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SLICINGS, SELECTIONS AND THEIR APPLICATIONS 

N. GHOUSSOUB, B. MAUREY AND W. SCHACHERMAYER 

0. Introduction. In the past few years, much progress have been made on several 
open problems in infinite dimensional Banach space theory. Here are some of the most 
recent results: 

1 ) The existence of boundedly complete basic sequences in a large class of Banach 
spaces including the ones with the so-called Radon-Nikodym property ([G-M2], 
[G-M4]). 

2) The embedding of separable reflexive Banach spaces into reflexive spaces with 
basis (fZl). 

3) The existence of long sequences of projections and hence of locally uniformly 
convex norms in the duals of Asplund spaces. ([F-G]) 

We have chosen these problems because—as we are going to show in this paper—their 
solutions turned out to be closely related. Indeed, the solution of 3) is based on a recent 
selection theorem due to Jayne and Rogers [J-R], while for problem 2), Zippin devised 
an ad-hoc method for selecting points in certain weak*-compact subsets of dual Banach 
spaces and asked (in the first version of his paper) whether a general selection principle 
can be established in a non-linear setting. We later realized that the slicing methods (and 
the disguised selections) used in [G-M2] and [G-M4] to deal with problem 1) can be 
used to answer Zippin's query which, in turn, contains the selection result of Jayne and 
Rogers. 

We refer to that selection—in Theorem (A) below—as the Dessert selection because 
as we shall see later, the point that is selected in a set K, will be—roughly—the one 
that corresponds to "the last bite" of K, in some well ordered procedure of "eating up" 
the whole space. We then consider what happens if we choose to select the point that 
corresponds to "the first bite". In that case we obtain what we called The Hors-d'œuvre 
selection which is in some sense "dual" to the Dessert selection. 

The Hors-d'œuvre selection turned out to be the appropriate extension of the classical 
selection theorems of Kuratowski and Ryll-Nardzewski [K-R]. In the bitopological set
ting, it can be chosen to select points of continuity relative to the set in question. In the 
convex compact setting (resp. in the Radon-Nikodym case, resp. in the Analytic Radon-
Nikodym case), it can be chosen to select extreme points (resp. strongly exposed points) 
(resp. plurisubharmonic barriers) from the closed sets. 
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In the first section of this paper, we introduce a general setting which allows us to cover 

many—already used—slicing procedures and from which we can prove the selection 

theorems discussed above. In section II, we deduce various classical selection results 

while in Section III, we give a streamlined proof of the theorem of Zippin mentioned 

above. 

I. The selection theorems. Let X be a topological space and let À be a metric on 

X. We shall say that X is A-fragmentable if for every non-empty closed subset F of X 

and every e > 0, there exists a closed subset G of X such that F \ G is non-empty and 

has a A-diameter less than e. We denote the class of non-empty compact subsets of X by 

%SX). The definition of a slice-upper (or lower) semi-continuous multivalued map will 

be given below. 

We shall start by stating the main results of this paper. 

THEOREM (A) (THE DESSERT SELECTION). Assume X is a topological space that is 
fragmentable by a metric A; then there exists a selection s: ^C(X) —> X such that: 

a) s(K) e Kfor every K <E 3C(X). 

b) IfKx C K2 ands(K2) <E Kx then s{Kx) = s(K2). 

c) If(Ki) is a decreasing net in ^C(X) and ifK — DiKi, then lim, A(s(Kf), s(K)) = 0. 

d)IfT is a slice-upper semi-continuous multivalued mapping from a metric space 

(Z, d) into ^C(X), then z —> s(r(z)) is a B aire-\ function from Z into (X, A). 

Furthermore, if(X, A) is a convex subset of a topological vector space, thenz->s(Y(z)) 

is apointwise limit of a sequence of continuous functions. 

Note that if (X, d) itself is a metric space and if we equip ^C(X) with the induced 

Hausdorff metric, the above theorem implies then that the selection map s: %{X) —• 

(X, A) is a Baire-1 map. 

For the next result, we shall denote by J-(X) the class of all A-complete subsets of X. 

THEOREM (B) (THE HORS-D'OEUVRE SELECTION). Assume (X,r) is a completely 
regular topological space that is A-fragmentable by a metric that induces a finer topology 

on X; then there exists a selection s* : ^T(X) —> X such that: 

a) For every F G ^T(X), s*(F) is a point of(r — ̂ -continuity relative to F. 

b) IfFi C F2 ands\F2) e Fx then s*(FY) = s*(F2). 

c) If(F() is an increasing net in !f(X) then ys*(Fi)j is A-Cauchy. Moreover, if F — A-

closure o/U/F/ is A-complete, then lirri; A(s*(Fi),s*(F)) — 0. 

d)IfT is a slice-lower semi continuous multivalued mapping from a metric space 

(Z, d) into *J-(X), then z —>• s* (r(z)) is a Baire-1 function from Z into (X, A). 

Furthermore, ifX is a convex subset of a topological vector space, then z —> s*\F(z)) is 

apointwise limit of a sequence of continuous functions. 

THEOREM (C) (THE ÏNJECTIVE SLICING). Assume X is A-fragmentable, then there 

exist a totally ordered space B and a map (p:X —> B such that: 
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a) p is one to one and upper semi-continuous (i.e. Xs = {p > s} is closed for 

every s G B). 

b) For K G ^(X), <p achieves its maximum at a unique point in K, equal to the 

dessert selection s(K). 

c) When t decreases to s in B, the A-diam ofXs \ Xt tends to zero. Hence the inverse 

mapping of <p is right-continuous. 

Assume in addition that (X,r) is completely regular and that (X,A) is complete while 

defining a topology finer than r. Then, 

d) Every net (xt) in X such that (p(xt)) is decreasing is necessarily A-convergent to 

anx ÇzX that verifies p (x) = lim, p (JC/). 

e) For F G !F(X), p achieves its minimum at a unique point in F, equal to the Hors 

d'œuvre selection s*(F). 

For the next result, we recall that a Banach space Y is said to have the Radon-Nikodym 

Property (R.N.P) (resp. the Analytic Radon-Nikodym Property (A.R.N.P)) if every uni

formly bounded Y-valued martingale (resp. Analytic martingale) converges almost surely 

(See [B], [E] and [G-M4] for details). A point x in a closed bounded subset F of F is said 

to be strongly exposed (resp. a strong barrier) in F if there exists a continuous linear 

functional (resp. a Lipschitz plurisubharmonic function)/ such that every maximizing 

sequence for / in F converges necessarily tox (In particular/ attains its maximum on F at 

the points). Such a function/ is called a strongly exposing functional (resp. a plurisub

harmonic barrier). It is well known that closed bounded subsets of spaces with the R.N.P 

(resp. A.R.N.P) have many strongly exposed (resp. strong Barrier) points. In the fol

lowing theorem we show that the selection of such points can be done in a measurable 

fashion. 

If 7 is a Banach space, we shall equip Y* with its natural norm. We denote by PSH(F) 

the convex cone of plurisubharmonic and Lipschitz functions on Y equipped with the 

following norm: 

M l = m a x { | ^ ( 0 ) | , s u p { | ^ W » ^ ) | / | | ^ - y | | \x^y}). 

Let BP(Y*) = {y* G F* ; | | / | | < p} andPSHp(F) = {p G PSH(F) ; | M | < p } . 

In Section 1.7 we shall prove a result that implies the following. 

