Canad. Math. Bull. Vol. 59 (1), 2016 pp. 119-122 http://dx.doi.org/10.4153/CMB-2015-045-1 © Canadian Mathematical Society 2015

A Simple Proof and Strengthening of a Uniqueness Theorem for L-functions

Pei-Chu Hu and Bao Qin Li

Abstract. We give a simple proof and strengthening of a uniqueness theorem for functions in the extended Selberg class.

This paper concerns the question of when two L-functions are identically equal in terms of the zeros of L - h for a value or more generally, a so-called moving target h (see below). *L*-functions are Dirichlet series with the Riemann zeta function $\zeta(s) =$ $\sum_{n=1}^{\infty} \frac{1}{n^s}$ as the prototype. The Selberg class of *L*-functions is the set of all Dirichlet series $L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n!}$ of a complex variable $s = \sigma + it$ with a(1) = 1, satisfying the following axioms (see [5, 6]):

- (Ramanujan hypothesis) $a(n) \ll n^{\varepsilon}$ for every $\varepsilon > 0$. (i)
- (ii)(Analytic continuation) There is a non-negative integer k such that $(s-1)^k L(s)$ is an entire function of finite order.
- (iii) (Functional equation) L satisfies a functional equation of type

$$\Lambda_L(s) = \omega \overline{\Lambda_L(1-\bar{s})},$$

where $\Lambda_L(s) = L(s)Q^s \prod_{j=1}^K \Gamma(\lambda_j s + \mu_j)$ with positive real numbers Q, λ_j , and

complex numbers μ_j, ω with $\operatorname{Re}\mu_j \ge 0$ and $|\omega| = 1$. (iv) (Euler product) $\log L(s) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s}$, where b(n) = 0 unless *n* is a positive power of a prime and $b(n) \ll n^{\theta}$ for some $\theta < \frac{1}{2}$.

The Selberg class, which has been extensively studied, includes the Riemann zetafunction ζ and essentially those Dirichlet series where one might expect the analogue of the Riemann hypothesis. At the same time, there are a whole host of interesting Dirichlet series not possessing Euler product. Throughout the paper, all L-functions are assumed to be functions from the extended Selberg class of those only satisfying axioms (i)–(iii) (see [6]). Thus, the results obtained in this paper apply particularly to L-functions in the Selberg class.

The uniqueness question of when two L-functions are identically equal has been studied in various settings (see [1-3,6], etc., for related results and references therein). In particular, the following result was given in [6, p. 152].

Received by the editors February 7, 2015.

Published electronically June 22, 2015.

P.-C. Hu was partially supported by the Natural Science Foundation of China (No. 11271227) and by PCSIRT (IRT1264).

AMS subject classification: 30B50, 11M41.

Keywords: meromorphic function, Dirichlet series, L-function, zero, order, uniqueness.

Theorem 1 Two L-functions L_1 and L_2 are identically equal if $L_1 - a$ and $L_2 - a$ have the same zeros (counting multiplicities) for a complex number a.

In [1], the above uniqueness problem was considered in terms of the zeros of L - R(s) by changing the so-called fixed target *a* in Theorem 1 to a rational moving target R(s).

Theorem 2 Let R be a rational function with $\lim_{s\to\infty} R(s) \neq 1$. Two L-functions L_1 and L_2 are identically equal if $L_1 - R$ and $L_2 - R$ have the same zeros (counting multiplicities).

In this short article, we first show that Theorem 1 is actually false when a = 1 (see Remark 4). We then give a simpler proof and also a strengthening of Theorems 2 and 1 (with $a \neq 1$) by improving *a* and *R* in the above theorems to a meromorphic function h(s) of finite order in the complex plane (note that a rational function is of order 0), which will also be shown to be best possible (see Remark 5). More specifically, we have the following theorem.

Theorem 3 Let h be a meromorphic function of finite order with

$$\lim_{\Re(s)\to+\infty} h(s) = \alpha \neq 1$$

(α may be ∞). Two L-functions L_1 and L_2 are identically equal if $L_1 - h$ and $L_2 - h$ have the same zeros (counting multiplicities). The conclusion need not hold if h is of infinite order.

Remark 4 Consider $L_1(s) = 1 + \frac{2}{4^s}$ and $L_2 = 1 + \frac{3}{9^s}$. Then L_1 and L_2 trivially satisfy axioms (i) and (ii). Also, one can check that L_1 satisfies the functional equation

$$2^{s}L(s) = 2^{1-s}\overline{L(1-\bar{s})},$$

and L_2 satisfies the functional equation

$$3^{s}L(s) = 3^{1-s}\overline{L(1-\bar{s})}.$$

Thus, L_1 and L_2 also satisfy axiom (iii). It is clear that $L_1 - 1$ and $L_2 - 1$ do not have any zeros and thus satisfy the conditions of Theorem 1 with a = 1, but $L_1 \neq L_2$. This example shows that Theorem 3 is false when $\alpha = 1$. We note that the proof of [6, Theorem A] uses a result based on a Riemann–von Mangoldt formula for the zeros of L - c, which holds for both $c \neq 1$ and c = 1 with a modification for the case of c = 1 (see [6, Theorem 7.7, p. 147]). However, the assertion that $\lim_{s\to\infty} \ell(s) = 1$ in the proof of [6, Theorem A, p. 153] does not hold when c = 1.

Remark 5 We show that Theorem 3 is best possible in the following senses.

