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Abstract. Relationships involving homoclinic orbits of various periods and the
Sarkovskii stratification are given and corresponding bifurcation properties are
derived. It is shown that if a continuous map has one homoclinic periodic orbit, it
has infinitely many. In any family of C1 maps going from zero to positive entropy,
infinitely many homoclinic bifurcations occur, involving periods which are success-
ively smaller powers of two.

1. Introduction
The presence of homoclinic periodic points has been shown to be equivalent to
chaotic dynamics, i.e. horseshoes or positive topological entropy for maps of the
interval ([1], [4]). In this paper we investigate the structure of the set of continuous
mappings of the interval which have homoclinic periodic points, and derive bifurca-
tion theorems for continuous families in Cl{I, I) which include such maps. Here /
denotes a compact interval.

A periodic point p of (least) period k under / is said to be homoclinic if

pefk(W{p,fk)\{p}).

Recall that the unstable manifold of p under fk, W{p, fk), is denned to be the set
of x e / such that for every neighbourhood U of p,

X€fk"(U)

for some positive integer n. We define F(k) to be the set of continuous mappings
of / to itself with a periodic point of period k and H{k) to be the set of continuous
mappings of / to itself with a homoclinic periodic point of period it. Thus [6] shows
that F(m)sF(n) if n < m in the Sarkovskii order

and [1] shows that feF(n) for some n not a power of two if and only if / has a
homoclinic periodic point of some period. In particular it follows from [1] that

We begin with a generalization of this result. Let H\n) denote the set of maps
/eC°(/ , I) such that /" has a homoclinic fixed point. Note that for any positive
integer k,

H'(2k) = tf(l) uff(2) uH(4) u • • •
(see proposition 1 for details).
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THEOREM 1. For every odd integer m>l,F(m)sH'(2). Hence, for any non-negative
integer r and odd integer m > 1,

F(m -2r)<=/T(2r+1).

Our next result shows that if x has one homoclinic periodic point then / has
infinitely many (of infinitely many periods).

THEOREM 2. H(l)zH(2)uH(4). Hence, for any non-negative integer r,

H(T) s H(2r+1) u H(2r+2) = H'(2r+2).

We remark that smooth examples in H(1)\H(2) are easily constructed, so that

H{2')<zH(2r+1)

can only be expected under additional hypothesis (for example for one-humped
maps with negative Schwarzian derivatives).

THEOREM 3. H( l )cF(6) . Hence,

/J(2r)cF(3-2r + 1)
for any non-negative integer r.

Theorem 3 is also sharp in the sense that if feH(l), the existence of periodic
points of / of odd period is not necessary. Using theorems 1, 2 and 3, and the
result of [2] we obtain:

THEOREM 4. H{2k)c int (H(2k+1)uH(2k+2)) for any non-negative integer k.

In theorem 4, int denotes the interior of the set in C°(I, I). Note that in all of
the previous results, no differentiability is assumed. Our final two results, however,
are valid only in the differentiable case.

THEOREM 5. / / / is in the closure in C^/, / ) of the set of C1 maps with a homo-
clinic fixed point then f2 has a homoclinic fixed point. Hence, for any non-negative
integer r,

H'(2r) nC\l,I)^ H'{2r+1) n C\l, I).

We remark that one can construct a map / satisfying the hypothesis of the first
assertion of theorem 5 so that / does not have a homoclinic fixed point.

Our final result implies that for any one parameter family of C1 maps going
from zero to positive entropy an infinite sequence of bifurcations occur, where new
homoclinic periodic orbits (of period successively smaller powers of two) are created.

THEOREM 6. / / / , is a continuous arc in CX{I, I), 0 < r < l , such that fo has no
homoclinic periodic point and fi&H(2m) for some non-negative integer m, then for
every integer n>m, there exists t(n)e (0,1) such that

2. Proofs
We now proceed with our proofs. The proof of theorem 1 is essentially that of
theorem 5 of [1] but is included for completeness (see also lemma 2.5 of [5]). We
begin with a lemma which will be used several times.
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LEMMA 1. If feC°(I, I) and f has a homoclinic fixed point p then (at least) one of
the following holds:

(1) There are points y and z in W(p,f) with p<y<z, such that f(y) = z and
f(z)=P-

(2) There are points y and z in Wu(p,f) with z <y <p, such that /(y) = z and
f(z)=P-

(3) There are points z0, Z\, z2, • • •, in W"{p,f) with

such thatf(zn) = zn-\ for every positive integer n, f(z0) = p, and p = limn-,oo zn.
(4) There are points z0, Zi, z2, • • •, in W(p,f) with

such that f(zn) = zn-\ for every positive integer n, f(z0) = p, and p = limn-,a> zn.

Proof. Suppose (1) and (2) do not hold. Since p is a homoclinic fixed point of/, for
some

zeWu(p,f)

with z #p, f(z) = p. Suppose that z>p (the other case is similar).
Since (1) does not hold, z£f(p, z). Hence, since

zeW(p,f),

it follows that f(y) = z for some y<p. We take the maximal y with y<p and
/(y) = z. Then

zeWu(p,f)

implies that

yeW(p,f).