THEOREM (D) (EXTREMAL SELECTIONS). Let X be the unit ball of a real (resp. 
complex) Banach space Y with the Radon-Nikodym (resp. the Analytic Radon-Nikodym) 

Property. Let J-(X) denote the class of closed subsets ofX. Then there exist a selection 

s*: f(X) -^Xanda Baire-1 map r:X-^B{(Y*) (resp. r:X —> PSH!(Y)) such that: 

a) For every F G ^F(X), s*(F) is strongly exposed in F by r(s*(F)\ 

b) IfFi C F2 ands*(F2) G F} then s*(Fi) = s*(F2). 

c) If(F() is an increasing net in J-(X) and if F = norm-closure o/U/F, , then s*(Fi) 

converges to s*(F). 
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d)IfT is a slice-lower semi-continuous multivalued mapping from a metric space 

(Z, d) into J-{X), then z —• W r ( z ) j is a pointwise limit of a sequence of contin

uous functions. 

Suppose n o w / is a bounded below lower semi-continuous function on a complete 

metric space (X, A). A well known theorem of Ekeland [Ek] asserts that for any e > 0 

and any closed subset F of X on which/ is not identically +00, there exists a point XQ G F 

that minimizes the function/ + eA(xo,. ) on F. Such a point will be called an e-Ekeland 

point for f on F. In the following theorem, we show that the selection of Ekeland points 

from the closed subsets of X can be done in a measurable fashion. In the sequel, we shall 

denote by Jy(X) the class of non empty closed subsets of X on which / is not identically 

+00. 

THEOREM (E) (THE OPTIMAL SELECTION). Let (X, A) be a complete metric space and 

let e be a strictly positive real number Then, for every lower semi-continuous function 

f: X —• [0, +00], there exists a selection si : Jy(X) —• X such that: 

a) For every F G Jy(X), sUF) is an e -Ekeland point for f relative to F. 

b) IfFx C F2 ands}(F2) G Fx then s}(F{) = s}(F2). 

c) Ifift) is a decreasing family ofis. c functions from X into [0, +00] and iff is the 

l.s.c envelope of inf if, then for any F G 9y0(X), the net sUF) converges to sUF). 

d) Iff is continuous and if(F() is an increasing net in 9y(X), then s*(Fj) converges 

to sUF), where F = A-closure o/U/F/. 

e) IfT is a slice-lower semi-continuous multivalued mapping from a metric space 

(Z, d) into JyiX), then z —> s* (r(z)) is a Baire-\ function from Z into X. 

Furthermore, ifX is a convex subset of a topological vector space, then z —> s^\T(z)) is 

a pointwise limit of a sequence of continuous functions. 

In the process of proving the above theorems we shall introduce and discuss various 

concepts which may have an independent interest. 

LI. Slicings. Let X be a topological space. A slicing ofX is a mapping/ : X —•» A 

where A is a totally ordered set and where / is upper semi-continuous (u.s.c) in the sense 

that for every a £ A, the set Xa = { x G X \f{x) > a } is a closed subset of X. 

REMARKS 1.1.1. With the above definition we have: 

a) Either PiaXa = 0, or/(X) has a greatest element. 

b) For every non-empty compact subset K of X , / achieves its maximum on K. 

Indeed a) is obvious while to prove b), it is enough to consider / = f(K) and to notice 

that { Kt — K H Xi ; / G /} is a decreasing family of non-empty compact subsets of 

X, therefore the intersection L of this family is non-empty. It is then clear that/(x) = 

max/(/T) for every x G L. 

If a and (3 in A are such that no 7 in A satisfies a < 7 < (3, we say that (3 is the 

successor of a in A. When no confusion can occur we denote this (3 by a + 1. 
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If every element in A has a successor, we see that the set {/ > a } = {/ > a + 1} 
is closed. We shall say that/:X —» A is a discrete slicing if for every a E A, the set 
{/ > a } is a closed subset of X. This set {/ > a } will be also denoted by Xa+. 

We say that fis a well-ordered slicing if A is well ordered (w.o slicing in short). For 
a discrete slicing it might be easier to think about the difference sets Da — Xa \ Xa+ — 
{/ = a } . It is clear these difference sets cover X and determine completely the slicing 

/• 

REMARK 1.1.2. In every case (discrete, w.o) we may assume the difference sets non
empty by replacing A by/(X). 

Products of slicings. Iff: X —> A is a discrete slicing and g: X —•> B a slicing, we may 
consider the slicing/ x g: X —> A x B where A x B is equipped with the lexicographic 
order. Indeed, if (oc,(3) G A x B, the set {x £ X ; / x g(;t) > (a,/?)} agrees then with 
the closed set { / > a} U ( { / > a} n { # > £ } ) . 

If g is also discrete, then/ x g is discrete and the difference sets are given by /)(«,/?) = 
Dan Dp — {/ = a } n {g = /? } .If both are w.o slicings then/ x g is a w.o slicing. 

REMARK 1.1.3. Let / : X —• A be a discrete slicing of X and g: X —> B a mapping 
from X into a totally ordered set B. If the restriction of g to every difference set {/ = a } 
defines a slicing (resp. discrete slicing) of {/ = a} then/ x g is a slicing (resp. discrete 
slicing) of X. 

1.2. Slice-generating classes of sets. Let C be a class of subsets of X. We say that 
C is slice-generating if for every non-empty closed subset F of X, there exists a closed 
subset G of X such that F \ G is non-empty and belongs to C. 

PROPOSITION 1.2.1. Assume that C is hereditary. Then C is a slice-generating class 
if and only if there is a well ordered slicing f ofX with difference sets (Da )aEj\ belonging 
toC-

PROOF. Assume first that / : X —• A is a well ordered slicing with difference sets 
A* = {/ = OL } belonging to C. If F is a non-empty closed subset of X, let a be the 
smallest element of/(F) and G = Xa+\ = {/ > a +1}. We have that F \ G is non-empty 
and contained in Da, thus F\ G belongs to C since the latter class is hereditary. 

The other direction will be proved by a standard transfinite argument. The 
well-ordered set A will be some ordinal. We define by transfinite induction a decreas
ing family (Xa)a of closed subsets of X, for a ordinal, in the following way: 

a) Xo = X 
b) If a — (3 + I and Xp is non-empty, let Xa — G where G is a closed subset of X 

such that Xp \ G G C is non empty. 
c) If a is a limit ordinal, let Xa = r\p<aXp. 

There exists some ordinal 7 such that X7 = 0. We let A = [0,7) and define/ as 
follows: 
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For i G I , let a(x) be the smallest a such that x £ Xa. By condition c), a must 
be a successor, say a = /3 + 1; we set/(x) = /3. The difference sets for/ are the sets 
Xp \ Xp+\, hence they belong to C. 

1.2.2. Examples of slice-generating classes. 1 ) The typical example of a slice-generating 
class of sets appears when we have a topological space X that is fragmentable by a metric 
A. In this case, the class C£ of all subsets of X of A-diameter less than e is slice-generating 
for every e > 0. According to Proposition 1.2.1, there exists for every e > 0 a w.o. 
slicing/£ of X with difference sets of A-diameter less than e. 

The most trivial case is when the metric A generates the topology r of X {i.e. X is a 
metric space) while the most general case corresponds to when the identity Id: (X,r) —• 
(X, A) is a Baire-1 map. Here are some examples: 

a) If X is the unit ball of a Banach space equipped with the weak topology, then it will 
be fragmentable by the norm if the space has the so-called Point of Continuity Property 
(P.C.P). This happens for instance when the space is reflexive [E-W], [G-Ml]. 

b) If X is the unit ball of a dual Banach space equipped with the weak*-topology, 
then it will be norm-fragmentable if it has the Radon-Nikodym Property (R.N.P). This 
happens for instance when X is norm separable [B]. 

f-Slice-generating classes of sets. In many cases the sets Xa of our slicing may belong 
to a special subclass of closed sets. For example 

i) If (X, A) is a metrizable convex compact subset of a locally convex topological 
vector space, then for each e > 0, the class is slice-generating. See for exam
ple [G-M3]. In that case, it is possible to produce a "convex compact slicing" 
(The Xa 's are convex and compact), 

ii) More generally, if X is a closed convex bounded Radon-Nikodym subset of a 
Banach space E equipped with the weak topology then the class 

S£ = [S ^ 0 ; diam(S) < e, S = FH {I > 0} } 

where F is closed convex and £ G E* + R is also slice-generating [B]. In that 
case the Xa 's are closed and convex, 

iii) If X is a closed bounded subset of a quasi-Banach space with the Analytic Radon-
Nikodym property (A.R.N.P) equipped with the quasi-norm, then the class 

S£ - [S ^ 0 ; diamOS) < e, S = FH {£ > 0}} 

where F is closed and I plurisubharmonic is also slice-generating [G-M5]. In 
that case the Xa 's are closed and pseudoconvex (i.e. an intersection of a family 
of sets of the form { <p > 0} with <p belonging to PSH(X). 

