
BULL. AUSTRAL. MATH. SOC. 05C15 , 90D43

VOL. 48 (1993) [141-149]

TWO GRAPH-COLOURING GAMES

FRANK HARARY AND ZSOLT TUZA

We introduce two graph-colouring 2-person games, and analyse who has a winning
strategy on some specific graphs such as the Petersen graph, and paths and cycles
of given length.

1. INTRODUCTION

Recent research has attracted considerable interest in the study of the process of
graph colouring. A typical example is 'on-line colouring' (see for example [2]). This
concept can also be interpreted as a game during which Player A (the first player
to move) presents the nodes of a graph G one by one, with their adjacencies to the
previously shown part of G, and Player B colours the node just obtained. The colour
of a node cannot be changed later. The aim of Player B is to find a proper colouring
with as few colours as possible. (A proper colouring of a graph G is a colour assignment
of the nodes in which no two adjacent nodes are monochromatic. We follow in general
the notation and terminology of [3].)

The other main motivation for the present study is a recent work of Biro, Hujter,
and the second author [1] in which the following problem is investigated:

Given an undirected graph G — (V, E), a subset V C V of nodes, a proper
colouring / ' on the subgraph induced by V , and an integer k, does there exist a proper
colouring / of the entire graph G with at most k colours, such that the restriction of /
to V is / ' ? As shown in [1], this question is closely related to many frequently-studied
problems of graph theory, such as bipartite matching, perfect graphs, network flows,
et cetera. (See also [5, 6].)

We now define two colouring games played on graphs by two players. In both of
these games the input is a natural number k and a (finite, undirected) graph G =
(V, E) with node set V and edge set E. Players A and B both know the whole
input from the beginning of the game. They alternately assign colours from the set
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{1, . . . ,&} to previously uncoloured nodes of G, so that the graph does not contain
any monochromatic pair of adjacent nodes. The first move is made by Player A, and
the game is over when no legal moves remain. The two games are

Achievement: The game is won by the player who can make the last move.
Avoidance: The game is lost by the player who makes the last move.
Since the input graph G is finite, every game terminates after a finite number of

steps, and therefore on each graph precisely one of Players A and B has a winning
strategy. This fact leads to the following general question.

PROBLEM 1: Characterise those graphs G and integers ife for which

(a) Player A has a winning strategy in Achievement;
(b) Player A has a winning strategy in Avoidance.

We give a complete answer to Problem 1 in the cases when G is a path or a cycle
with k = 2, or G is the Petersen graph and k = 1, 2, 3. Our results are summarised
in Table 1. (The subscript t always denotes the number of nodes in the path or cycle
in question.) The small 'exceptional' cases are not indicated in the table, but they are
easily seen: on t $J 2 nodes every game terminates after precisely t steps, and on the
path P3 , Player A wins the Achievement game and loses the Avoidance game.

Graph and 'colour bound' k

Petersen graph, k = 1
Petersen graph, k = 2
Petersen graph, k = 3
Path Pt, t ^ 5 odd
Path Pt,f£4 even
Cycle Ct, t ^ 3

Winner

Achievement

A
A
B
A
B
B

Avoidance

A
B
A
A
B
A

Table 1. Winners on particular graphs; for paths and cycles,
Jfc = 2.

2. THE PETERSEN GRAPH

The celebrated Petersen graph has been much studied. It seems appropriate to
begin our study of these colouring games with this graph.

THEOREM 1. When G is the Petersen graph,

(1) /or k = 1, Player A wins both Achievement and Avoidance;

https://doi.org/10.1017/S0004972700015549 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015549


[3] Two graph-colouring games 143

(2) for k = 2, Player A wins Achievement and Player B wins Avoidance;
(3) for k = 3, Player B wins Achievement and Player A wins Avoidance.