Since (2) does not hold,

(This is true because if y =f(x) for some x e (y, p), then for some z e (y, x),

f(z')=P
and for some y e (x, p),

/(y) = z,
so (2) holds.) Hence, since

yeWu(p,f),

it follows that f(x) = y for some x >p. We may take the minimal x with x >p and
f(x) = y. Then p <x<z (because if x >z then y £/(y, z), which contradicts

yeWu(p,f)).
Let z0 = z, Zi = y, and z2 = x. By induction we obtain z3, z 4 , . . . , with

and /(zn) = zn_i for every positive integer n. The sequences (z2«+i) and (z2n) are
increasing and decreasing respectively, so (z2n+i) converges to a and (z2n) converges
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to b with a <p s b. If either a^p oxb^p then a<p<b, and (using the maximality
of Z2n+i and the minimality of z^^)

f{[a,b])s[a,b].

This contradicts the fact that the zn are in W"{p,f). Hence a =b =p and p =
lim^co zn. •

PROPOSITION 1. Let n = mt {where n, m, and t are positive integers) and let p be
a periodic point of feC°(I,I) of period t. Then p is a homoclinic periodic point of
f if and only if p is a homoclinic fixed point of fn. In particular, for any positive
integer k,

H'(2k) = H(l)uH{2)uH(4)v • -uH(2k).

Proof. It suffices to prove the first statement. Recall that by definition, p is a
homoclinic periodic point if and only if p is a homoclinic fixed point /'. Thus, we
must show that

pef'(Wu(p,n\{p})

if and only if p efn(Wu(p,fn)\{p}).
First suppose that

pefn(W(p,n\{p}).

For some zeWu(p,/n) with z*p,fn{z )= p. Then z eWu{p,f) (as W{p,fn)<=
Wu(p,f')) and/m'(z) = p. Since Wu(p,f) is invariant under/', each of the points
z,f'(z),f2'(z),... ,/(m-1)((z) is in Wu(p,f). Hence,

pef'(Wu(p,f)\{p}).

Now suppose that

zef'(Wu{p,f')\{p}.

Let V be any neighbourhood of p. It follows from lemma 1 (applied to/ ') that there
isapointz € Wu(p,f) withz *p and / ' (z)=p, such that z ef"(V) for all sufficiently
large integers /. In particular, z e/'"(V) for some positive integer/. Thus,

zeWu(p,fn).

Since z¥^p and/"(z) =p, it follows that

pefn(Wu(p,n\{p}). n

THEOREM 1. For every odd integer, m > l ,F(m)cH'(2). Hence, for any non-negative
integer r and odd integer m > 1, F(m • 2") £ H'(2r+1).

Proof. It suffices to prove the first statement, so let feF(m) where m is odd and
m > 1. We may assume without loss of generality that f&F(k) for any odd k with
1 < k < m. Hence, / has a periodic orbit {pu p 2 , . . . , pm} of period m which can be
numbered such that /(p,) =p,+i for 1 < / < m, f(pm)=pi, and the pf lie in the order

Pm<Pm-2<- • '<Pl<P2<P4<- ' ' <Pm-U

or in the mirror image [7]; assume they lie in the order given. Since
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f2 has a fixed point in the interval (pu p2). Let q be the minimal such point. Then

PleWu(q,f\

since /2(x) <x for all x e [pu q]. Since W"{q,f2) is/2-invariant, and m is odd,

But
/ ([Pm, Pm-2]) 2 [pm, p2],

so q=f2{x) for some xe[pm,pm_2]. Thus x^q and x e W" (q,/2), and q is a
homoclinic fixed point of f2. •

THEOREM 2 .H( l ) eH(2 )u H(4). Hence, for any non-negative integer r,

H(X) £ H{2'+1) u H(2r+2) = H'(2r+2).

Proof. Let feH{l). One of the cases stated in lemma 1 must hold; since cases (1)
and (2) are analogous, and (3) and (4) are analogous, it suffices to consider (1) and
(3).

First suppose that (1) holds. We may assume that y is the maximal point in (p, z)
with f(y) = 2. For some x e (p, y), /(x) = y, and we also assume that x is maximal.
Since

f4 has a fixed point q in (x, y), which we require to be minimal.
Suppose f2(q) = q. Then

which implies that for some r e (x, q), f2(r) = y. Hence

/2(x,r)2(y,2),
so

f*(x, r) 2 (p, z) 2 (x, r).

Thus, f4 has a fixed point in (x, r), contradicting the minimality of q. Therefore
f2(q) T6 q and q is a periodic point of / of period 4.

Note finally tha t /V) <x, f{q) = q, and q minimal imply that x € W(q, f). Since
f(x) = p,

[p,x]£W"{q,f*)

and q e/4(p, x) is homoclinic. Thus, / e / / (4 ) , as desired.
Now, suppose that case (3) of lemma 1 holds. Then

/ 2 (22 , Zo) 2 (p, Zo),

which implies that for some

We again take the minimal such point. Then f(q) # q. To see this, suppose f(q) = q.
Then

and for some re{z2,q),
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Hence,

f2(z2,r)^(zl,z0)^(z2,r).