To exploit this additional information about a slicing, one can easily adapt the results 
of this section to the following framework: 

Let J be a class of closed subsets of X, containing X and stable by intersection, and 
let C be a class of subsets of X; we say that C is J -slice-generating if for every non 
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empty F G 7, there exists G E 7 such that F \ G is non-empty and belongs to C- We 

may also say that a slicing/ of X is an ^/-slicing when all sets {/ > a } belong to f. 

J -derivations. The notion of ^F-slice generating class of subsets of X is not precise 

enough to deal with the extremal selections of Theorem (D). We introduce for this pur

pose the notion of 7-derivation on X; we call ^/-derivation on X, a multimapping D 

that associates to every non-empty subset F G f a non-empty class D(F) of subsets E 

of F in such a way that every E G D(F) vérifies E G 7 and E ^ F. It is easy to see a 

connection between this notion and ^T-slice generating classes: if D is an ^/-derivation, 

then C — {F\E;FeJ:,EE D(F)} is an ^/-slice-generating class. Conversely, if C 

is an j / - slice generating class, we get a derivation D\ by setting 

/ ) i ( F ) = { G c F ; G G / and tt^ F\GeC} ; 

unfortunately, if we apply these two steps successively, we don't get in general that D\ = 

D. 

The proof of Proposition 1.2.1 extends with essentially no change to this setting, and 

yields the following: 

PROPOSITION 1.2.3. Let D be an /-derivation on X. Then, there exists a w.o J-

slicing/ ofX such that Xa+\ G D(Xa)for every a. 

In particular, if C is an J-slice generating class of subsets ofX, then there exists a 

w.o 7-slicing f ofX such that every difference set belongs to C. Conversely, if such a 

slicing f exists, then the class *D consisting of all subsets of elements of C is J-slice 

generating in X. 

It is clear that in example i) (resp. ii), resp. iii)) mentioned above, 7 can be taken to 

be the class of convex compact (resp. convex closed, resp. pseudoconvex closed) sets 

and that natural ^/-derivations can be associated to these examples. 

Slice-constant functions. We say that a function h from X into an arbitrary set Y is slice-

constant if there exists a discrete slicing/: X —» A of X with difference sets (Da)aeA on 

which h is constant. According to Proposition 1.2.1, that happens for instance if the class 

C of subsets of X on which h is constant is slice- generating. 

We say that a function between two topological spaces X and Y is Baire-l when the 

inverse image of every open subset of Y is an Fa subset of X. 

LEMMA 1.2.4. Assume that X is a metric space, then any slice-constant function 

h from X into a topological space Y is Baire-l. Moreover, if Y is a convex subset of 

a topological vector space, then h is the pointwise limit of a sequence of continuous 

functions from X to Y. 

PROOF. For the first assertion, l e t / : X —• A be a discrete slicing of X such that h 

is constant on the difference sets Da = {/ = a } . Clearly it is enough to prove that 

every union Z = Uae/Da (where / is contained in A) is an Fa in X. For every n > 0 
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consider Dn
a = {x G Da ; d(x,Xa+) > 2~n]. Then Zn = U a 6 / D £ is closed; indeed 

if fa) is contained in Z" and Xk tends to x, we get that/(x^) < f(x) for k > ko, since 

x £ Xf(x)+. Now if 2~n < d(xk,XfiXk)+) < d(xk,Xfix)+) we get that d(x,Xf(x)+) > 2~n and 

hence x EZ1. Since Z = U^Z" , it follows that Z is an Fa in X. 

For the second assertion, consider for every n > 0 the set 

Un
a = {xeX; d(x,Xa) < 2-n)}\Xa+l. 

This open set contains Da and therefore (£/£) is an open covering of X. Since X is para-

compact, we may find a partition of unity ((/?£) such that ipn
a vanishes outside Un

a. If ya 

denotes the constant value of h on Da, consider hn{x) = Xae4 ipn
a (x)ya. It is easy to check 

that /zn(x) = h(x) when ft > n(x). 

1.3. Two partial selections associated to a slicing. 

The last bite. L e t / be a fixed discrete slicing of X. Recall that %{X) denotes the class 

of non-empty compact subsets of X. 

For every K G ^C(X) we know tha t / achieves its maximum on K (Remark 1.1.1 ). We 

define 

ind(*0 = m a x / ( £ ) mdL(K) = KD Xa, where a = ind(K). 

Note that we also have that L(K) = Kn(Xa\ Xa+) = KH Da. 

PROPOSITION 1.3.1. Letf be a discrete slicing ofX. Then 

a) L(K) is a non-empty compact subset ofK. 

b) K\ C K2 implies that ind(K\) < ind(^2)-

c) IfK\ is contained in K2 and x G K\ D L(A^), then ind(ATi) = indCA^) and x G 
UK{)CL(K2). 

d) Iff is a w.o slicing and if (K[) is a decreasing net in %{X) with intersection 

K — PiiçiKj, then i nd (^ ) becomes eventually constant. It follows that L(Ki) is 

eventually decreasing and that there exists /Q such that L(Pl/AT/) = n/>/()L(AT/). 

PROOF. The first two assertions are obvious. To prove c), it is enough to notice that 

md{K2) =f(x) < m a x / ^ i ) which implies that i n d ^ i ) = ind(K2) and x G L(K\). 

For d), assume that (Ki)iei is a decreasing net and that / : X —-> A is a w.o slicing 

of X. Let i\ G / and let /Q G / be such that ao = ind(A^0) is the smallest element of 

B = {ind(#/) ; 1 > M } . If i > k then ind(£,-) < ind(Kk) and hence ind(Jf,-) = a(). It 

follows that for / > /o, L{Ki) = Kt D Xao, and the rest is straightforward. 

The first bite. L e t / be a fixed w.o slicing of X. For every set F, define 

ind*(F) = inf/(F) a n d L \ F ) = F\ Xa+l, where a = ind*(F). 

Note that we also have L*(F) — F Pi Da. 

The proof of the following proposition is similar to the preceding one and is left to 

the interested reader. 
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PROPOSITION 1.3.2. Letf be a w.o slicing ofX. Then 

a) For any non-empty subset F ofX, L*(F) is a non-empty subset ofF. 

b) Fx C F2 implies thatind*(F{) > ind*(F2). 

c) If F\ is contained in F2 and x G F\ Pi L*(F2), then ind*(Fj) = ind*(F2) and 

xGL*(F0cL*(F2) . 
d) If (Ft) is an increasing net of subsets ofX, then find* (F;)) becomes eventually 

constant and (L*(Fm becomes eventually increasing. 

Slice-u.s.c and l.s.c multimappings. Now let T be a multimapping from some topological 

space Z intoX. Recall that T is said to be upper (resp. lower) semi-continuous if for every 

closed subset F of X, the set {z G Z ; F(z) H F ^ $} (resp. {z G Z ; F(z) C F}) is 

closed. 

We shall say that T is slice-upper semi-continuous (resp. slice-lower semi-continuous) 

if there exists a discrete slicing g:Z—>B such that the restriction of F to every difference 

set of g is u.s.c (resp. l.s.c). This is the case for example when the class of subsets Y 

of Z such that the restriction of F to Y is upper (resp. lower) semi-continuous is slice-

generating in Z. 

