point z e X such that

(5) M = {A e m{X) : z i A}.

We define the function h mapping Y into X by h(y) = z. From (4) and (5) we see
that the following three statements are successively equivalent:

yecp(4),A<£M,h(y)eA.

Thus <p(A) = h~l[A] for each A e 3${X\ Since the clopen subsets of X form a
basis, it follows that h is a continuous mapping from Finto X. Therefore, we have
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shown that for each nonzero endomorphism cp of 3§(X), there exists a (necessarily
unique) continuous function h mapping <p(X) into X such that

(6) <p(A) = h~l [A] for each A e

We are now in a position to define a mapping $ from S(3$(X)) into P{X). We
simply define <P(<p) = h for q> different from the zero homomorphism <p0 and put
<P((po) equal to the empty function e. With this convention, condition (6) holds
for <p0 as well as for the nonzero endomorphisms. To show that <P is an anti-homo-
morphism, suppose <&((Pi) = hx and 3>(<p2) = h2 • Then for any A e

= (h2oh1)-
1[A].

It follows that
$(</>! o <p2) = h2 o hY

and hence that

If <pt i=- <p2, then for some A e

Thus, h^ ¥= h2, i.e., <P(<Pi) ¥= ^(9^- Finally, if h is any continuous function from
a clopen subset of X into X, one easily checks that the mapping q> denned by

for each A e &(X) is an endomorphism ot &(X). Since <P((p) = h, it follows that
<f> is an anti-isomorphism from <f?(08(X)) onto P(X).

REMARK. Implicit in the proof of Lemma 1 is the fact that if X and Y are com-
pact totally disconnected spaces, then for each nonzero homomorphism cp from
£%(X) into &(Y), there exists a unique continuous function h mapping a nonempty
clopen subset of Y into X such that cp(A) = /T1 [A] for each A e 3§(X).

For any space X, we use the symbol S(X) to denote the semigroup, under com-
position, of all continuous selfmaps of X. Thus, S(X) is the subsemigroup of P{X)
consisting of all those functions whose domains are all of X. The following result
characterizes S(X) algebraically within P(X).

LEMMA 2. A function fin P(X) belongs to S(X) if and only if for each g # e
inP(X),fog±e.

PROOF. It is evident that i f /e S(X) and g # e, then/o g # e. Suppose, on
the other hand, feP(X)-S(X). Then H = Cx@(f) # <f> {2{f) denotes the
domain of/). Now let g be any continuous function from H into H (e.g., the iden-
tity function on H). We see that g ¥^ e but /o g = e.
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Now we are in a position to prove the theorem. It is immediate that if two
Boolean rings R and T are isomorphic, then ${R) and $(T) are isomorphic. Sup-
pose, conversely, that <o{R) and (o{T) are isomorphic. By the well-known repre-
sentation theorem of Stone [6, p. 351], there exists a compact totally disconnected
space XR such that R is isomorphic to &{XR) the Boolean ring of all clopen subsets
of XR. Let XT denote the corresponding space for the Boolean ring T. It follows
that ${R) is isomorphic to ${88{XR)) and similarly that ${T) is isomorphic to
S{3S{XT)). Consequently, S{&{XR)) and <f (J'(AV)) are isomorphic and Lemma
1 now implies that P{XR) and P(XT) are isomorphic. But we see from Lemma 2
that S(XR) can be characterized algebraically within P(XR). A similar remark holds
for S(XT) and it follows that any isomorphism from P{XR) onto P(XT) must carry
S(XR) isomorphically onto S{XT). We now appeal to Theorems 1 and 2 of [4, p.
295,296] and conclude that XR and XT are homeomorphic. It follows immediately
from this that 88{XR) and 3$(XT) are isomorphic. Since R is isomorphic to the
former and T to the latter, we conclude that R and T are isomorphic.

3. Endomorphisms of finite Boolean rings

In [3, p. 708, Theorem I] J. M. Howie proved that every transformation on a
finite set which is not bijective is the product (multiplication in this case is compo-
sition) of a finite number of idempotent transformations. The theorem of this sec-
tion gives the analogous result for endomorphisms of finite Boolean rings.

THEOREM B. Every endomorphism of a finite Boolean ring which is not an
automorphism is the product {multiplication is composition) of a finite number of
idempotent endomorphisms.

REMARK. Let R be a finite Boolean ring. As we mentioned in the introduction,
it follows immediately from Howie's result that any endomorphism of R which is
not an automorphism is the product of idempotent transformations. The result
we prove states something more - the transformations can actually be taken to
be endomorphisms.