PROOF: 1° It is well-known that G is isomorphic to the complement of the line
graph of the complete graph K$ of order 5. This fact is illustrated in Figure 1; a node
labelled ij (1 ^ i < j ^ 5) corresponds to edge vtvj of K*,.

12 25

Figure 1. Representation of the Petersen graph as the comple-
ment of the line graph of K$

Based on this isomorphism, there is a one-to-one correspondence between proper
node colourings on subsets V C V(G) and edge colourings on subsets E' C E(K$)
such that every monochromatic class C of edges is intersecting, that is, C is isomorphic
to either the triangle K$ or a star Sj of j edges (1 ^ j ^ 4). An edge colouring of
Ks with this property will be called an intersecting colouring. We call an intersecting
colouring an i-MIC (standing for Maximal Intersecting Colouring with i colours) if it
uses at most i colours and cannot be extended to any other intersecting colouring of
Ks with at most i colours.

Certainly, a colouring game terminates when a fc-MIC has been constructed
(4 = 1,2,3).

2c For k = 1, the first two steps are unique, as the two edges of colour 1 must
intersect. If edges ui«2 and V1V3 have colour 1, then Player A creates a triangle (and
hence he wins Achievement) if he colours U2V3 , and forces Player B to create an 54 (so
A wins Avoidance) if he colours V1V4.

3° Observe that a 2-MIC induces S3 U 54 or K3 U 54 or K3 U K3 (edge-disjoint
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union). Hence, in order to prove (2) it is sufficient to show that each player can force
a 2-MIC in which at least one colour class is not a triangle. Certainly a player can do
this if he can force a two-coloured triangle.

Say Player A assigns colour 1 to edge •ui«2 i n the first step. In Avoidance, Player
B can create a two-coloured triangle if he assigns colour 2 to i;ii>3 in his first move.
(Then, in his next turn, he can complete the colouring of the triangle on {ui, i>2, V3}, if
Player A does not oblige.) It is also obvious that, in Achievement, Player A can create
a two-coloured triangle in his second move if Player B colours an edge adjacent to V1U2
in his first move. Suppose that V3V4 is assigned colour 2 in the second step. Now Player
A assigns colour 1 to v%v3 , and then in his next move he can complete the colouring
of the triangle on {i>2, V3, U4} if Player B does not oblige. (If Player B assigns colour

1 to some other edge in his second move, then colour 3 — i is legal on V2V±.)

4° We prove that if a 3-MIC contains a monochromatic star 54 then all the ten
edges of K5 are coloured.

Let / be a 3-MIC on K5, with a monochromatic 54. Then the restriction of /
to Ks — E(Si) is a 2-MIC / ' on K4, say with node set {vi | 1 ^ i ^ 4}. It suffices to
show that each of the two colour classes of / ' consists of three edges. (This will also
imply that one of them is a triangle and the other is a star.)

Suppose first that U1V2 is the only edge of colour 1 in / ' . Then at most one of the
edges i>ii>4 and U2U3 can have colour 2, so the other can be assigned colour 1. Thus,
/ ' is not maximal, a contradiction. Next, suppose that the first colour class consists
of just two edges, say U1U2 and t>iV3. Then, again, at most one of the edges v-^v^ and
U2V3 can have colour 2, so that the other can be assigned to colour 1. Thus, / ' is not
maximal.

5° We prove that if a 3-MIC contains a monochromatic triangle then precisely

eight or ten edges of K5 are coloured.

Let / be a 3-MIC on K$ and suppose that colour 3 induces a triangle {«3, V4, v&}.
Then the restriction of / to Ks — E(Ks) is a 2-MIC. If colour 1 is a triangle then colour
2 induces a maximal star in a cycle of length four, implying that precisely two edges of
Ks remain uncoloured in / . If each of colours 1 and 2 induces a (non-extendable) star,
then one of those stars has Vi (or t>2 ) as its centre, for otherwise the edge U1U2 could
be assigned to colour 1 or 2, contradicting the maximality of / . Hence, the number of
uncoloured edges is equal to zero or two, according to whether the other centre is or is
not identical to «2, respectively.

