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On Axiomatizability of Non-Commutative
Lp-Spaces

C. Ward Henson, Yves Raynaud, and Andrew Rizzo

Abstract. It is shown that Schatten p-classes of operators between Hilbert spaces of different (infinite)

dimensions have ultrapowers which are (completely) isometric to non-commutative Lp-spaces. On the

other hand, these Schatten classes are not themselves isomorphic to non-commutative Lp spaces. As a

consequence, the class of non-commutative Lp-spaces is not axiomatizable in the first-order language

developed by Henson and Iovino for normed space structures, neither in the signature of Banach

spaces, nor in that of operator spaces. Other examples of the same phenomenon are presented that

belong to the class of corners of non-commutative Lp-spaces. For p = 1 this last class, which is the

same as the class of preduals of ternary rings of operators, is itself axiomatizable in the signature of

operator spaces.

Introduction

When model theory is applied to a given class of mathematical structures, a natural
first question is whether the class is axiomatizable by sentences from a first-order
language. Often this depends on the way in which the structures are viewed; that is,

the answer depends on which language (signature) is used.

In this paper we consider the first-order axiomatizability of a class of structures

from functional analysis with respect to several natural choices of signature. This
requires us to use a modification of first-order logic. Usually, when objects from
analysis or topology are considered, this is necessary, since the definitions necessarily
involve non-first-order mathematical concepts such as completeness with respect to

a metric. Such adaptations of model theory to analysis go back to work done in the
late 1960s and early 1970s by J.-L. Krivine and D. Dacunha-Castelle [DCK] (who
introduced the use of ultraproducts in Banach space theory) and by W. Luxemburg
(who introduced the more-or-less equivalent tool of nonstandard hulls). This work

was pursued by C. W. Henson, L. C. Moore, J. Stern, S. Heinrich, J. Iovino, and others.

Henson [He] introduced a suitable modification of first-order logic for the struc-

tures considered in this work. Recently a systematic introduction to this logic for
normed space structures was given by Henson and Iovino [HI]. The important fea-
tures of this theory are the use of a special first-order language consisting of posi-

tive bounded formulas and the introduction of a concept of approximate satisfaction.

Examples of the structures to which this logic applies include normed spaces, normed
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lattices, operator spaces, and the like.

Many classical results from model theory have counterparts in the theory dis-
cussed in [HI]; in particular, a well-known result characterizing axiomatizable classes

of structures using ultraproducts has its analogue, which we briefly explain now. The
interest of this characterization is that it only uses tools which are familiar to special-
ists in functional analysis, and involves no other technical aspects of formal logic.

A class C of normed space structures of a given kind (Banach spaces, Banach lat-
tices, operator spaces, etc.) is axiomatizable if there exists a set Φ of positive bounded

sentences from the corresponding language, such that a normed space structure be-
longs to C if and only if it approximately satisfies all the sentences ϕ in Φ.

A necessary and sufficient condition for a class C of normed space structures of
a given kind to be axiomatizable is that C is closed under 1-isomorphisms1 and ul-

traproducts, and that the complementary class is closed under ultrapowers. (See
[He, HI]. Note that we consider here only classes of structures that are obviously
uniform in the sense of [HI].)

If E, F are two normed space structures of the same kind, we say that E is an ultra-

root of F if F is 1-isomorphic to some ultrapower of E. Then a class C is axiomatizable

if and only if it is closed under 1-isomorphisms, ultraproducts and ultraroots.

In this note we discuss the axiomatizability of the class of non-commutative
Lp-spaces. For comparison and background, we first recall the case of commuta-
tive (i.e., ordinary) Lp-spaces, 1 ≤ p < ∞. Since these spaces are characterized as
Banach lattices by Bohnenblust’s axiom:

∀x∀y
(

|x| ∧ |y| = 0 =⇒ ‖x + y‖p
= ‖x‖p + ‖y‖p

)

(see [LT, Theorem 1b2] or [L, Ch. 5,§15, Theorem 3]), the class of (Banach lattices

isomorphic to) Lp-spaces is trivially closed under ultraproducts and substructures,
hence is axiomatizable in the language of Banach lattices. (Note that Bohnenblust’s
axiom is not, by itself, a positive bounded sentence in the sense of [HI]; however, it
is not too hard to find a sequence of sentences of this language which is equivalent to

Bohnenblust’s axiom). The situation is more difficult if we examine the class of (Ba-
nach spaces isometric to) Lp-spaces and consider its axiomatizability in the language
of Banach spaces. However, the answer has been known since the 1970s to be positive
in this case, too. This is due to the isometric characterization of Lp-spaces as Lp,1+

spaces in the sense of Lindenstrauss and Pełczyński, and to the fact that the class of
Lp,1+ spaces is easily seen to be closed under ultraroots.

The classical Lp-spaces have a natural counterpart in the non-commutative set-
ting, where the Boolean algebra of µ-measurable sets (up to µ-negligible sets) rela-
tive to some measure space (Ω, Σ, µ) is replaced by some weak-operator closed lat-

tice of (orthogonal) projections in some Hilbert space H; equivalently the algebra
L∞(Ω, Σ, µ) is replaced by some von Neumann algebra M. The non-commutative

1By 1-isomorphisms we mean surjective linear isometries which preserve the additional structure of
the given kind of normed structures (e.g., lattice isomorphisms in the case of Banach lattices, completely
isometric maps in the case of operator spaces, etc.)
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analog of the space L1(Ω, Σ, µ) (i.e., the predual of L∞(Ω, Σ, µ)) is then the unique
predual M∗ of M. The non-commutative analog of the space Lp(Ω, Σ; µ) was de-

scribed in the 1950s by Dixmier when the von Neumann algebra is semi-finite, (i.e.,

can be equipped with a normal faithful semi-finite trace τ , like the usual trace in
the case M = B(H)), see [Di], and by various authors in the 1970s in the much
harder case where M is not semi-finite (we refer to [H, T]). In fact, in the main ex-

ample described in Section 3, we only use the basic example M = B(H), in which
case L1(M) is simply the trace class S1(H), while Lp(M) is the Schatten class Sp(H).
These are the non-commutative analogs of the spaces ℓ1, resp. ℓp. The class of non-
commutative Lp-spaces is closed under ultraproducts (see [G] when p = 1, and [R]

when 1 < p < ∞), so it makes sense to ask if it is axiomatizable.
In this note we show that for 1 ≤ p < ∞, p 6= 2, the class of non-commutative