Thus/4 has a fixed point in (z2, r), contradicting the minimality of q. This establishes
our claim that f(q) # q, so q is a periodic point of / of period 2 or 4.

Since, /4(z2) =P < z2, and q is minimal,

[p,q]<=Wu(q,f).

Since <? e/^Cp, z4), q is a homoclinic fixed point of /*. It follows from proposition
1 that q is a homoclinic periodic point of / of period 2 or 4. Thus, / e / / (2 )u / / (4 ) .
This proves the first assertion of the theorem.

Finally, suppose that feH(2r) for some non-negative integer r, and let n -2r.
Then /" has a homoclinic fixed point, so /" has a homoclinic periodic point q of
period 2 or 4. It follows that the period of q, as a periodic point of /, is 2n = 2r+1

or An = 2r+2. Hence,

/e / / (2 r + 1 )u / / (2 r + 2 ) .

This shows that

It follows by repeated application of this fact that

H(2r+1)uH(T+2) = H'(2r+2). O

THEOREM 3. ff(l)cf(6). Hence,

i/(2')£F(3'2r+1)

/or any non-negative integer r.

Proof. It suffices to prove the first statement (in light of the theorem of Sarkovskii).
Suppose / has a homoclinic fixed point p. We may consider only two cases, (1) and
(3), of lemma 1.

First, suppose that (1) holds. Then each of the intervals f([p, y]) and /([y, z])
contains [p, z]. Thus / has a periodic point of period 3, hence /eF(6) .

Next suppose that (3) holds. Then each of the intervals/2([p, z2]) and/2([z2, z0])
contains [p, z0]. Thus f2 has a periodic point of period 3, and feF(6). •

THEOREM 4. H(2k) s int (H(2k+1)KjH(2k+2)) for any non-negative integer k.

Proof. We will use the fact that

F(3-2*+ 1)sint(F(5-2t + 1)) ,

see reference [2]. By theorem 3,

H(2k)<=iF(3-2k+1),

and by theorem 1,

F(5-2k+1)sH'(2k+2).

By theorem 2,
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Thus,

H(2k)<=int(H(2k+1)vH(2k+2)). •

THEOREM 5. / / / is in the closure in Cl(I,I) of the set of maps with a homo-
clinic fixed point, then f has a homoclinic fixed point. Hence, for any non-negative
integer r,

H'{2r)nC\l,I)<^H'(2rJhl) n C\l, I).

Proof. It suffices to prove the first statement. Suppose / is in the closure in C^(I, I)
of the set of C1 maps with a homoclinic fixed point. Then there is a sequence of
maps (/„) such that each /„ has a homoclinic fixed point pn and (/„) converges to /
in Cl(I,I). Let gn=fl and g=f2. It follows from proposition 1 that pn is a
homoclinic fixed point of gn for each n. Also, since gn = {fn)

2,

(gJ'(Pn)sO.

Hence, (gn)'(pn) s 1, since otherwise

Wu(pn,gn) = {Pn}.

For each n, we may apply lemma 3 to gn and pn and conclude that (1), (2), (3),
or (4) must hold. Since g'(pn)>l, neither (3) nor (4) are possible. Since (1) and
(2) are analogous, and one of these must hold for infinitely many n, we assume
that (1) holds for all n.

Thus, for each n there are points yn and zn with pn < yn < zn, such that

gn(yn) = zn and gn(zn) = pn.

We may assume that (pn) converges to p, (zn) converges to z, and (yn) converges
toy. Thenp<y <z,g(y) = z, g(z) = p, g(p)=p, andg ' (p)>l . Since (gn)'(vn)<0
for some vn in the interval (yn, zn) for each n, and (gn) converges to g in Cl(I, I),
p<y<z.

Let p be the largest fixed point of g in [p, y]. Then g(x)>x for all JC in (p, y],
so y e W(p, g). Since g(y) = z,

[y,z]z\Vu(p,g).

For some z e[y, z], g(z) =p, which is thus a homoclinic fixed point of g =/2 . •

THEOREM 6. / / / , is a continuous arc in C1 (/,/), 0 < f < l , such that fo has no
homoclinic periodic point and fieH(2m) for some non-negative integer m, then for
every integer n>m there exists t(n)e (0,1) such that

Proof. Let s(n) = inf {s e [0,1]: fs eH'(2n+1)}. Note that this set is non-empty, since
/i eH(2m) and n > m. By theorem 4 and proposition 1,

fsM£H'(2n-1).
If

fsMeH'(2n+l),

the conclusion follows with t(n) = s(n). Suppose

fsM<£H'(2n+1).
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Then

fsM£H'(2n),

by theorem 5, and for t(n) slightly larger than s(n),

/,(B) e H'(2n+1)\H'{2n) c H'(2n+1)\H'{2n-1). D
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