6° Next, we show that either player can force a monochromatic K3 or 54. In the
proof below we use the following shorthand: f(a, b) = c means that the next player
assigns colour c to the edge vavi,; (Ki) and (Si) abbreviate that a K3 or 54 of colour
i is constructed (or can be forced in the next step where =>• is written).
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The strategy of Player A is

/(I , 2) = 1 - / ( 1 , 3) = 1; /(2,3) = 1 (Kl)

/ (I , 2) = 1 - / ( 1 , 3) = 2; /(2, 3) = 3 - / ( 1 , 4) = 1; /(2, 4) = 1 (Kl)

/ (I , 2) = 1- / (3 , 4) = 2; /(2, 3) = 3 - / ( 1 , 3) = 1; /(I , 4) = 1 => (51)

/(I , 2) = 1- / (3 , 4) = 2; /(2, 3) = 3 - /(I , 3) = 2; /(I , 4) = 2 (A"2)

/(I , 2) = 1- / (3 , 4) = 2; /(2, 3) = 3 - / ( I , 3) = 3; /(I , 5) = 1 => {Kl)

/(I , 2) = 1- / (3 , 4) = 2; /(2, 3) = 3 - / ( 1 , 4) = 1; /(I , 3) = 1 =• (51)

/(I , 2) = 1 - / (3 , 4) = 2; /(2, 3) = 3 - / ( 1 , 5) = 1; /(2, 5) = 1 (JS1)

/(I , 2) = 1- / (3 , 4) = 2; /(2, 3) = 3 - / ( 2 , 5) = 1; /(I , 5) = 1 (Kl)

/(I , 2) = 1- / (3 , 4) = 2; /(2, 3) = 3 - /(2, 5) = 3; /(3, 5) = 3 (KS)

Apart from permutations of colours and nodes, these sequences cover all possibilities,

hence Player A can always force a monochromatic star or triangle.

The strategy of Player B is even simpler. After the two moves

/(I, 2) = 1 - / ( 1 , 3) = 1,

Player A has six possible moves (/(2, 3) = 1, /(I , 4) = 1, /(2, 3) = 2, /(I , 4) = 2,
/(2, 4) = 2, /(4, 5) = 2). In the latter three, however, Player B immediately creates a
monochromatic triangle, assigning /(2, 3) = 1, and in the first one the colour-1 edges
themselves form a triangle. In the second and third cases an efficient strategy is

/(I, 4) = 1 - / (1 , 5) (51)

/(2, 3) = 2 - / ( 4 , 5) = 3; /(I , 4) = 1 - / ( I , 5) = 1 (51)

/(2, 3) = 2 - /(4, 5) = 3; /(I , 4) = 3 - / ( I , 5) = 3 (K3)

/(2, 3) = 2 - / ( 4 , 5) = 3; /(2, 4) = 2 - / ( 3 , 4) = 2 (K2)

/(2, 3) = 2 - / ( 4 , 5) = 3; /(2, 4) = 3 - / ( 2 , 5) = 3

Hence, Player B can also force a monochromatic star or triangle.

7° To complete the proof of the theorem, in Avoidance Player A (in Achievement
Player B, respectively) chooses the strategy described in 6° to force a monochromatic
K$ or 54 . Then, by 4° and 5° , each game terminates after an even number of moves,
that is, the last move is done by Player B. Hence Player A wins Avoidance and loses
Achievement. D
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3. PATHS

The aim of this section is to solve Problem 1 for paths, when two colours can be
used. Some of the observations will be applied in the next section as well, where the
corresponding question will be settled for cycles. Here we prove

THEOREM 2 . Let G be the path with t nodes, and let k = 2. Then for t ^ 5
odd, Player A — and, for t ^ 4 even, Player B — has a winning strategy in both

Achievement and Avoidance.