LEMMA 1.3.3. Let Z be topological and let F be a slice-upper semi-continuous mul

timapping from Z into 9(j(X). Then the function z —> indfr(z) ) is slice-constant, and the 

multimapping z —> L(F(z)) is slice-upper semi-continuous. 

PROOF. Let g: Z —> B be a discrete slicing such that F is u.s.c on every difference 

set Ep. Then (p(z) = ind(r(z)) defines a discrete slicing of Ep, for every f3 G B. This 

is because {(f > a} (1 Ep — {z G Ep ; F(z) Pi Xa ^ 0} is a closed subset of Ep 

and similarly for { <p > a}. Using Remark 1.1.3 we know that g x if defines a discrete 

slicing of Z. We see then that (p is slice-constant on Z. On a difference set Dp,a = { g — 

(3} n{(p = a} we have z G Ep and L(F(Z)) = F(z) H Xa, thus z —> L(F(Z)) is u.s.c 

on D(p,a). 

LEMMA 1.3.4. Assume that X is equipped with a w.o slicing. Let Z be topological 

and let F be a slice-lower semi-continuous multimapping from Z into the subsets ofX. 

Then the function z —> ind*(T(z)J is slice-constant, and the multimapping z —• L*[F(z)j 

is slice-lower semi-continuous. 

PROOF. AS above let g: Z —> B be a discrete slicing such that F is l.s.c on every 

difference set Ep. Then (p(z) = ind*(r(z)) defines a discrete slicing of Ep, for every 

(3 G B. This is because {tp > a} D Ep = {z G Ep ; F(z) C Xa} is a closed subset 

of Ep and similarly for { (p > a}. Using Remark 1.1.3 we know that g x (p defines 

a discrete slicing of Z. We see then that (p is slice-constant on Z. On a difference set 

Dp a = {g = (5) H {(^ = a } , we have z G £ ^ and L*(r(z)) = T(z) \ Xa+U thus 

z —> L*(r(z)) is l.s.c on D{pA). 

https://doi.org/10.4153/CJM-1992-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-031-6


492 N. GHOUSSOUB, B. MAUREY AND W. SCHACHERMAYER 

1.4. Two selections associated to a fragmentation. Suppose that X is a topological 
space and let A be a metric on X. We shall call fragmentation of X any sequence of 
w.o slicings (fn)n of X such that for every integer n the difference sets of the slicing fn 

have A-diameter less than 2~n. If each/„ is also an ^F-slicing, we shall call it then an 
J-fragmentation ofX. 

The dessert selection associated to a fragmentation (fn)n. Let Ln be the partial selection 
operator associated with/n. Define inductively a sequence of operators on %{X) by 

So(K) = K and Sn+l(K) = Ln+X (Sn(K)). 

Then for every n, Sn(K) is compact, non-empty and contained in some difference 
set for/n, hence has A-diameter less than 2~n. Furthermore, this sequence (Sn(/Q) is 
decreasing. It follows that nnSn(K) contains exactly one point, which we will denote by 
s(K). The function s: %{X) —> X will be called the dessert selection associated to the 
fragmentation (fn)n. 

The hors d'oeuvre selection associated to a fragmentation (fn)n- Recall that !f(X) denotes 
the class of all A-complete subsets of X. Let now L* be the first-partial selection operator 
associated withfn. Define a sequence of operators on J-{X) by 

S0(F) = F and S*n+l(F) = L*n+l (S*(FJ). 

Then for every n, S*(F) is non-empty and contained in some difference set for/„, 
hence it has a A-diameter less than 2~n. Furthermore, this sequence (S*(F)) is decreasing. 
If S*(F) denotes the A-closure of (S*(F)), it follows that nnS*(F) contains exactly one 
point that belongs necessarily to F and which we will denote by s*(F). The function 
s*: !f(X) —> X will be called the hors-d'oeuvre selection associated to the fragmentation 

(fn)n. 

PROOF OF THEOREM (A). Assume that X is fragmentable by the metric A, then—as 
mentioned above—the class Q of all subsets of X of A-diameter less than e is slice-
generating for every e > 0. According to Proposition 1.2.1, there exists for every integer 
n a w.o. slicing/^ of X with difference sets of A-diameter less than 2~n. Let s: %{X) —• X 
be the dessert selection associated to the fragmentation (fn)n. We shall now verify that s 
satisfies the properties announced in Theorem (A). 

a) is clear. 
To proveb) assume that s(A^) G K\ and K\ C A .̂ Then, according to Proposition 1.3.1 

d), we have s(K2) G Li(tfi) C L\{K2\ hence s(K2) G L2(S](K2)) and S\(K{) C S\(K2). 
By an inductive application of that observation, it follows that s(K2) G Sn(K\) C Sn(K2) 
for every n > 1, therefore s(K2) = s(K\). 

c) If (Ki)iei is a decreasing net in ^C(X) with intersection K, we prove inductively 
using Proposition 1.3.1 c) that for every n > 1 there exists in such that / > in yields 
that ind„(S,i_i(#/)) = màn{Sn-\(K), that (5„(^-)) is decreasing for / > /„ and that 

https://doi.org/10.4153/CJM-1992-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-031-6


SLICINGS, SELECTIONS AND THEIR APPLICATIONS 493 

r\i>i„Sn(Kd — Sn(K); it follows that for / > in, s(Ki) and s(K) belong to the same differ
ence set for/„, and therefore A(s(Ki), S(K)) < 2~n. 

d) We see by induction, using Lemma 1.3.3 that gn:z —* indn(Sn-\(T(z)) is slice-
constant and that z —> Sn(T{z)) is slice-u.s.c for every n > 1. Let JĈ  be an arbitrary 
point in {/„ = a} provided this latter set is non-empty. Then hn(z) — x*1 ,z) is slice-
constant, thus a Baire-1 function, in view of Lemma 1.2.5. Moreover, these functions 
converge A-uniformly to s(r(z)) since fn(hn(z)) — gn(z) = fn(s(T(z))) implies that 
A(hn(z)9s(r(z)))<2-\ 

In the following, we show that fragmentability is essentially a necessary condition for 
the existence of dessert selections. 

PROPOSITION 1.4.1. Let (X, d) be a complete metric space and suppose that for some 
metric A > d there exists a selection s: ^C(X) —• X such that for any sequence (Kn)n 

in %iX) that decreases to a singleton {x} we have that lim„ A\s(KnJ,x) = 0. Then the 
identity map (X, d) —> (X, A) is a Baire-1 function and therefore (X, d) is A-fragmentable. 

PROOF. It is enough to show that for every compact K C (X, d) that is homeomorphic 
to { —1,-1-1} N, the restriction id: (K, d) —> (K,A) is a Baire-1 map, since then we get 
from standard Baire theory that the inverse mapping will have a residual set of points of 
continuity, which will clearly imply that (X, d) is A-fragmentable. 

For each n and for any sequence {e\,...,en) G { — 1,1} n denote by F£u_tEn the set 
{ r e { - l , l } N ;tt = ehi= l,...,rc} . 

It is now enough to notice that the functions /„: (K, d) —* (K, A) defined by 

(ei e f I)e{-l,+l}" 

are continuous and that the hypothesis implies their pointwise convergence to the iden
tity. 

1.5. Strong fragmentability. In order to prove the other theorems we are going to 
use a slightly stronger hypothesis than the A-fragmentability of X. First we note that for 
any fragmentation (fn)n, we can associate a decreasing fragmentation (gn)n by just taking 
gn — f\ xf2 x • • • x/«. It is clear that the dessert (resp. the hors-d' œuvre) selections as
sociated to the fragmentations (fn)n and (gn)n are identical. Hence (unless we are dealing 
with ^F-slicings) we can always assume that a fragmentation consists of a decreasing se
quence of slicings. However, for the remaining results, we shall need a slightly stronger 
notion of fragmentablity that will help us choose fragmentations with some control on 
the way two consecutive slicings are related. 