Lp-spaces is not closed under ultraroots, and hence it is not axiomatizable, whether
considered as a class of Banach spaces or as a class of operator spaces. In fact, we

show that for all infinite dimensional Hilbert spaces H, K, and p ∈ [1,∞), the
Schatten classes Sp(H, K), Sp(H), Sp(K) have 1-isomorphic ultrapowers (relative to
some common ultrafilter). But if H and K are not isometric, then Sp(H, K) is not
isomorphic to a non-commutative Lp space (not even if general non-isometric iso-

morphisms are allowed). Hence such Schatten p-classes are counterexamples to the
closedness under ultraroots of the class of non-commutative Lp-spaces; consequently
these classes are not axiomatizable, neither in the language of Banach spaces nor in
that of operator spaces.

These counterexamples are discrete in the sense that they can be described as “cor-
ners” in a non-commutative space associated with a “discrete” (type I) von Neumann
algebra. In Section 4 we give other counterexamples which are non discrete, basically
of the form Lp(M) with M = B(H, K)⊗̄A, where A is an arbitrary σ-finite von Neu-

mann algebra. In principle, reading this section requires knowledge of the theory of
general non-commutative Lp-spaces. However, only a few features of this theory are
really used in the proofs; indeed, they can easily be followed by the reader keeping
the more familiar Lp(M, τ )-spaces in mind.

All these counterexamples are corners in non-commutative Lp-spaces. In the case
p = 1, this class of spaces is exactly the well-known class of preduals of ternary rings
of operators (TRO). Following a suggestion from Z.-J. Ruan, for which we express our
appreciation, we show in Section 5 that the class of TRO preduals is axiomatizable

(in the language of operator spaces). The question of axiomatizability of the class
of corners in non-commutative Lp-spaces is left open for p > 1; it would be easily
settled in the affirmative if one knew the analogue of the result of Ng and Ozawa
[NO] (stating that the class of TRO-preduals is closed under completely contractive

projections).
The counterexamples presented in Section 3 have a corresponding version in the

case p = ∞, showing that the class of Banach spaces (resp., operator spaces) that
are 1-isomorphic to C∗-algebras is not closed under ultraroots, and hence it is not

axiomatizable. Indeed, we show that for all infinite dimensional Hilbert spaces H and
K, the spaces of compact operators S∞(H, K), S∞(H), S∞(K) have 1-isomorphic
ultrapowers (relative to some common ultrafilter); but if H and K are not isometric,
then S∞(H, K) is not isomorphic to a C∗-algebra.
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1 Basic Definitions of Model Theory for Normed Space Structures

For simplicity of exposition, we consider normed space structures of the following
type (simpler than those considered in [HI]). Such a structure E consists of the fol-
lowing items:

(i) a normed space E over the scalar field K = C or R;
(ii) collections of functions (Fi)i∈I and (G j) j∈ J of the form:

Fi : K
mi × Eni → K, G j : K

m j × En j → E,

each of which is uniformly continuous on every bounded subset of its domain; mi +ni

is the arity of the function. The functions of arity 0 are the constants, and the others
are the operations of E. We write E = {E, Fi , G j | i ∈ I, j ∈ J}. The signature L of

the normed space structure E consists of the data I, J, (mi , ni)i∈I∪ J .
Certain operations and constants are required in all normed space structures: the

algebraic operations on K, the absolute value on K, addition on E and the scalar
multiplication operation of K on E, the norm on E; among the constants occur the

additive identity of E and the rational numbers. If K = C, an additional operation is
the conjugation operation on C, and an additional constant is the number i =

√
−1.

Basic examples include the following:

• Normed spaces over K: with the minimal set of functions described above.
• Normed lattices over R: to the minimal set of functions one adds the lattice oper-

ations ∨ and ∧ on E.
• Operator spaces: besides the minimal set of operations, the signature includes, for

each n, the norm on the space Mn(E) of n×n matrices with entries in E; this norm

is seen as a function En2 → R ⊂ C.

If E, F have the same signature, an isomorphism T from E onto F is a bijective
map T : E → F which preserves the functions Fi and G j . Such an isomorphism
is automatically linear and isometric; in the case of operator spaces it is completely
isometric. We say that E is a substructure of F if E ⊂ F and the operations of F extend

the corresponding operations of E.
As in ordinary model theory, the formulas of the language are written with sym-

bols which are variables, function symbols, and logical symbols (logical connectives
and quantifiers). Each variable is of scalar or vector type; the function symbols ( fi)i∈I

and (g j) j∈ J associated to a given signature L formally connect arguments of real and
vector types (in numbers as prescribed by the signature L) to values of real type (in
the case of ( fi)i∈I) or vector type (in the case of (g j) j∈ J). More generally, the func-
tion symbols may also be used for connecting already constructed terms of real or

vector type, to construct terms (scalar- or vector-valued) of higher complexity, via
the formal counterpart of “substitution”.

The building blocks of the language are the atomic formulas; these have the form
t ≤ r or t ≥ r, where t is a real valued term and r a rational constant. The language

of positive bounded formulas uses only the positive connectives ∨ and ∧ and the
“bounded quantifiers” ∀r and ∃r , where ∀rx ϕ(x, y) means ∀x (‖x‖ ≤ r → ϕ(x, y)),
while ∃rx ϕ(x, y) means ∃x (‖x‖ ≤ r∧ϕ(x, y)). We have the same notion of satisfac-
tion of a sentence ϕ (a formula without free variables) by a normed structure E (and
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the same notation E |= ϕ) as in ordinary model theory, by interpreting each func-
tion symbol as the given function of the structure and the logical symbols with their

usual meaning. Similarly, E |= ϕ[a1, . . . , an], has the usual interpretation, where
ϕ(x1, . . . , xn) is a formula with n variables and a1, . . . , an are elements of E. (By
elements of E are meant the elements of K and of E).