PROOF: 1° Let G have nodes v\, V2, ..., Vt in this order. First we describe two
simple winning strategies in Achievement, according to the parity of t.

Assume first that t is even. If Player A assigns colour t 6 {1, 2} to node VJ in
some move, then the answer of Player B is to assign colour 3 — t to node Vt+i-j. Since
v(t/2)+i a n d vt/2 wiU D e asigned opposite colours, every such move of Player B is legal.
Thus, the game terminates after an even number of steps, implying that Player B can
win Achievement for every even t ^ 2.

If t is odd, then the strategy of Player A is to maintain a 'symmetric' colouring
in every step. For this purpose, he assigns colour 1 to the middle node V^+^M in the
first step. Then, if Player B has assigned colour t 6 {1, 2} to node VJ in some move,
the answer for Player A is to assign colour i to node vt+i-j • Obviously, this game
terminates after an odd number of steps, implying that Player A can win Achievement
for every odd t ^ 3.

2° Now we consider the Avoidance game. The winning strategy requires some
preliminary observations. A leaf of a tree is an endnode. We prove the following
statement.

LEMMA 1. Let T be a path with m ^ 0 internal nodes, and with only both

leaves coloured. If the leaves have distinct colours (the same colour, respectively), then

each player can force the number of uncoloured nodes in T at the end of the game to

have the same parity (opposite parity, respectively) as m.

PROOF OF LEMMA 1: The proof goes by induction on m. For m ^ 3, the validity
of the claim is obvious. Note further that on colouring an internal node next to an
endnode of T in the first step, the parity of the length of the uncoloured path—as well
as the colour assigned to one of its ends— changes. Hence, the requirement on the
paxity of uncoloured nodes at the end of the game remains the same. Thus Player A
has a strategy on m nodes satisfying the requirements of the lemma if Player B has
one on 771 — 1 nodes.

Now we describe a strategy for Player B, with the assumption that the game is
played on T only. Consider m ^ 4. Then every internal node x has a neighbour y

whose other neighbour z is not a leaf of T. If Player A assigns colour i to node x then
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Player B assigns colour 3 — i to y. This can be done since z is uncoloured.

To show that this is an efficient strategy for Player B, observe that after such a pair
of moves, the m — 2 uncoloured nodes form two paths with, say, m' and m" internal
nodes, m' + m" = m — 2 (where m" — 0 is possible). Since x and y are assigned
distinct colours, precisely one of these two paths has identical colours on its two leaves
if and only if the leaves of T have the same colour. Note further that precisely one of
m' and m" is odd if and only if m is odd.

If the leaves of T have distinct colours then by the induction hypothesis Player
B can force the numbers of uncoloured nodes on the two paths to be congruent either
to m' and m" (mod 2) or to TO' — 1 and m" — 1 (mod 2). In either case, their total
number has the same parity as m. On the other hand, if the leaves of T have the same
colour, then the numbers of uncoloured nodes can be forced to be congruent either to
m' and m" — 1 (mod 2) or to m' — 1 and m" (mod 2). Hence, the parity of their total
number is equal to that of m — 1, and the validity of Lemma 1 follows. D

3° Continuing with the proof of the theorem, we now consider the case when t is
odd. To win Avoidance, Player A first assigns colour 1 to V(t+1y2- Set L = {vi, v?.}

and R = {i>t-i, vt}. Then Player A follows the 'symmetric' strategy described in 1°
until Player B colours some node of L U R. When Player B visits a node of L U R

for the first time during the game, say he assigns colour z to node Vj, then Player A
assigns colour 3 — i to node Vt+i-j if possible.