This hypothesis—that we shall call (SF) (for A-strongly fragmentable)—will read as 
follows: 

(SF): A defines a finer topology on X in such a way that for every pair F, H of closed 
subsets of X such that F \ H is non-empty and for every e > 0 there exists a closed 
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subset G of X such that F\ G ^ 0, has À-diameter less than e while its A-closure is 
disjoint from//. 

Here are some examples where we have strong fragmentability: 

EXAMPLE 1.5.1. If X is a completely regular space that is fragmented by a metric 
which induces a finer topology on X, then it is clear that hypothesis (SF) is satisfied. 

If for example X is the unit ball of a Banach space with P.C.P, equipped with the weak 
topology, then X verifies (SF) with respect to the norm. 

More generally, if F̂ is a class of closed subsets of X, containing X and stable by 
intersection (as in 1.2.4), we may define the following property: 

(SF-^F): À defines a finer topology on X in such a way that for every pair F, H of sets in 
f such that the set F \ / / i s non-empty and for every s > 0 there exists a set G G J 
such that F \ G ^ 0, has A-diameter less than e while its A-closure is disjoint from //. 

EXAMPLE 1.5.2. If X is the unit ball of a Banach space with R.N.P (resp. A.R.N.P) 
and if F̂ is the class of closed convex (resp. closed pseudoconvex) subsets of X, then X 
verifies (SF-^F) (see Section 1.7 for the details). 

Let us discuss some consequences of (SF). 

PROPOSITION 1.5.3. Let X be a topological space and let J be a class of closed 
subsets ofX stable by intersection and containing the whole space X. Assume X verifies 
(SF-jFj with respect to a metric A. Then, there exists a fragmentation (fn)n of f-slicing s 
ofX with difference sets in classes (Cn)n that verify the following property: 

For each n, the class Cn+\ consists of subsets C ofX on which fn is constant equal to 
a(C) = a say, and such that the A-closure of C is disjoint from {fn > a + 1}. 

PROOF. Assume that/„ is a given w.o ^-slicing of X. It follows from (SF-^F) that the 
class Cn+\ of all subsets C of X with A — diam(C) < 2 -""1 , on which/„ is constant equal 
to a(C) = a say, and such that the A-closure of C is disjoint from {fn > a + 1}, is ^F-
slice-generating . Indeed, it is enough to apply (SF-^F) to F, and H = {fn > a} where 
a — inffn(F) to obtain C = F\ G contained in {/„ = a}, with A-diameter less than 
2~n~l and whose A-closure is disjoint from {/„ > a} . It follows from Proposition 1.2.1 
that we can choose for/n+i a slicing such that all difference sets belong to Cn+\-

A fragmentation verifying the conclusion of the above proposition will be called a 
strong J-fragmentation. For the sequel, we shall repeatedly use the following property 
enjoyed by a strong fragmentation. 

LEMMA 1.5.4. Assume X verifies (SF-^F) with respect to a metric A and let (fn) be 
a strong fragmentation ofX, then for any sequence (JC*) in X such that lim^ A(xk,x) — 0 
andfn+\(xk) = (5 for every k, we have thatfn(Xk) is also constant and equal tofn(x). 

PROOF. Indeed, by the above construction the set {/„+i = f3 } is contained in some 
difference set {fn — a}, thus (/nta)), is constant. We obtam/n(x) > a since {/„ > a} 
is A-closed. On the other hand, since the A-closure of {fn+\ = (3 } is disjoint from {/„ > 
a } , we get that/„(x) < a. 
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PROOF OF THEOREM (B). We let (fn)n be a strong fragmentation of X and we consider 
the hors-d 'œuvre selection s* : !F(X) —• X associated to it. If L* is the first-partial selection 
operator associated with /„ and if (5*) the sequence of operators on !F(X) defined in 
Section 1.4 by 

S0(n = FmdS:+l(F) = L:+l(S*n(F)) 

then for every F G J-{X), the sequence S*(F) is "strongly decreasing ", that is S*+l(F) C 
S*(F) for every n. Furthermore, we have that P\nS*n(F) = s*(F). We shall now show that 
s* satisfies the properties a), b), c) and d) announced in Theorem (B). 

a) It is enough to notice that for every F, s*(F) has a fundamental set of 
r -neighborhoods (relative to F) of arbitrarily small A-diameter. 

b) assume that s*(F2) G F\ and F\ C Fi. Since (fn) is a strong fragmentation, we have 
that s\F2) G L*(F2). According to Proposition 1.3.2 d), we have that s*(F2) G L\(FX) C 
L\(F2), hence s*(F2) G L*(5*(F2)) and Sf(Fi) C S*(F2). By an inductive application of 
that observation, it follows that s*(F2) G S*(F\) C S*(F2) for every n > 1, therefore 
s*(F2) = s*(F{y 

c) If (F/)jG/ is an increasing net in J-(X), we can prove inductively using Proposi
tion 1.3.2 c) that for every n > 1 there exists /„ such that j > i > in yields that 
m^{srn_x{Fi)) = màliS^Fj)) and that (^(F,-)) is increasing for / > in; it follows 
that for j > / > /„, s*(F() and s*(Fj) belong to the same difference set for/„, and there
fore A(s*(Fi),s*(Fjj) <2~n. 

If now F — U/F/ is A-complete, then for every n, there is in such that for every / > /„, 
we have s*(F) G S*(F) C S*(UiFt) C U/>,-„5;(F|). This clearly implies that s*(F) is the 
limit of 5*(F/). 

d) We see by induction, using Lemma 1.3.4 that gn:z —-»• ind*(5*_j(r(z)) is slice-
constant and that z —+ S*(T(zj) is slice-l.s.c for every n > 1. L e t ^ be an arbitrary point 
in {/„ = a} provided, of course, this latter set is non-empty. Then hn(z) = tf1

 {7) is slice-
constant, thus a Baire-1 function, in view of Lemma 1.2.4. Moreover, these functions 
converge A-uniformly to s*(r(z)) since fn(hn(z)) = gn(z) = fn(s*(T(z))) implies that 
A(hn(z),s*{nzj))<2-». 

REMARK 1.5.5. The above proof shows that if F is A-complete, then s* selects the 
same point for F and for its r -closure in X. 

1.6. Injective slicing associated to a fragmentation. Suppose again that X is a 
topological space and that A is a metric on it. Let (fn)n be a fragmentation on X. For 
every integer n, let An be the w.o set associated to the slicing/„ . Consider the product 
Bn = A\ x • • • x An with the lexicographic order. It is not hard to realize that the operator 
Sn defined in 1.4 is the partial selection operator associated with the slicing f\ x • • • x/„. 
Denote by 0 the smallest element of each An, by B the infinite product A\ x • • • x An x • • • 
equipped with the lexicographic order and embed Bn in B by adding 0 after the n-th place. 
Now (fn = f\ x • • • x fn will be considered as a slicing of X with ordered set B\ we also 
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have a slicing <p = f\ x • • • x /„ x • • • that we shall call the injective slicing associated 
to the fragmentation (fn)n. 