PROOF. We appeal once again to Stone's Representation Theorem to con-
clude that there exists a compact totally disconnected space XR such that R is iso-
morphic to &{XR) the Boolean ring of all clopen subsets of XR. Since R is finite,
XR must be finite. This, together with the fact that XR is Hausdorff implies that it is
discrete. It follows from Lemma 1 that S"{R) is anti-isomorphic to P{XR) which, in
this case, is the semigroup, under composition, of all functions whose domains and
ranges are subsets of XR. Now the nonunits of S"{R) are the endomorphisms which
are not automorphisms and the nonunits of P{XR) are the functions mapping sub-
sets of XR into subsets of XR which are not bijections from XR onto XR. Since an
anti-isomorphism between ${R) and P{XR) must correspond nonunits, we can
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complete the proof by showing that if / is any function such that ^ ( / ) <= XR

and ^ ( / ) <= XR (where @(f) and &(f) denote respectively the domain and range
of/) and/is not a bijection of XR, then/ is the product of idempotent functions.
We consider three cases

(1) 0t{f) is not contained in 2){f)

(2) 0i{f) is properly contained in S ( / )

(3) »(f) = 2 {f).

Case (2) follows immediately from Howie's Theorem I [3, p. 708], To handle case
(1), let 3>{g) = M(f) u ®{f) and define

9{x)=f{x)fovxe9{f)

Since 0l{f) — 2{f) ^ <j), it follows that g is a mapping from @(g) into £^(#) which
is not bijective. It then follows from Howie's theorem that g is the product of idem-
potent functions with domains equal to 2{g) and ranges contained in &(g). Let
S!(i) = ®(/) and define i(x) = x for each x e &>(f). Then i is also idempotent
and since/ = g o i, we conclude that/is the product of idempotents.

As for case (3), (%{f) = @>(f) cannot be all of XR since then/would be a bijec-
tion. Choose p 6 XR — 2#(f) and let g be any function such that

g(x)=f(x)forxe£>(f)

Then g is a mapping from 3>{g) into S(^) which is not a bijection and is therefore
the product of idempotents. As above, let 3(i) = 3>(f) and *'(•*) = x for all
x e ^ ( / ) . Since f = g o i, the proof is complete.

Without the restriction that the rings under consideration are finite, the state-
ment of Theorem B becomes false. To see this, let X be any infinite set and let
3tx denote the Boolean ring of all subsets of X. Let h be any function which maps
X injectively onto a proper subset of itself and define an endomorphism <p of
38X by cp(A) = h[A] for each A e 8$x. Then q> is injective but is not an automor-
phism. It follows that q> is not the product of idempotent endomorphisms. In fact,
one can show if an endomorphism i/f is injective and is the product of idempotent
endomorphisms, then if/ must be the identity automorphism. For suppose
ifr = at o a2 o . . . o an where each a, is idempotent. Since \j/ is injective, each a,
is injective and since each a, is idempotent, each one is the identity on its range.
These two facts imply that the range of each a; is all of 3SX

 a nd hence that each
a i is the identity automorphism.

We close with some remarks about Lemma 1. This result indicates that for
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a Boolean ring R, S{R) can have many varied subsemigroups. In fact, given any
semigroup S, one can produce a Boolean ring R such that S is isomorphic to a sub-
semigroup of<o(R). Moreover, if Sis finite, then R can be taken to be finite. As above,
let 3ft x denote the Boolean ring of all subsets of a finite set X. By Lemma 1, ${38x)
is anti-isomorphic to P(X) which in this case consists of all functions with domains
and ranges contained in X. P(X) contains as a subsemigroup the family S(X) of
all selfmaps ofX. But S(X) is anti-isomorphic to 3~x> the full transformation semi-
group on X [1, p. 2]. Since every finite semigroup can be embedded in any ^x

when the cardinality of X exceeds that of the given semigroup, it follows that any
finite semigroup can be embedded in $(^x) for finite X with suitably many ele-
ments.

In case the semigroup under consideration is infinite, we modify the previous
argument somewhat. First of all, let Xbe any discrete space and let pX denote its
Stone-Cech compactification. We show that S(X) can be embedded in S(f$X). Each
/ in S(X) can be regarded as a continuous function from A'into /JA'and, by a well-
known property of [IX, has an extension/^ to a continuous selfmap of fiX. Define
a mapping q> from S(X) into S{fiX) by q>(f) = fE. We observe that for all/, g in
S(X), (/o g)E and/£ o gE agree on the dense subset A'and hence must be identical.
Thus, q> is a homomorphism and since it is injective, we conclude that S(j3X) con-
tains an isomorphic copy of S(X). We recall once again that S(X) is anti-isomorphic
to 3TX, the full transformation semigroup on X. Since any semigroup can be em-
bedded in a full transformation semigroup on a suitably large set, it follows that
any semigroup is anti-isomorphic to a subsemigroup of S(fiX) for large enough X.
Since this is a subsemigroup of P{fiX) which, by Lemma 1, is anti-isomorphic to
<?(33(fiX)), the desired conclusion follows.
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