If this is a legal move then from now on Player A applies the strategy described
in the proof of Lemma 1 on each uncoloured subpath between Vj and vt+\-j. The
lengths of these subpaths below and above U(t+i)/2 are in one-to-one correspondence,
by the symmetric arrangement of coloured nodes. The only difference on the two sides
is that precisely one of the two uncoloured subpaths starting at Vj and vt+i-j inside
the 'interval' [VJ, vt+i-j] has identical colours on its two leaves. Thus, by Lemma 1,
Player A can force an odd number of uncoloured nodes in [VJ, vt+i-j]. It is trivial that
(L U R) — [VJ, Vt+i-j] — which is either 0 or {«i, Vt} — will be coloured completely
at the end, that is, the game terminates after an even number of steps. Hence, Player
A wins Avoidance for t odd whenever colour 3 — i can be assigned to wt+i_y.

In the case when colour 3 — i cannot be assigned to vt+\-j, we must have J = 2
or j = t — 1 (and V3 as well as vt-2 has colour 3 — i); say, j — 2. Then Player A
assigns colour i to vt and applies the strategy described above on the interval [V2, Vt] •
Hence, at the end of the game an odd number of nodes will be uncoloured in [v2, vt].

Clearly, vi will be coloured, so Player A wins Avoidance in this case as well.

4° To win Avoidance for t even, Player B applies the 'antisymmetric' strategy
given at the beginning of the proof, until Player A visits L U R. Then, if Player A
assigns colour i to some Vj 6 LU R, the answer for Player B is to assign colour i to
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Vt+i-j if possible. Otherwise, if say V2 has colour i, then assign vt to colour 3 — i.
Again, it follows from Lemma 1 that Player B can force an odd number of uncoloured
nodes in [i>2, vt] a n d in G, too, that is, he wins Avoidance for t even. D

REMARK. Note that great similarity between the strategy of 1 ° and that for the Latin
Square Achievement Game by Leary and one of us, [4].

4. CYCLES

We now handle these games for the family of cycles.

THEOREM 3 . Let G be a cycle with t~^Z nodes, and let k = 2. Then Player A
has a winning strategy in Avoidance and Player B has a winning strategy in Achieve-
ment.

PROOF: 1° Let G have nodes vi, V2, ..., Vt, t>i in this cyclic order, and assume
that Player A assigns colour 1 to node v\ in the first step. Then Player B wins
Achievement if he assigns colour 2 either to v^ (if t is even) or to t^ (if t is odd), and
applies his 'antisymmetric' strategy described in part 1° of the proof of Theorem 2, on
the t — 2 or t — 3 uncoloured nodes viewed as a path of even order.

2° For t = 3, 4, it is easy to see that every game terminates after an even number
of steps, that is, Player A wins Avoidance in these cases. To win for t ^ 5, in his
second move Player A assigns a colour to some node in such a way that he creates two
nodes x, y of distinct colours, with the following property: If t is even then x and y
are adjacent, and if t is odd then x and y have an uncoloured neighbour in common.
This situation can always be ensured (for t ^ 5), independently of the first move of
Player B.

Denote by z the third node (distinct from x and y) coloured so far. Its colour
is identical to the one of i or y, but not both. Moreover, the parities of the x — z
and y — z paths are distinct, regardless the value of t. Thus, by Lemma 1, Player A
can force for these two paths together an even number of uncoloured nodes at the end
of the game. There is one further uncoloured node—the common neighbour of x and
y—when t is odd. Consequently, Player A can always ensure an even number of steps,
and hence he wins Avoidance. D

5. CONCLUDING REMARKS

It is immediate from the definitions that if the number k of colours is greater than
the maximum degree of the input graph G — (V, E), then Achievement—as well as
Avoidance—terminates when all nodes are coloured. Hence, the winner is determined
by the parity of n — \V\, independently of the actual moves during the game. For this
reason, the most interesting particular cases of Problem 1 seem to be

(1) k = the maximum degree of G,
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(2) k = the chromatic number of G,
( 3 ) Jfc = l .

In (3), a game terminates when a maximal independent set is found. It remains an
open problem to analyse the Achievement and Avoidance games on paths and cycles of
n nodes when fc = 1.
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