A new feature of the model theory presented in [HI, He] is the notion of approx-

imate satisfaction. It requires the definition of the set of approximations of a given
formula ϕ. Such an approximation is obtained by relaxing all the constraints appear-
ing in ϕ; so atomic formulas of the form t ≤ r (resp., t ≥ r) are replaced by t ≤ r ′

for some r ′ > r, (resp., t ≥ r ′ for some r ′ < r), while the bounded quantifiers ∀r

(resp., ∃r) are replaced by ∀r ′ with some r ′ < r (resp., ∃r ′ with some r ′ > r). Then
E is said to approximately satisfy a sentence ϕ (and we write E |=A ϕ) if and only if
E |= ϕ ′ for every approximation ϕ ′ of ϕ; one similarly defines E |=A ϕ[a1, . . . , an].

2 A Criterion for the Existence of Isomorphic Ultrapowers

The aim of this section is to state and prove a criterion for two Banach spaces (or
more sophisticated Banach space structures) to have (isometrically) isomorphic ul-

trapowers. Let us emphasize that this result gives a sufficient condition which is by
no means necessary.

Proposition 2.1 Let F be a normed space structure and E be a substructure of F.

Assume that for every finite system (a1, . . . , an) of elements of E, every element b ∈ F,

and every real number ε > 0, there is an automorphism T of F and an element c ∈ E

such that

‖Tai − ai‖ < ε, i = 1, . . . , n, and ‖Tb − c‖ < ε.

Then there is an ultrafilter U such that the corresponding ultrapowers EU and FU are

(isometrically) isomorphic.

The proof of this result is based on two results of model theory: the first one is
an adaptation by Henson and Iovino of a deep classical result by Shelah and Keisler

that gives a characterization of structures with isomorphic ultrapowers; the second is
the adaptation of the well known Tarski–Vaught test to the model theory of normed
structures.

Say that two structures E and F are approximately elementary equivalent (E ≡A F)
if and only of they satisfy approximately the same positive bounded sentences. Note
that, in particular, isomorphic structures are approximately elementary equivalent
(in fact elementary equivalent, in the ordinary model-theoretic sense). Then a theo-

rem of Henson and Iovino [HI, Theorem 10.7] states that a necessary and sufficient
condition for E and F to have isomorphic ultrapowers is that they are approximately
elementary equivalent.

If E is a substructure of F, then E is an approximate elementary substructure of
F (notation: E �A F) if and only if both satisfy approximately the same formulas

where free variables are replaced by parameters from E. A fortiori they satisfy the
same sentences, so they are approximately elementary equivalent, but the converse is
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not true. The Tarski–Vaught test is a sufficient condition for a substructure to be an
approximate elementary one.

Proposition 2.2 (Tarski–Vaught test: [HI, Proposition 6.6]) Let E, F be two normed

space L-structures with E ⊆ F, i.e., E is a substructure of F. Then E is an approxi-

mate elementary substructure of F if and only if for every positive bounded L-formula

ϕ(x1, x2, . . . , xn, y) and every approximation ϕ ′ of ϕ, the following holds: if a1, . . . , an

are scalars or elements of E and b is an element of F such that F |= ϕ[a1, . . . , an, b],

then there exists an element c of E such that F |= ϕ ′[a1, . . . , an, c].

Proof of Proposition 2.1 We verify the Tarski–Vaught test. Let ϕ(x1, . . . , xn; y) be
a positive bounded L-formula, a1, . . . , an be elements of E, b be an element of F

such that F |= ϕ[a1, . . . , an, b]. Let C > 0 be a constant such that ‖b‖ ≤ C and
‖ai‖ ≤ C for all i = 1, . . . , n. By the perturbation lemma [HI, Proposition 9.1],
for every approximation ϕ ′ of ϕ there exists ε > 0 such that if c1, . . . , cn, c ∈ F and
d1, . . . , dn, d ∈ F all have norm ≤ C and verify ‖ci − di‖ < ε (for i = 1, . . . , n) and

‖c − d‖ < ε and F |= ϕ[d1, . . . , dn, d], then F |= ϕ ′[c1, . . . , cn, c]. By hypothesis
there is an automorphism T of F such that ‖Tai − ai‖ < ε and ‖Tb − c‖ < ε for
some c ∈ E. Since T is an automorphism of F, the fact that F |= ϕ[a1, . . . , an, b]
implies that F |= ϕ[Ta1, . . . , Tan, Tb]; hence F |= ϕ ′[a1, . . . , an, c].

The relation on normed space structures given by the existence of isomorphic
ultrapowers is an equivalence relation: this fact is by no means evident from the def-
inition of this relation, but becomes clear using the theorem of Henson and Iovino,

since the relation of approximate elementary equivalence is obviously an equivalence
relation. Hence if E, F and G are normed space L-structures, and U, V are ultrafilters
such that EU is isomorphic to FU and FV is isomorphic to GV, there exists an ultrafil-
ter W such that EW is isomorphic to GW. In fact, we have the following far-reaching

result (which follows from of [HI, Theorem 10.8]).

Theorem 2.3 Let C be a set of normed space L-structures. There exists an ultrafilter U

such that for any E, F ∈ C that have isomorphic ultrapowers, the ultrapowers EU and

FU are isomorphic.

3 Ultraroots of Noncommutative Lp-Spaces: A Counterexample

If H, K are Hilbert spaces, and 1 ≤ p < ∞, we denote by Sp(H, K) the Schatten
p-class of operators H → K. An operator x ∈ B(H, K) belongs to Sp(H, K) if and

only if |x| = (x∗x)1/2 belongs to the ordinary Schatten p-class Sp(H) (equivalently

|x∗| = (xx∗)1/2 ∈ Sp(K)), and ‖x‖Sp(H,K) =
∥

∥ |x|
∥

∥

Sp(H)
=

∥

∥ |x∗|
∥

∥

Sp(K)
. For p = ∞,

we adopt the usual convention that S∞(H, K) is the space of compact operators from
H into K.

