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ON THE VECTOR SUM OF 
TWO CONVEX SETS IN SPACE 

STEVEN G. KRANTZ AND HAROLD R. PARKS 

0. Introduction. In the paper [KIS2], C. Kiselman studied the boundary smooth
ness of the vector sum of two smoothly bounded convex sets A and B in R 2. He discov
ered the startling fact that even when A and B have real analytic boundary the set A + B 
need not have boundary smoothness exceeding C20/3 (this result is sharp). When A and 
B have C°° boundaries, then the smoothness of the sum set breaks down at the level C5 

(see [KIS2] for the various pathologies that arise). 
Kiselman considers sets A and B that are supergraphs of functions/ and g; the sum 

of the two sets corresponds to an infimal convolution off and g. Kiselman's theorems 
reduce to questions about the infimal convolution calculus. The methods work only in 
R2. 

The purpose of the present note is three-fold. First, we discover what positive results 
hold in R N for any N. We find that boundary smoothness of the sum depends only on 
boundary smoothness of one of the sets. Secondly, we discover how the smoothness of 
the sum depends in an explicit geometric fashion on the smoothness of the boundary of 
just one of the domains. Thirdly, we isolate a collection of domains for which the sum is 
always C°°. It should be noted that, in contrast to Kiselman's work, many arguments of 
this paper apply only in case one of the domains is bounded. The reason is that we use 
repeatedly the relation d(A + B) Ç dA + dB, which is not in general true if both A and B 
are unbounded. 

Kiselman makes special note that, as a result of his infimal calculus, his results apply 
to sums of finitely many domains. The same is true of results in the present paper, for a 
more direct reason: In our theorems about two domains, one of the domains needs only 
to be convex (no extra smoothness or non-degeneracy is required); therefore, by the 
associativity of addition, our results will apply automatically to a sum of finitely many 
domains. 

In recent years, questions about how regularity of partial differential equations de
pends on convexity conditions of the boundary have played a central role in several 
complex variables (see, for example, [FOK], [FEK]). More recently Baouendi [BAR] 
and D'Angelo [JPD] have isolated convexity conditions of "finite type" which arise in 
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the study of other kinds of partial differential equations. The present paper is a contribu
tion to the study of this new geometric phenomenon. 

Throughout this paper, the symbols c, C, c\ etc. will be used to denote constants that 
are independent of the relevant parameters in any given inequality. The specific values 
of these constants may change from occurrence to occurrence. 

Finally, a note about the form of this paper. There exist a number of algebraic and 
analytic structures which, in principle, shed light on the questions considered here. These 
include the infimal convolution calculus, the generalized matrix inverses of Moore and 
Penrose, and the parallel addition of matrices introduced by Anderson and Duffin. It is 
our feeling that the use of this machinery would serve to obscure the essential geometry 
of the problems we address. Therefore we use strictly geometric methods (in the spirit 
of the regularity theory of Almgren—see [ALA]) and, with no gain in length, are able to 
present the results in a self-contained fashion. 

It is a pleasure to thank Ed Bierstone, Jan Boman, and Christer Kiselman for useful 
conversations. 

1. A class of domains in KN+l for which the sum is always smooth. Let a and 
(3 beN x Nsymmetric real matrices and assume that a is positive definite and that (3 is 
positive semi-definite. Define 

A = {(xux2,...9xN9y) G R^+1 \y>xalx} 

and 

B = {(xux2,...,xN,y) G KN+l : V > J C / 3 ' 4 . 

Here if M is any matrix then lM denotes its transpose. We have: 

THEOREM 1. The sum A+B = {a + b:a(iiA,bEB} has real analytic boundary. 

PROOF. We will use the notation X = (JC;y) with x G KN and y G R to denote a 
point of R^+1. If X G d(A + B\ X = X{ + X2 with Xx G A, X2 G #, then it follows that 
X! G dA and X2 G dB (see Remark 3). Writing Xi = (xl ;y l) and X2 = (JC2;y2) we have 
the following equations: 

(i) y = j c V ( j c j ) 

(2) y2=x
2f3t(x2) 

(3) y = y'+y2 

(4) x = xx+x2 

(5) <x'(xl) = l3\x2). 

The only one of equations (1) — (5) that is not obvious is (5): it expresses the fact that 
the tangent plane to dA at xl is parallel to the tangent plane to dB at x2. An independent 
proof of this fact is given in Lemma 1 of the next section. 
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Now since a is non-singular we may solve equations (1) — (5) as follows: from (5), 

(6) V ) = <*~W) 

hence, by (4), 

(7) '* = (Z+a- 1 / ? ) ' ^ ) . 

Now (1 + a~~l/3)is invertible by the definiteness hypotheses on a and (3 so that the last 
line gives 

(8) V ) = (/ + a"1/3r1^. 

We plug this into (6) to obtain 

(9) t(xl) = a-l(3(I + a-]f3rltx. 

We substitute (8) into (2) and note that a and /3 are self-adjoint to conclude that 

(10) '(/) = x(I + a-lprlP(I + a-lPTux. 

We also have 

(11) a-lP(I + a-l0)-1 =I-(I+a-](3yl. 

We substitute (9) into (1) and utilize (11) to get 

t(y}) = j<(I+(x-lP)-ll3a-lp(I + a-l(3)-l]tx 

(12) = x(I + a-lpylPU - (I + a-lpyl]'x. 

Adding (10) and (12), we have 

y = xP(I + a-lpy\'P)x. 

We conclude that y is a real analytic function of x, hence that A + B has real analytic 
boundary. • 

REMARKS. 