PROOF OF THEOREM (C). Since X is A-fragmentable, we can proceed as in Theo
rem (A) to get a fragmentation (fn)n. Let now (p be the injective slicing associated to (fn)n. 
We shall prove that it verifies the assertions claimed in Theorem (C). 

a) If (f(x) = <p(y) then/n(x) = fn(y) and hence A(x,y) < 2~n for every n. 

b) Since (p is a slicing of X, cp achieves its maximum on every compact K G %{X). 
This maximal point is necessarily unique since <p is one to one. 

c) Let s G B, s = (s\,S2, • • • ,sn,...) and tn = (s\,S2, • • • iSn-\,sn + 1,0,0,...) where 
sn + 1 denotes the successor of sn in An. If s < t < tn and x, y G Xs \ Xt then s < 
(p(x),(p(y) < t < tn implies that/rt(x) = fn(y) and A(x,y) < 2~n. It follows that if 
(y>(xi)) is a decreasing net in B, then (xt) is A-Cauchy in X. 

d) Suppose now that X is completely regular and that A induces a finer topology on 
X. This clearly implies that hypothesis (SF) is satisfied and hence by Proposition 1.5.3, 
we can find a strong fragmentation (fn)n. Let (p be the injective slicing associated to 
(fn)n- If n o w (<^(•*/)) is a decreasing net in B, we let s be its greatest lower bound in B, 
s = (s\,S2,...,sn,...). We know already that (xt) is a A-Cauchy net in X. If (X,A) is 
complete, this net converges to some JC G X. For / > /„, we have that/„(*/) is constant, 
equal to sn. It follows from Lemma 1.5.4 that/„(x) = sn. Since this is true for every n > 1, 
we conclude that <p(x) — s. 

Finally e) follows immediately from d). 

REMARK 1.6.1. If X is the unit ball of a separable dual Banach space, the sets Bn are 
then countable and one can choose B order isomorphic to [0,1]. One may then perform 
the construction in such a way that <p: X —y [0,1] is u.s.c, onto, quasi-concave, and with 
a right continuous inverse. 

1.7 Extremal and optimal selections. This section is devoted to the proof of Theo
rems (D) and (E). To avoid repetition we shall work in the following general framework: 

Let (X, A) be a complete metric space and let A be a set of A-Lipschitz real-valued 
functions on X equipped with a metric S that is at least as strong as the metric of uniform 
convergence on X. We shall assume that (31,6) is complete. 

For F C X, (p G Si and t > 0, we shall write 

S(F, <p91) = {x G F ; Lp(x) > sup y(F) - t}. 

Let us say that (X, A) is ^-uniformly dentable if for every non-empty set F C X, the set 
of ip G Si such that lim,JO A - diamS(F, <p, t) — 0 is dense in Si. 

A point x in a closed subset F of X is said to be Si-strongly exposed in F if there exists 
(p G Si such that every maximizing sequence for cp in F converges necessarily to x. (In 
particular (p attains its maximum on F at the point JC). Such a function ip is called strongly 
exposing. 
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If we denote by J the class of subsets of X that are intersections of families of sets 

of the form { (p < 9 } with <p belonging to Si and 9 G R, it is easy to see that if (X, À) 

is Si-uniformly dentable then for every e > 0, the class C£ of sets of the form S(F, ip,t) 

and whose A-diameter is less than e is an ^F-slice generating class. 

THEOREM 1.7.1. Let (X, A) be a complete metric space that is Si-uniformly dentable. 

Let SF{X) denote the class of non empty closed subsets ofX. Then there exists a selection 

s*: !f(X) —y X and a Baire-1 map r.X —• Si such that: 

a) For every F G SF(X), s*(F) is strongly exposed in F by r(s*(F)\ 

b) IfFx C F2 ands*(F2) G Fx then s\Fx) = s*(F2). 

c) If (Fj) is an increasing net in !f(X) and if F = A-closure o/U/F/, then s*(F() 

converges to s*(F). 

d)IfT is a slice-lower semi-continuous multivalued mapping from a metric space 

(Z, d) into SF(X), then z —> s*\T(z)) is a Baire-1 function . Furthermore, if(X, A) 

is a convex subset of a topological vector space, then this map is the pointwise 

limit of a sequence of continuous functions. 

PROOF. If / is a discrete slicing of X, we shall say that a function <p on X is f-

measurable if <p is constant on the difference sets off. 

We shall construct inductively sequences {Din\fn,p
{n\ein)) where D{n) is an 

^T-derivation,/„ a w.o slicing of X adapted to D(n) (in the sense of 1.2), p{n) is an/„-

measurable function from X to SA and e{n) an fn-measurable positive function on X. 

Start with any <po £ Si. Assuming (D^n\fn, (pin\ £{n)) already constructed, we shall 

explain how to pass to the (n + l)-th step. For F G f , D{n+l)F will consist of all subsets 

of F of the form F D {i/j <6} verifying the following properties: 

i) ^ ^ Si, S = FD {i[) > 6} is non-empty and its A-diameter is less than 2~n~x. 

ii) If a = ind*(F), then sup{ -0 (y) ; fn{y) > a + 1} < 0. Thus S is contained in the 

difference set {fn = a}. 

iii) 6 ( 0 , (p(n)(xj) < £(n\x) for every x e S. 

We shall show first that the class D^n+]^F is non-empty whenever F G Sf is non-empty, 

that is D(n+l) is an ^F-derivation. 

For that let a = ind*(F) and let p G A be the constant value of (p{n) and e > 0 the 

constant value of e(n) on the difference set {fn = a}. For every n and any ordinal a, we 

denote by X^} the set {/„ > a } . 

By construction, X ^ , = X%] n { p < 0 } for some 6. Since FP\{(p> 6} is non

empty, we deduce that sup <p(F) = r > 0. Since X is J^-uniformly dentable, there exists 

xjj G Si such that 

l imdiamS(F,é , t ) — 0 and 6(ib,(p) < min e, I. 
t[o I 4 J 

This implies that 

r„, „ T - 9 T+36 T - 9 T + 39 
s u p 0 ( X ( ^ 1 ) < ^ + - ^ — = —^— and a = sup^(F)>r — > — — . 
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It follows that for t > 0 small enough, the set S = F D { ty > a — t} is non-empty, its 
diameter is less than 2~n~\ supVK^ii) < cr - t, and<5(V, ^ ( n )W) < £(n)(x) for any 
x G S. Hence the set FH { ^ < 0" — t} belongs to D(n+V)F and D{n+X) is an ^-derivation. 

According to 1.2.3, there exists a w.o ^F-s\'ic'mgfn+\ ofX such that for every /?, XQ+
+\ G 

D(n+1)(X^+1). This means that for every /?, 

{/«+i > /3 + 1} = {/n+i > 0} H { ^ < 0/*} 

where properties i), ii) and iii) are satisfied. 
Define <^(/I+1) onXby <^(n+l)(jc) = V̂ +iW- This function is clearly/„+i-measurable and 

satisfies ^((^(n+1)(jc),(^(n)(jc)) < e{n\x) for every i 6 l Next we set 

sin+l\x) = i m i n j ^ ) , ^ - sup{^O0 ;/„(y) > a + 1} } 

where a = /„(*),/? =fn+i(x)md^ = (f{n+l\x). We have that 0 < £("+1)(JC) < ±e(w)(jc) 
for every JC G X. 

This finishes the construction of the fragmentation (fn). Let now s* be its correspond
ing hors d'oeuvre selection. Note that the sequence ip{n) converges uniformly to a Baire-1 
map r from X to A. 

Assertions b), c) and d) follow from the properties of an hors d'oeuvre selection (The
orem (C)). It remains to check that for every F G 7, the function r(s*(F)) strongly 
exposes F at s*(F). 

Indeed, let* = s*(F). Since s(k+l)(x) < \eik\x) for every k, we get that 

8(r(x)^in+l\x))< 2£(n+v\x). 

Let P = fn+\(x). By construction we have 

2e(n+x\x) < (6p-sup{^n+[\x)(y) ;fn(y) > /„W + l } ) / 2 

and ifin+]\x)(x) > Op. It follows that 

r(x)(x) > sup{r(x)(^) ;/n(v) >/„(*)+ 1}. 

This shows that if a = fn(x), then the set S(jF, r(x), t^j is disjoint from X^+1 for t > 0 
small enough, hence it is contained in {fn = a} and its diameter is smaller than 2~~n. 
This finishes the proof of Theorem 1.7.1. 