Theorem 3.1 Let H1, H2, K1, K2 be infinite-dimensional Hilbert spaces and 1 ≤
p ≤ ∞. Then there is an ultrafilter U such that the ultrapowers Sp(H1, K1)U and

Sp(H2, K2)U are isometrically isomorphic.
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Proof Step 1: Assume first that H1 = H2 = H. Clearly we may suppose that the
Hilbertian dimensions of K1, K2 satisfy dim K1 ≤ dim K2; then K1 is isometrically

embeddable into K2, so we may assume that K1 ⊂ K2. Now we have a natural iso-
metric linear embedding Sp(H, K1) →֒ Sp(H, K2) (namely, x 7→ jx where j is the in-
clusion of K1 into K2), and we may consider that Sp(H, K1) is a subspace of Sp(H, K2).
We proceed now to verify that the hypotheses of Proposition 2.1 are fulfilled.

Let a1, . . . , an be an n-tuple in Sp(H, K1), b an element of Sp(H, K2) and ε > 0.

There exist finite rank operators a ′
1, . . . , a ′

n ∈ Sp(H, K1) and b ′ ∈ Sp(H, K2) such
that ‖a ′

i − ai‖ < ε, i = 1, . . . , n and ‖b ′ − b‖ < ε. Let F = span{a ′
1, . . . , a ′

n, b ′}. Let
L =

∑

i R(a ′
i ) (where R(a ′

i ) denotes the range of the operator a ′
i ), M = L + R(b ′) and

N = M ⊖ L. Let N ′ ⊂ K1 such that N ′ ⊥ L and dim N ′
= dim N . Let G = K2 ⊖ M

and G ′
= K2 ⊖ (L⊕N ′). We have K2 = L⊕N ⊕G = L⊕N ′ ⊕G ′. Note that G and

G ′ have the same Hilbertian dimension (that of K2). Hence there is a unitary u of K2

such that u|L = id |L, u(N) = N ′ and u(G) = G ′.

Let T = Lu be the left composition operator on Sp(H, K2) associated with u (that
is T(a) = ua for every a ∈ Sp(H, K2). Then T is a surjective isometry of Sp(H, K2),

T(a ′
i ) = a ′

i , i = 1, . . . , m and c = T(b ′) ∈ Sp(H, K1). Since ‖T(b) − T(b ′)‖ =

‖b − b ′‖ < ε, the hypotheses of Proposition 2.1 are verified (taking c = T(b ′)).

Step 2: Assume now that K1 = K2 = K, while H1, and H2 may be different. Now

we may suppose that H1 ⊂ H2. We have an isometric embedding Sp(H1, K) →֒
Sp(H2, K) defined by x 7→ xπ, where π is the orthogonal projection from H2 onto
H1. Given operators a1, . . . , an ∈ Sp(H1, K), b ∈ Sp(H2, K), and ε > 0, we apply
the construction of Step 1 above to the adjoint operators a∗1 , . . . , a∗n ∈ Sp(K, H1) and

b∗ ∈ Sp(K, H2); this yields a unitary u of H2 and an operator c ∈ Sp(K, H1) such
that ‖ua∗j − a∗j ‖ < ε, j = 1, . . . , n and ‖ub∗ − c‖ < ε. Then c∗ ∈ Sp(H1, K) (note
that c, as an element of Sp(K, H2), equals jc0, where c0 ∈ Sp(K, H1) and j is the
inclusion map from H1 into H2; hence c∗ = c∗0 j∗ = c∗0 π is indeed in the canonical

image of Sp(H1, K) in Sp(H2, K)). Moreover ‖a ju
∗ − a j‖ < ε, j = 1, . . . , n and

‖bu∗ − c∗‖ < ε. Finally T = Ru∗ : a 7→ au∗ defines a suitable automorphism of
Sp(H2, K) (for obtaining the hypotheses of Proposition 2.1 in this case).

Step 3: For the general case, let H1, H2, K1, K2 as in the assumptions of Theorem
3.1. By Step 1, Sp(H1, K1) and Sp(H1, K2) have (isometrically) isomorphic ultra-
powers; and by Step 2, Sp(H1, K2) and Sp(H2, K2) have isomorphic ultrapowers, too.

Hence by transitivity of the relation “to have isomorphic ultrapowers” (see §2), so do
Sp(H1, K1) and Sp(H2, K2).

Remark 3.2 When the Schatten classes are equipped with their usual operator

space structures obtained by complex interpolation [Pi], it is immediate that the
operator T constructed above is completely isometric. Hence the Schatten spaces
considered in Theorem 3.1 have in fact (for some ultrafilter) completely isometric
ultrapowers.

Corollary 3.3 If H and K are infinite-dimensional Hilbert spaces, there exists an ul-

trafilter U such that for every 1 ≤ p ≤ ∞ the ultrapower Sp(H, K)U is (completely iso-

https://doi.org/10.4153/CMB-2007-051-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-051-7


526 C. W. Henson, Y. Raynaud, and A. Rizzo

metrically) isomorphic to Sp(H)U and to Sp(K)U, hence to a non commutative Lp-space

if p < ∞, resp., to a C∗-algebra if p = ∞.

Proof This is a consequence of Theorem 3.1 and Theorem 2.3. For the last state-

ment see [R] in the case p < ∞.

Exceptionally in the following statement, the isomorphisms are not required to be
isometric. That is, in this result isomorphism means bijective bounded linear map with

bounded inverse.

Proposition 3.4 Let 1 ≤ p < ∞, p 6= 2 and H, K be infinite dimensional Hilbert

spaces, with dim H < dim K. Then Sp(H, K) is not isomorphic as a Banach space

to a non-commutative Lp-space associated with a von Neumann algebra. Similarly

S∞(H, K) is not isomorphic as a Banach space to a C∗-algebra.