(i) The same example in Remark 4 shows that the condition $\lim_{\Re(s)\to+\infty} h(s) = \alpha \neq 1$ in Theorem 3 cannot be dropped. We include here an example with a nonconstant *h*. Let h = L be an arbitrary *L*-function, which is of finite order. Let $l_1 = L_1L$ and $l_2 = L_2L$, where L_1 and L_2 are the same *L*-functions in Remark 4. Then l_1 and l_2 , as a product of two *L*-functions, are still L-functions. Clearly,

120

 $l_1 - h = L_1L - L = (L_1 - 1)L$ and $l_2 - L = (L_2 - 1)L$ have the same zeros with counting multiplicities. But, $l_1 \neq l_2$.

(ii) The condition "counting multiplicities" cannot be dropped. In fact, for any nonconstant L-function L(s), L(s), and $L^2(s)$ have the same zeros (without counting multiplicities), but they are not equal.

(iii) A moving target of a function is usually assumed to grow more slowly than the function. The function *h* in Theorem 3, however, does not have this restriction and can be of any finite order, which may grow more quickly than L_1 and L_2 , which are of finite order by axiom (ii) (actually order ≤ 1 , see *e.g.*, [6, p. 150]). Furthermore, as stated in the theorem, the order of *h* cannot be further improved to infinite order.

We next give the proof of Theorem 3, which is short and elementary using only the basic fact that the orders of $\frac{f}{g}$ and f + g cannot exceed the maximum of the orders of f, g (see *e.g.*, [4, p. 216]). In particular, it does not require the Riemann–von Mangoldt formula for L-functions or the result that L-functions are of order ≤ 1 (*cf.* [1,6]). Thus, the proof enables one to extend the theorem to more general Dirichlet series and meromorphic functions, which is omitted here.

Proof of Theorem 3 Consider the function $G(s) = \frac{L_1(s) - h(s)}{L_2(s) - h(s)}$. Under the given conditions, it is clear that G(s) cannot have any zeros or poles except possibly at s = 1. Since L_1, L_2, h are all of finite order, the function G is also of finite order, as noted above. Thus, we have that

$$G(s) = \frac{L_1(s) - h(s)}{L_2(s) - h(s)} = (s - 1)^m e^{p(s)},$$

where *m* is an integer and p(s) is a polynomial, and then that

(1)
$$|G(\sigma+it)| = |\sigma+it-1|^m e^{\Re\{p(\sigma+it)\}}$$

We may write

$$\Re p(\sigma + it) = a_n(t)\sigma^n + a_{n-1}(t)\sigma^{n-1} + \dots + a_0(t),$$

a polynomial in σ with $a_n(t), \ldots, a_0(t)$ being polynomials in t. If $a_n(t) \neq 0$ and $n \geq 1$, then we can take a t_0 such that $a_n(t_0) \neq 0$. Noting that $\lim_{\sigma \to +\infty} G(s) = 1$ (even when $\alpha = \infty$), by letting $\sigma \to +\infty$ in (1) with $t = t_0$ we deduce that 1 = 0 (when $a_n(t_0) < 0$) or $1 = \infty$ (when $a_n(t_0) > 0$), which is absurd. This shows that $\Re p(\sigma + it) = a_0(t)$ and then $|G(\sigma + it)| = |\sigma + it - 1|^m e^{a_0(t)}$, which clearly implies that m = 0, since otherwise $G(s) \to 0$ when m < 0 and $G(s) \to \infty$ when m > 0 as $\sigma \to +\infty$ for a fixed t, a contradiction to the fact that $\lim_{\sigma \to +\infty} G(s) = 1$. We thus obtain that $|G(s)| = e^{a_0(t)}$. By letting $\sigma \to +\infty$ again, we deduce that $e^{a_0(t)} \equiv 1$ for each t. Hence, $|G(s)| \equiv 1$, which implies that $G(s) \equiv c$, a constant. Letting $\sigma \to +\infty$ again, we obtain that $G(s) \equiv 1$, which implies that $L_1 \equiv L_2$.

Next, we show that the theorem need not hold if the function *h* is of infinite order. Let $L_1 = 1 + \frac{2}{4^i}$, $L_2 = 1 + \frac{3}{9^i}$ (*cf.* Remark 4), and let $h = \frac{L_1 e^{L_1 - 1} - L_2}{e^{L_1 - 1} - 1}$. Then it is easy to check that $\frac{L_2 - h}{L_1 - h} = e^{L_1 - 1}$, which implies that $L_1 - h$ and $L_2 - h$ have the same zeros, counting multiplicities. It is elementary to check that

$$\lim_{\Re(s) \to +\infty} h(s) = \lim_{\Re(s) \to +\infty} \left(L_1 + \frac{L_1 - L_2}{e^{L_1 - 1} - 1} \right) = 2.$$

Thus, L_1, L_2, h satisfy all the conditions of Theorem 3 except the "finite order" assumption on h, but $L_1 \neq L_2$.

References

- [1] M. Cardwell and Z. Ye, A uniqueness theorem of L-functions with rational moving targets. J. Math Anal. 5(2014), no. 1, 16–19.
- H. Ki, A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation. Adv. Math. 231(2012), no. 5, 2484–2490. http://dx.doi.org/10.1016/j.aim.2012.07.027
- B. Q. Li, A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation. Adv. Math. 226(2011), no. 5, 4198–4211. http://dx.doi.org/10.1016/j.aim.2010.12.001
- [4] R. Nevanlinna, *Analytic functions*. Die Grundlehren der mathematischen Wissenschaften, 162, Springer-Verlag, 1970.
- [5] A. Selberg, Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, pp. 367-385.
- [6] J. Steuding, Value distribution of L-functions. Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007.

Department of Mathematics, Shandong University, Jinan 250100, Shandong, P. R. China e-mail: pchu@sdu.edu.cn

Department of Mathematics and Statistics, Florida International University, Miami, FL 33199 USA e-mail: libaoqin@fiu.edu

122