REMARK 1.7.2. Note that we started the construction with any function ipQ G A and 
we can make sure (by a more careful control on the functions e{n)) that the range of the 
map r is contained in any prescribed open ball in A that is centered at ip^. 

PROOF OF THEOREM (D). If y is a Banach space with the R.N.P (resp. the A.R.N.P), 
we let X = Ball(F) and A will denote F* (resp PSH(F)). The class J will consist of the 
closed convex (or pseudoconvex) subsets of X. À will be the norm of F. It is well known 
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that in these cases, X is y*-uniformly dentable [B] (resp. PSH(y)-uniformly dentable 
[G-M5]). The rest follows from Theorem 1.7.1. 

PROOF OF THEOREM (E). Let (X, A) be a complete metric space. We can and shall 
assume without loss of generality that A < 1. Consider the space X — X x [0, +oo) 
equipped with the metric Â((JC,/),iy,s)) = A(x,y) + \t — s\. It is clearly a complete 
metric space. Let A be the class of functions on X of the form (p{y, t) — <p(y) + t with 
if G Lip(X) md6((f,0) < 1, where 

8(<p,$) = max{\\<p- i/illoo, \\<p -tjj\\up}-

The space (J3, 8) is complete. To show that X is Jl-uniformly dentable, let (p G A and 
let F be a closed subset F of X. For r > 0, consider any (jto, *o) G F such that 

(1 -T)f(x0) + t0< inf{(l -T)if(x) + t',(x,t) GF} + r2 . 

Let (/v = (1 — r)(f + rA(., JCQ). It is easy to see that the slice 

S = {(y,t)eF\<pT(y,t)< fT(yoJo) + T2} 

is non empty and has a diameter less than 2r. Since 8 {(pT, (p) < 2r, it follows that (X, A) 
is .^-uniformly dentable. Theorem 1.7.1 applies and we get a selection s* on ^f(X). 

To any lower semi-continuous function/: X —+ [0, +oo] and any F G f/, we associate 
the (closed) epigraph Ff = {(x,t) G F x [0,+oo) ; f(x) < t}. Define now ^(F) = 
7Ti (s*(F/)) where 7ri : X —-> X is the projection on the first coordinate. 

To show that Sj(F) is an e- Ekeland point for f on F, we let <p be the functional that 
exposes s*(Ff) = (*o^o) in Ff. We can choose 8(<f,0) < e by Remark 1.7.2. Since 
—(f(xo) — to > —fix) —fix) for any x G X and since fixo) < to, we get from the 
£-Lipschitz property of (f that/(xo) — eA(xo,x) <f(x) for any x G F. 

Assertions b), c) and e) follow from the corresponding properties b) and c) and d) 
in the selection of Theorem 1.7.1. If now (F/) and F are as in the hypothesis of d), then 
UiFfi = Ff provided/ is continuous. In this case, property c) of Theorem 1.7.1 applies 
again and we get assertion d). 

REMARK 1.7.3. The above proof gives that X is j^-uniformly dentable for the class 
A of functions (p where ip is of the form Y.n otnA

2i. ,xn) with an > 0, Yin an — 1 and 
xn G X. One can then select points à la Borwein-Preiss, that is, points that minimize 
perturbations of the form/ + Y.n «nA

2(. ,xn) [B-P]. 

REMARK 1.7.4. Easy examples show that assertion d) in Theorem (E) above, does 
not hold if we only assume that/ is lower semi-continuous. 

If a Banach space Y has the R.N.P (resp. A.R.N.P), then the same holds for Y © R. 
The method used above to transfer the problem to the epigraph of the function yields the 
following strengthening of Theorem (D). 
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THEOREM 1.7.5. Let X be the unit ball of a real (resp. complex) Banach space Y with 
the Radon-Nikodym (resp. the Analytic Radon-Nikodym) Property. For each t > 0 and 
any l.s.c functionf\ X —> [0, +oo], there exists a selection s£e : Jy(X) —» X and a Baire-\ 
map r£ : X —• BE (F*) (resp. r£ : X -^ PSHe (Y)) such that: 

a) For every F G 9y(X), s* £ (F) is a point in F that is strongly exposed (from below) 

byf + r£(s*(F)). 
b) IfFx C F2 ands}£(F2) E F, thens}£(Fx) = s}^F2). 
c) If (fd is a decreasing family of l.s.c functions from X into [0,+oo] and iff is 

the l.s.c envelope of inf if, then for any F G !F/0(X), the net sï £(F) converges to 

d) Iff is continuous and if (Ft) is an increasing net in !Ff(X), then (s1-£(Fi)j con
verges to Sse(F), where F is the closure o/U/F;. 

e)lfY is a slice-lower semi-continuous multivalued mapping from a metric space 
(Z,d) into Jy(X), then z —• sï £(r(z)) is a pointwise limit of a sequence of con
tinuous functions. 

II. Comparison with the known selection theorems. In this section, we compare 
the above results with various well known selection theorems. 

11.1. Jayne-Rogers selections. Let X be a Banach space and let Y C X* be norming 
for X. Say that X is hereditarily Y-huskable if for every bounded subset F of X and any 
e > 0, there exists a a(X, 7)-open set V such that Vn F ^ 0 and diam(FH V) < e. 
We shall denote by ^(X) the class of all a(X, y)-c°mpact subsets of X. We can deduce 
from the above the following refinement of the results of Jayne-RogersfJ-R]. 

PROPOSITION II. 1.1. Let X be a hereditarily Y-huskable Banach space for some 
norming sub space Y in X*. Then there exists a selection s: ^(X) —> X such that: 

a) s(K) G Kfor every K G %}'. 
b) IfKx C K2 ands(K2) e Kx then s(K\) = s(K2). 
c) If(Ki) is a decreasing net to K in ^Cr(X), then lim, || s(K[) — s(K)\\ = 0 . 
d)IfT is a slice-upper semi-continuous multivalued mapping from a metric space 

(Z, d) into %J(X), then z —> s(V(z)) is a Baire-1 function from Z into (X, ||. || ), 
which means in this case that it is a pointwise norm-limit of a sequence of con
tinuous functions. 

As we mentioned above, the two typical examples are: 
i) The case of a Banach space with the P.C.P. In this case, Y = X* and we can then 

select from all weakly compact subsets of X. 
ii) The case of a dual Banach space X = F* with the R.N.P and we can then select 

from all weak*-compact subsets of Y*. 
In the latter case, it is interesting to notice that maximal monotone maps—like subdif-

ferential maps and the norm-attainment maps— are weak*-upper semi-continuous maps 
from Y —y 9C(Y*) and therefore the above theorem can be applied to them to obtain 
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single-valued selections. For details we refer to Jayne-Rogers [J-R] and to the recent 

lecture notes of Phelps [P]. 

II.2- Kuratowski and Ryll-Nardzewski selections. The hors-d'œuvre selection 

seems to be the appropriate extension of the classical selection theorems. It has the ad

vantage of not requiring the compactness of the sets we are selecting from. If we apply 

it for instance, to a complete metric space X which is clearly fragmentable by its own 

metric A, we obtain the following refinement of a classical result. 

COROLLARY II.2.1. Assume (X, A) is a complete metric space, then there exists a 

selection s* : !f(X) —> X such that: 

a) s*(F) e F for every set F G f(X). 

b) IfF\ C F2 ands*(F2) G Fx then s\F\) = s*(F2). 

c) If (Ft) is an increasing net of closed sets and if F is the closure o/U/F/, then 

\\miS*(Fi) = s*(F). 

d) IfT is a slice-lower semi-continuous multivalued mapping from a metric space 

(Z, d) into ^F(X), then z —> s* \F(z)) is a Baire-1 function from Z into X. 