Proof Suppose otherwise. Let M be a von Neumann algebra such that the non-
commutative Lp-space Lp(M) is isomorphic as a Banach space to Sp(H, K). By du-
ality we may assume that 1 ≤ p < 2. Note that Lp(M) contains isometrically the

Lebesgue space Lp([0, 1]), unless M is a type I von Neumann algebra with atomic
center. (If M has a type II or type III part, then Lp(M) contains a subspace isometric
to Lp(R), where R is the hyperfinite II1-factor, see [M]; it is well known that Lp(R)
contains a subspace isometric to Lp([0, 1]). On the other hand, if M has type I, it is

immediate that Lp(M) contains Lp(Z), where Z is the center of M). But Lp([0, 1])
contains isometric copies of the spaces ℓr , p < r < 2, while Sp(H, K) does not
contain these Banach spaces isomorphically. (In fact every infinite dimensional sub-
space of Sp(H, K) contains ℓp or ℓ2 isomorphically, see [AL, Theorem 1].) Hence if

Sp(H, K) is (Banach) isomorphic to Lp(M), then M is a type I von Neumann algebra

with atomic center. In other words M =
(
⊕

i∈I B(Hi)
)

ℓ∞
, where the Hi are Hilbert

spaces and consequently Lp(M) =
(
⊕

i∈I Sp(Hi)
)

ℓp
.

If dim Hi ≤ dim H for all i ∈ I and #I ≤ dim H, then the density character of

Lp(M) is at most (dim H)2
= dim H, while the density character of Sp(H, K) equals

dim K (since Sp(H, K) contains K isometrically); this is a contradiction. Hence either
#I > dim H or one of the Hi has Hilbertian dimension strictly greater than dim H. In
both cases, Lp(M) contains a subspace isometric to a space ℓp(Γ), where Γ is an index

set of cardinality #Γ > dim H (recall that for every Hilbert space L, Sp(L) contains
a subspace isometric to ℓp(dim L)); consequently Sp(H, K) contains isomorphically
ℓp(Γ).

Let (xγ)γ∈Γ be a Γ-indexed isomorphic ℓp-basis in Sp(H, K). We may assume that

∥

∥

∥

∑

γ

λγxγ

∥

∥

∥
≥

(

∑

γ

|λγ|p
) 1/p

for every finitely supported family (λγ)γ∈Γ of complex numbers. Let (e j) j∈ J be an
orthonormal basis of H, and for every F ⊂ J let pF be the orthogonal projection onto
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span[e j | j ∈ F]. Let 0 < α < 1. For every γ ∈ Γ there exists a finite subset Fγ of J

such that

‖xγ p⊥
Fγ
‖ < α.

Since #Γ > # J = #F( J) (the set of finite subsets of J), there is F0 ∈ F( J) for which
the inequality

‖xγ p⊥
F0
‖ < α

is valid for every γ in an infinite subset Γ
′ of Γ. Since Sp(H, K) has Rademacher type

p (see [LT] for a definition), we have for every finitely supported system (λγ)γ∈Γ ′ of

complex numbers:

Eε

∥

∥

∥

∑

γ

εγλγxγ p⊥
F0

∥

∥

∥

p

≤ C p
∑

γ

|λγ |p‖xγ p⊥
F0
‖p ≤ C pαp

∑

γ

|λγ |p,

where C is the type p constant of Sp(H, K). (In fact C = 1, as can be shown using
complex interpolation between the cases p = 1 and p = 2.)

Consequently we have

(

Eε

∥

∥

∥

∑

γ

εγλγxγ pF0

∥

∥

∥

p) 1/p

≥
(

Eε

∥

∥

∥

∑

γ∈Γ ′

εγλγxγ

∥

∥

∥

p) 1/p

−
(

Eε

∥

∥

∥

∑

γ∈Γ ′

εγλγxγ p⊥
F0

∥

∥

∥

p) 1/p

≥ (1 − α)
(

∑

γ

|λγ |p
) 1/p

.

However the space span[xγ pF0
| γ ∈ Γ

′] is a subspace of Sp(H0, K), where H0 =

R(pF0
); since H0 is a finite dimensional Hilbert space, the Schatten p-class Sp(H0, K)

is isomorphic to a Hilbert space, hence has type 2, i.e.

(

Eε

∥

∥

∥

∑

γ

εγλγxγ pF0

∥

∥

∥

p) 1/p

≤ C
(

∑

γ

|λγ |2‖xγ pF0
‖2

) 1/2

≤ CM
(

∑

γ

|λγ |2
) 1/2

,

where M = supγ ‖xγ‖ < ∞. This clearly provides a contradiction.

Remark 3.5 Note that only the isometric version of Proposition 3.4 is needed to

prove our non-axiomatizability results, and it has a somewhat simpler proof. In par-
ticular in the isometric setting, the fact that the algebra M is necessarily of type I is
an immediate consequence of Marcolino’s result [M] stating that only type I algebras
have associated Lp-spaces which are stable in the Krivine–Maurey sense. On the other

hand, by the Clarkson inequality [MC], a subspace of a Schatten p-class which is iso-
metric to an ℓp(Γ) space is generated by a basis (xγ) consisting of pairwise disjoint
elements, i.e., xγ = pγxγqγ where (pγ) (resp., (qγ)) is a system of pairwise disjoint
projections; consequently #Γ ≤ min(dim H, dim K), which yields the needed con-

tradiction.
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Remark 3.6 If H, K are Hilbert spaces with different Hilbertian dimensions, then
the space B(H, K) of bounded operators from H to K is not linearly isometric to a

C∗-algebra: this follows by duality from Proposition 3.4 and the fact that the predual
of a von Neumann algebra is unique (up to linear isometry); see also the proof of
the case p = 1 of Proposition 4.2. However, it is unknown to the authors if some
ultrapower of B(H, K) is isomorphic to a C∗-algebra.

4 Ultraroots of Noncommutative Lp-Spaces: Non-Discrete
Counterexamples

The counterexample of Section 3 is discrete in the sense that it has the form pLp(N)q

where N is a discrete (type I) von Neumann algebra, and p, q are projections in N.
We show here how to obtain non-discrete counterexamples.

Recall that two projections p, q in a von Neumann algebra A are called equivalent

if there is a partial isometry u in A such that uu∗
= q, u∗u = p. A projection

p is said to be properly infinite if there exists an infinite family (pi)i∈I of pairwise
disjoint and equivalent projections such that p =

∑

i∈I pi . The central support c(p)

of a projection p is the least central projection r in A such that r ≥ p. We have
also c(p) =

∨

{upu∗ | u ∈ A unitary }. A projection p is called σ-finite if every
decomposition p =

∑

i pi of p into pairwise disjoint non-zero projections is at most
countable. If h ∈ Lp(A), we denote by ℓ(h) (resp., r(h)) its left support (resp., right

support), i.e., the least projection e in A such that eh = h (resp., he = h). The left
and right supports of an element h of Lp(A) (1 ≤ p < ∞) are always σ-finite.

A corner in a non-commutative space Lp(A) is a subspace of the form S =

eLp(A) f , where e, f are projections in A. The left support ℓ(S) (resp., right support

r(S)) of a corner S is the least projection e (resp., f ) such that S = eS (resp., S = S f ):
then S = ℓ(S)Lp(A)r(S). Note that ℓ(S) and r(S) have the same central support,
which we denote by c(S) (because eLp(A) f = (0) if (and only if) c(e) ⊥ c( f )).

Proposition 4.1 Let A be a von Neumann algebra and e, f be properly infinite pro-

jections in A, with central support I. Let 1 ≤ p < ∞. Then there is an ultrafilter U

such that (eLp(A) f )U and Lp(A)U are isometric (in fact, completely isometric).

Proof The proof follows the pattern of the proof of Theorem 3.1. We prove that
eLp(A) f and Lp(A) f have isomorphic ultrapowers and leave the rest of the proof to
the reader. We use the following facts.

(i) If (ei)i∈I is a family of pairwise disjoint projections in A with
∑

i∈I ei = I, then

for every h ∈ Lp(A) and ε > 0 there exists a finite subset F ⊂ I such that ‖e⊥F h‖ < ε,
where eF =

∑

i∈F ei . (If not, one could find ε > 0 and a sequence (Fn) of mutually
disjoint finite subsets of I such that ‖eFn

h‖ ≥ ε for all n. However since the eFn
are

disjoint, it is a standard fact that

‖
∑

n

eFn
h‖ ≥

(

∑

n

‖eFn
h‖q

) 1/q

,

where q = p ∨ 2, which yields a contradiction.)
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(ii) If e has central support I and is properly infinite, then every σ-finite projec-
tion π in A is equivalent to a projection π ′ ≤ e (see [Di, III, 8, Corollary 5]).

Let a1, . . . , an ∈ eLp(A) f and b ∈ Lp(A) f , and ε > 0. Write e =
∑

i∈I ei where
(ei) is an infinite family of pairwise disjoint and equivalent projections of A. By
fact (i), there is a finite subset F ⊂ I such that ‖ai − eFai‖ < ε, i = 1, . . . , n and
‖eb − eFb‖ < ε. Set G = I \ F. By fact (i), the left support projection ℓ(e⊥b) is

σ-finite, and by fact (ii) it is equivalent to a subprojection e ′ of eG. Let u be a partial
isometry in A with uu∗

= e ′ and u∗u = ℓ(e⊥b). Set w = u + u∗ + (e ′ + ℓ(e⊥b))⊥.
Then w is a unitary of A such that wℓ(e⊥b) = e ′, we ′ = ℓ(e⊥b) and weF = eF . Then
we have

‖wai − ai‖ ≤ ‖wai − weFai‖ + ‖eFai − ai‖ = 2‖ai − eFai‖ < 2ε

and similarly ‖web − eb‖ < 2ε. Setting c = eb + ue⊥b we have c ∈ eLp(A) f and

‖wb − c‖ < 2ε.

Proposition 4.2 Let 1 ≤ p < ∞, p 6= 2; let A be a von Neumann algebra and S a

corner in Lp(A) with left and right supports e, f . If S is isometric to a non-commutative

Lp-space associated with a von Neumann algebra, then the reduced von Neumann alge-

bras eAe and f A f are ∗-isomorphic.

Proof We examine separately the cases p = 1 and p > 1.

Case p = 1. This case is probably well known (Z.-J. Ruan pointed out to us a

similar argument in the operator space setting; see [Ru, §6]). If T : S → L1(N) is a
surjective isometry, where N is a von Neumann algebra, then by duality T ′ : N →
S ′

= f Ae is a surjective isometry. Note that under any ∗-isomorphisms of N and A

with some C∗-subalgebras of some B(H), the spaces N and S ′ both appear as TRO’s,

i.e., subspaces of B(H) closed under the triple product {x, y, z} = xy∗z. By a theorem
of Harris [Ha], any surjective isometry between TRO’s preserves the symmetrized
triple product. Hence:

(1) T ′(xy∗z + zy∗x) = (T ′x)(T ′y)∗(T ′z) + (T ′z)(T ′y)∗(T ′x) ∀x, y, z ∈ S∗.

Let u = T ′1 be the image of the identity of N. We then have u = uu∗u (taking

x = y = z = 1 in equation (1)). Hence u is a partial isometry in A with left
projection p = uu∗ and right projection q = u∗u. Clearly p ≤ f and q ≤ e.
Moreover, for every x ∈ N we have (taking y = z = 1 in equation (1))

2T ′x = (T ′x)q + p(T ′x).

Since T ′ is surjective, this means that

∀a ∈ S ′, a = (aq + pa)/2.

In particular ‖aq⊥‖ = ‖paq⊥‖/2 ≤ ‖aq⊥‖/2, hence aq⊥ = 0, i.e., a = aq and also
a = pa. Since this is true for every a ∈ S ′ we have p = f and q = e. Consequently
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e and f are equivalent projections in A (e = u∗u, f = uu∗) and a ∗-isomorphism
π : eAe → f A f can be defined by

π(a) = uau∗ ∀a ∈ A.

Case p > 1. We may localize to S the main argument of the paper [S], analyzing
surjective isometries between two non-commutative Lp-spaces.