REMARK II.2.2. The proof of the above corollary can be slightly altered to give the 

result of Kuratowski and Ryll-Nardzewski [K-R] which says that if T: (Z, d) —> J-(X) is 

of lower class a (i.e. { z ; T(z) H U ^ 0} is of additive class a for every open set in X), 

then there is a selector for F of class a. 

II.3. Debs selection. If X is a metrizable convex compact subset of a locally con

vex topological vector space, then it is well known—and easy to see—that it is linearly 

homeomorphic to a compact convex subset of Hilbert space. Theorem (D) then gives the 

following refinement of a result of Debs [D]. 

COROLLARY II.4.1. Let X be a metrizable convex compact subset of a locally convex 

topological vector space, and let J-(X) denote the class of closed subsets ofX. Then there 

exists a selection s*: !F(X) —• X such that: 

a) For every F G !f(X), s*(F) is an extreme point ofF. 

b) IfFi C F2 ands*(F2) G F, then s\Fx) = s*(F2). 

c) If(Fi) is an increasing net in J-(X) and ifF— U/F/, then lim, s*(Ft) — s*(F). 

d) IfT is a slice-lower semi-continuous multivalued mapping from a metric space 

(Z, d) into J-(X), then z —> s* (T(z)) is a pointwise limit of a sequence of contin

uous functions. 

III. Zippin's theorem revisited. We shall now establish the following refinement 

of a recent Theorem of Zippin [Z]. / will denote the Cantor set. 

THEOREM III. 1. If a bounded linear operator T from a separable Banach space X 

into C(I) has an adjoint with separable range, then it factors through a Banach space 

Z with a shrinking basis. That is, there exist T\\X —> Z and T2:Z —> C(I) such that 
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T — TiT\. In particular, every Banach space with a separable dual embeds in a Banach 
space with a shrinking basis. 

PROOF. Let T: X —> C(I) be a bounded linear operator such that T* (f^f(/)) is norm 
separable. It is convenient to assume that 7* is one to one on the set of Dirac measures 
{6t ; t G /} (this can be done by adding an appropriate function to X). We shall assume 
that T{X) contains a function that separates points in /; it will also be convenient at some 
point to assume that T(X) contains the constant function 1. 

Consider on / the following metric: 

A(5,o = su P { |^(s) - y>(*)| ; ¥> e T(B(X))} 

If we consider T : M (J) -* X*, we see that A(s, 0 - || r(6s) - T*(St)\\, while the weak*-
topology of X* induces the usual topology on /, via the map t G / —• T*(St). Hence / is 
separable for the metric À, and the A-balls are closed subsets of /. It follows easily from 
B aire's theorem that every closed subset of I contains a non-empty relatively open subset 
F\ G with small A-diameter. In other words, / is A-fragmentable. We may thus apply 
Theorem (A) and obtain the dessert selection s: %ij) —> /. 

An atom of / will be a subset of the form A = {t G / ; tx< = £,-, / = 1, . . . , n} for some 
n and for some sequence (e\,...,en) G { — 1,1} n. We define the size of this atom A as 
\A\ = 2 " \ 

Let 7To be the trivial partition of / into a single atom equal to / itself. Define a sequence 
(7rn) of finite partitions of / into atoms in the following way: assume n > 1 and choose 
one atom A in 7r„_i with the largest possible size in 7rn_i; define a new partition 7tn of 
/ by splitting this atom A into two atoms of size \ \ A\. It is easy to check by induction 
that nn is a partition of / into n + 1 clopen subsets, and that 7Tn is a partition into atoms of 
equal size when n — 2k — 1, for every k>0. We define now for n > 0 and/ G C(J) 

It is clear that P„f is continuous since the A's are clopen sets, that Pn is a projection (since 
s(A) G A) and that ||P„|| < 1. For t G /, let An(t) be the atom of irn that contains t. We 
have Pnf(t) = f(s(An(t))). If m < n, then t G An(t) C Am{t). Consider u = s(Am(t))\ we 
have that s(Am(tj) = u G An(u) C Am(u) = Am(t), hence s(Am(f)) G An(u) C Am(f). It 
follows from Theorem A.b) that s(Am(f)) = w = 5(An(w)). NOW 

^ ^ ( 0 = Pj(s(Am(t))) - P^(n) =/(s(An(ii))) = / (u ) - PJ(t). 

This shows that PmPn — Pm when m <n. Next we observe that rank(Pn+i — Pn) — 1 for 
every n > 0. Indeed, let A be the atom of 7rn that is split into two atoms A\, Ai of 7rn+i. 
Let r = s(A) G A, / = 1 or 2 such that f ^ Ar and u = s(At). Then for every/ G C(/) 

( / , n + l - P n y = ( f ( M ) - / ( 0 ) U . 

https://doi.org/10.4153/CJM-1992-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-031-6


SLICINGS, SELECTIONS AND THEIR APPLICATIONS 503 

Let us call Bn+\ this special atom of 7rn+\,n > 0 (with #o — /)• It is clear from what 
we have said that (en) = (1#J is a monotone basis for C(/). We shall now prove the 
following: 

CLAIM. If W0 = Un>oPnT(Bx), then for every \i € M(T) we have: 

lim sup ((Id— P*)w, fi) = 0. 

Let x G Bx and w = PnTx. Then (Id—P^w equals 0, that is (Pn — Pk)Tx — 
(Id—P^Tx — (Id— Pn)Tx\ therefore, up to a factor 2, it is enough to control 
suPxeBx{ (Id —Pk)Tx,fi). This is done in the following way: 

f(Id-Pk)Txdti= £ f(Tx(t)-Tx(s(A)))d^t) 
J AEnk

 JA 

= j(Tx(t) - Tx(Ak(t))) dfi(t) < J A(f, A*(f)) d/x(f). 

According to Theorem (A), A(f,A*(0) —• 0 as k —-> oo (since {t} = n*A*(0), while 
A(.,. ) < 2. Our claim follows then from Lebesgue's dominated convergence theorem. 

We apply now the interpolation scheme from [D-F-J-P] to the set W = closure of 
Wo in the space C(7). We recall briefly this construction: for every k > 0, let 7̂  be the 
gauge of the convex subset 2k W + 2~kB of C(7), where B denotes here the closed unit 
ball of C(I). We denote by Z the vector subspace of C(/) consisting of those/ for which 
H/llf = T,k>oJl(f) ^s finite- It is not difficult to check that Z, equipped with the norm 
||. \\z is a Banach space, containing W and hence T(X). We denote by T\ the operator T 
acting now from X —> Z and we let T2 be the natural injection of Z into C(7). It is clear 
that T — T2T1.lt remains to prove that Z has a shrinking basis. To do that observe first 
that Pn(W) C W for every n > 0. It then follows that jk(Pn(fj) < jk(f) for every/ and 
every k > 0, thus 

ii/yiiz<u/iiz. 
Furthermore, the basis (en) of C(/) is contained in Z. Indeed, if x is a function in X such 
that Tx separates points in / (this is our starting assumption), we see that (Pn—Pn-.\)Tx = 
A/î w, K ^ 0, for every n > 0 and 1 = eo also belongs to T(X) by assumption. It follows 
as before that, after normalization in the Z-norm, (zn) is a monotone basis for Z. It remains 
to show that (zn) is a shrinking basis for Z. This is equivalent to saying that for every 
Z* G Z*, 

sup ((Id— Pk)z,z*) —> 0 when k —» 00. 

It is a well known property of the factorization scheme that T\ has norm-dense range 
in Z*. It is thus enough to check the above property when z* — T\\i\ that is to say 
lim^oo supzG5z( (Id —Pk)z,n) — 0 for every \x G M(/). By the definition of Z, we may 
write for every n > 0 and every z G Bz, z = Z\ + zi, where zi € 2nW and 11Z21100 < 2~n, 
hence the latter assertion reduces to the claim proved above. This finishes the proof of 
the theorem. 
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