First let us introduce a few definitions. Among the sub-corners of a corner C

are the columns Cq (where q is a subprojection of r(C)), the rows qC, (where q is a
subprojection of ℓ(C)), and the central sections zC, where z is a central projection in

A: a row which is also a column is in fact a central section. For further use note that a
column (resp., a row, resp., a central section) in a corner C can be written uniquely as
Cq, resp., pC, resp., zC, where q is a subprojection of r(C) (resp., p is a subprojection
of ℓ(C), z is a central subprojection of c(C)).

Two results of [S] can be transposed immediately in the present context. The first

one states that the image of a central section of a corner S1 by a surjective isometry
onto another corner S2 is a central section of S2. The second one provides a deter-
mination of the images of columns (resp., rows) under surjective isometries. It states
that such an image is the sum of a row and a column which are centrally disjoint.

So if T : S1 → S2 is a surjective isometry between two corners in non-commutative
Lp-spaces Lp(A1), resp., Lp(A2), then for every projection q ≤ r(S1) there exist a
central projection z of A2 and projections qr ≤ r(S2), qℓ ≤ ℓ(S2) such that

(2) T(S1q) = zS2qr + z⊥qℓS2.

Moreover, as is shown in [S], the central projection z does not depend on q when S1q

has no abelian central section, and this choice of z works also for a general q ≤ r(S1).

The argument of [S] is based on the preservation of two kinds of orthogonality for

pairs of elements by isometries: the first one is defined as the orthogonality of left,
resp., right, supports:

h ⊥ k ⇐⇒ ℓ(h) ⊥ ℓ(k) and r(h) ⊥ r(k).

This orthogonality has a purely metric formulation in Lp for p 6= 2,∞ (the equal-

ity case in Clarkson’s inequality, see [RX]) and is thus preserved by any isometry
between two subspaces of non-commutative Lp-spaces. The second type of orthog-
onality used in [S] is related to Lumer’s concept of semi-inner product. Recall that
if X is a smooth Banach space, then for every non zero element x ∈ X there is a

unique functional Jx ∈ X ′ such that ‖ Jx‖ = ‖x‖ and 〈x, Jx〉 = ‖x‖2. Then Lumer’s
semi-inner product is defined by [x, y] = 〈x, Jy〉 and Lumer’s semi-orthogonality by

x⊤y ⇐⇒ [x, y] = 0.

These concepts are preserved under isometries; this applies to subspaces of non-
commutative Lp-spaces, provided p 6= 1,∞.
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Now we adapt [S, Lemma 4.5] to the present context. Let T : Lp(N) → S =

eLp(A) f be a surjective isometry, and let z ≤ c(S) be a central projection in A veri-

fying (2) (with S1 = Lp(N) and S2 = S). Let ρ ∈ Z(N) be a central projection in N

such that T−1(zS) = ρLp(N). Then we have

(3) T(ρLp(N)q) = zSqr ; T(ρ⊥Lp(N)q) = z⊥qℓS.

That is, T maps columns of ρLp(N) to columns of zS and columns of ρ⊥Lp(N) to
rows of z⊥S. Similarly there are central projections ρ ′ ∈ N, z ′ ∈ c(S)A such that

T−1 maps columns of z ′S to columns of ρ ′Lp(N) and columns of z ′⊥S to rows of
ρ ′⊥Lp(N). Consequently, every column of ρρ ′⊥Lp(N) is also a row, i.e., is a central
section of ρρ ′⊥Lp(N); hence ρρ ′⊥N is commutative. Assume for the moment that
N has no commutative central section. Then ρρ ′⊥

= 0, i.e., ρ ⊂ ρ ′ and T−1 maps

columns of zS to columns of ρLp(N). Then necessarily T maps rows of ρLp(N) to
rows of zS (if not, a row of ρLp(N) would be a column, i.e., a central section, con-
tradicting the hypothesis that N has no abelian summand). Similarly, using central
projections ρ ′ ′ ∈ N, z ′ ′ ∈ c(S) · A such that T−1 maps rows of z ′ ′S to rows of

ρ ′ ′Lp(N) and rows of z ′⊥S to columns of ρ ′⊥Lp(N), one sees that T−1 maps rows of
z⊥S to columns of ρ⊥Lp(N), and T maps rows of ρ⊥Lp(N) to columns of z⊥S.

Now observe that T maps rows of ρ⊥ρ ′Lp(N) to columns of z⊥z ′S while T−1

maps columns of z⊥z ′S to columns of ρ⊥ρ ′Lp(N); hence every row of ρ⊥ρ ′Lp(N) is

a column, and ρ⊥ρ ′
= 0. Thus ρ = ρ ′, z = z ′, and similarly ρ⊥ = ρ ′ ′, z⊥=z ′ ′. Fi-

nally, T and T−1 exchange the columns (resp., the rows) of ρLp(N) with the columns
(resp., the rows) of zS, and the columns (resp., the rows) of ρ⊥Lp(N) with the rows
(resp., the columns) of z⊥S.

The relation (3) defines one-to-one maps πr : q 7→ qr from P(ρN) onto the set of
projections of A which are dominated by z · f (i.e., P(z f A f )) and πℓ : q 7→ qℓ, from
P(ρ⊥N) onto P(z⊥ f A f ). It is shown in [S] how to extend πr to a ∗-isomorphism
from ρN onto z f A f , and πℓ to a ∗-anti-isomorphism from ρ⊥N onto z⊥ f A f . Sim-

ilarly, considering the action of T on the rows of S, one obtains a ∗-isomorphism π ′
ℓ

from ρN onto zeAe and a ∗-anti-isomorphism π ′
r from ρ⊥N onto z⊥eAe. The com-

positions πrπ
′−1
ℓ and πℓπ

′−1
r are ∗-isomorphisms and their direct sum is the desired

∗-isomorphism from eAe onto f A f .
In the case where N has a non trivial commutative central section ρcN, then

T(ρcLp(N)) is a central section zcS in which all the rows and columns are central
sections. It is not hard to see that zceAe and zc f A f are then both abelian and that

the one-to-one correspondance induced by T on their central sections extends to
∗-isomorphisms between them and ρcN.

Definition 4.3 If κ is a cardinal number, say that a projection e is κ-decomposable if

e =
∑

i∈I ei for some family (ei)i∈I of σ-finite and mutually orthogonal projections
in A, where I has cardinality less or equal to κ.

Corollary 4.4 Let 1 ≤ p < ∞, p 6= 2, and A be a von Neumann algebra and

S := eLp(A) f be a corner with supports e = r(S), f = ℓ(S). Assume that e is κ-decom-

posable, while f is not. Then S is not linearly isometric to a non-commutative Lp-space

associated with a von Neumann algebra.
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Proof In this case, eAe and f A f are clearly not ∗-isomorphic.

Example 4.5 Let N be a von Neumann algebra. Given two Hilbert spaces H, K, let
S = B(H, K)⊗̄N. If H is a Hilbert space on which N is represented (as a concrete
von Neumann algebra of operators in H) and H⊗H, K ⊗H are the usual Hilbertian

tensor products, then S identifies with the weak-operator closed subspace of B(H ⊗
H, K ⊗H) generated by the operators a ⊗ x with x ∈ B(H, K), a ∈ N. Alternatively,
if (ei)i∈I and ( f j ) j∈ J are orthogonal bases in H, resp., K, then the elements of S can
be represented as (certain) infinite matrices (ai, j) with entries in N. If L = H ⊕ K,

PH , PK are the orthogonal projections from L onto H, resp., K and A = B(L)⊗̄N,
then S = eA f where e = PH ⊗ IN, f = PK ⊗ IN. Then A, e, f satisfy the hypotheses
of Proposition 4.1. The hypotheses of Corollary 4.4 are satisfied if for some infinite
cardinal κ, N is κ-decomposable, dim H ≤ κ and dim K > κ.

5 Ultraroots of TRO-Preduals: Operator Space Version

Recall that a ternary ring of operators (TRO) is a subspace of some B(H) space which
is closed under the triple product operation {x, y, z} = xy∗z. An abstract charac-

terization of these spaces was given by Zettl [Z]. We refer to the litterature cited in
the introduction of [Ru] for more information. A W ∗-TRO is a TRO which is a dual
Banach space. By [EOR], every W ∗-TRO can be represented as a corner X = eAe⊥in
a von Neumann algebra A (e is a projection in A) and has a unique predual (which

identifies with e⊥A∗e under the duality 〈A, A∗〉). This point can be stated slightly
more precisely: if E is a Banach space, the dual of which is linearly isometric to X,
then the canonical images of E and of X∗ = e⊥A∗e in X∗ coincide as sets; this is a
consequence of the analogous statement for von Neumann algebras (known as Sakai’s

theorem) and the proof of [EOR, Theorem 2.1]. Hence the conjugate isometry of any
linear isometry from X onto E∗ induces a map from the canonical image of E in its
bidual onto that of X∗. Consequently, if E is an operator space, the dual of which
is completely isometric to X, then E is completely isometric to X∗. Such corners in

non-commutative L1-spaces form exactly the class of completely contractively com-
plemented subspaces in non-commutative L1-spaces [NO].

Proposition 5.1 The class of TRO-preduals is closed under ultraproducts and ultra-

roots in the operator space category. In other words, it is axiomatizable in the language

of operator spaces.

Proof Step 1: Let S =
∏

U
Ti∗ be an ultraproduct of TRO-preduals. Each Ti∗ is

(completely isometrically) identified with a corner piAi∗qi in the predual of a von
Neumann algebra Ai . Recall that

∏

U
Ai∗ can be identified completely isometri-

cally with the predual of a von Neumann algebra M which contains the ultraproduct
∏

U
Ai as sub-C∗-algebra. In particular, the families of projections (pi) and (qi) de-

fine projections p̃ and q̃ in
∏

U
Ai , hence in M, and S = p̃M∗q̃ is a corner in a

non-commutative L1-space, i.e., a TRO predual.
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Step 2: Let E be an operator space with an ultrapower EU which is completely iso-
metric to the predual of a TRO V . Let i : E → EU = V∗ be the diagonal embedding

x 7→ x̂ = (x)•i∈I , and w : EU → E∗∗ be the weak∗-limit operator defined by

w(x̃) = w∗- lim
i,U

xi if x̃ = (xi)
•.

Then w is a complete contraction. Let jE : E → E∗∗ be the natural (completely
isometric) embedding; then wi = jE. Dualizing, we obtain complete contractions
i∗ : V → E∗ and w∗ : E∗∗∗ → V such that i∗w∗

= j∗E . The map j∗E : E∗∗∗ → E∗ is the
canonical projection (the restriction map):

E
i

//

idE

��

EU = V∗

w

��
E

jE

// E∗∗

V
i∗ // E∗

E∗∗∗

w∗

OO

E∗

idE∗

OO

jE∗

oo

j∗E //

Consequently we have i∗w∗ jE∗ = j∗E jE∗ = idE∗ . Hence w∗ jE∗ is a complete

isometry from E∗ onto a linear subspace F of V which is 1-completely complemented
by the projection w∗ jE∗ i∗.

By a well-known result of Youngson [Y], F is completely isometric to a TRO W .
Since W is a dual Banach space, it is a W∗-TRO, i.e., W is TRO-isomorphic (hence
completely isometric) to a corner eAe⊥ of a Von Neumann algebra A. By unicity of

the predual of a TRO in the operator space sense, E is necessarily completely isometric
to W∗.

Problem For each 1 ≤ p ≤ ∞, let Tp be the approximate theory of the class of
all non-commutative Lp-spaces (when p < ∞) or of C∗-algebras (when p = ∞),
considered as operator spaces. That is, Tp is the set of all positive bounded sentences
ϕ in the language of operator spaces such that for every non-commutative Lp-space

(resp., C∗-algebra) E, one has E |=A ϕ. Let Kp be the class of all operator spaces E

such that E |=A Tp. Then an operator space E is in Kp if and only if E is an ultraroot
of some non-commutative Lp-space (resp., C∗-algebra). (See [HI, Remark 13.7].)
We pose the problem of giving a mathematical description or characterization of the

operator spaces in Kp, for each p. Note that Proposition 5.1 implies that K1 is a class
of TROs. This problem is also of interest when these spaces are simply considered as
Banach spaces and the corresponding language is used.
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