(1) if A is a convex domain with C°° boundary then, near a point P G d£l of strong 
convexity, the boundary can be written in local coordinates so that P is the origin of 
coordinates and 

yl = A{x) = xxaxx + 0( |JC1 |3) 

with a a symmetric, positive definite N x N matrix. Likewise, near a point Q G dB of 
convexity the boundary of B can be described in local coordinates so that Q is the origin 
of coordinates, the tangent hyperplane at Q is parallel to the tangent hyperplane to dA at 
P, and 

y2 = «to, 
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where $ is a function of TV real variables with positive semi-definite Jacobian. Then all 
of the steps of the preceding proof can be imitated to determine that dA + dB can be 
described by 

y = x(I + a" 1 Jac(®))"1®fA:+ 0(\x\)\ 

and the right side of this equation is a smooth function of x. It follows under these cir
cumstances that A + B has smooth boundary near P + Q. 

(2) In the proof of Theorem 1, we used the positive definiteness of the matrices only 
to verify that (/ + a_1/?)is invertible. Indeed this invertibility holds if all the eigenvalue 
of a exceed 1 in absolute value and all those of (3 are less than one in absolute value. 
Therefore Theorem 1, and Remark (1), would hold in these circumstances. We do not 
understand the geometric significance of this observation. 

(3) We mentioned in the introduction that the relation d(A + B) Ç dA + dB does not 
generally hold for unbounded sets. A simple counterexample is 

A = {(x,y):xy>l,y>0}, 

B= {(x,y) :xy<-l,y> 0} . 

Then A + B = {(x,y) : y > 0} and clearly 

(*) d(A + B)ÇzdA + dB. 

However we can show that (*) does hold for the domains of the type considered in 
this section. For if (JC, y) = X G d(A + B) then there must be sequences (x1*1, y1,1) = X\j G 
A and (JC2 '*,/' ') = X2j G B such that 

(XU+X2J)-^X. 

By the positive definiteness of a we have that yl,t > c\xl,l\ while the semi-definiteness 
of (3 gives us y2,1 > 0. Since y1,1 + y2a —+ y, we conclude that {y1 '} and {y2,1} are 
bounded sequences. It then follows that {x1,1} and {x24} are bounded sequences. By 
extracting convergent subsequences, we see thatX G A+B and, of course, it then follows 
that X e dA + dB. 

(4) The domains treated in Theorem 1 may be handled rather naturally with the al
gebraic machinery of the Moore-Penrose generalized inverse for a matrix (see [PEN]) 
and the matrix "parallel sum" of Anderson and Duffin [AD]. However the introduction 
and utilization of that language would, in the present context, serve only to obscure mat
ters and would not shorten the proof. We therefore merely provide references for the 
interested reader. 

2. Sufficient conditions for the boundary of the sum to be C1. The principle 
result of this section is the following: 
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THEOREM 2. Assume that either the set A is bounded or the set B is bounded. If A is 
a convex set with C1 boundary and B is any convex set then A+B has C1 boundary. 

Christer Kiselman has informed us that this result is known (private communication); 
however parts of the proof will be needed later and we present the details. The proof 
hinges on the following lemma: 

LEMMA. Let A and B be as in Theorem 2. Then each point in the boundary of A + B 
has a unique supporting hyperplane. 

PROOF. Let z E d(A + B). Write z = a + b with a G dA and b G dB. Let v1 be the 
inward unit normal to dA at a. Then for each 0 < r < 1 we can find 0 < p < oo such 
that 

{u : |u — a\ < p andr\u — a\ < v1 • (u — a)} Ç A. 

Here "•" is the usual Euclidean dot product. Therefore, by addition, 

ST = {u:\u-z\ < p and r\u — z\ < v1 • (u — z)} ÇA+B. 

Now the union over r of ST determines a unique hyperplane at a, and this is the supporting 
plane that we seek. • 

The proof also yields the following: 

COROLLARY. With A, B as in the theorem, z G d(A + B),z = a + b with a G dA and 
b G dB, it holds that the supporting hyperplane to A + B at z is parallel to the supporting 
hyperplane to A at x. 

PROOF OF THE THEOREM. Fix z G 3(A + B). Let i G d(A + B) converge to z. We 

may choose a7 G dA and V G dB such that ce + ti = z7 and we may assume that the ce 
converge to some a0 in dA and the W converge to some b° in dB. By the continuity of 
addition, z = a° + b°. Of course the supporting hyperplane to dA at ce converges to the 
supporting hyperplane at a0. So the lemma guarantees that the supporting hyperplane 
to 3(A + B) at ce + b converges to the supporting hyperplane at z = a0 + b° (because 
these are the very same hyperplanes as in the preceding sentence). But this means that 
the boundary of A + B is continuously differentiable. • 

REMARK. It seems to be a standard fact, at least in folklore, that a convex set has C1 

boundary if and only if the tangent plane at each boundary point is uniquely determined. 
A part of the above proof formalizes this idea. • 

Recall (see [FED1], [FED2, 3.2. 36]) that a closed set S Ç RN is of positive reach e 
if each point x of distance less than e from S has a unique nearest point in S. For example, 
any closed C2 hypersurface in RN is a set of positive reach. In fact it is enough for the 
hypersurface to be C1 with Lipschitz turning tangent planes (see [KRP]). However, it 
is also shown in [KRP] that this boundary smoothness cannot be essentially weakened 
further. It is important in geometric analysis to be able to recognize sets of positive reach. 
To this end we have 
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PROPOSITION 1. Assume that either the set A is bounded or the set B is bounded. If 
A and B are closed convex sets with C1 boundaries and ifdA has positive reach rA and 
dB has positive reach rB then 3(A + B) has positive reach at least r = rA+ rB. 

PROOF. Since A and B are convex, it is only necessary to check positive reach for 
points in the interior of A + B. Let z be an interior point of A + B and suppose that 

dist [z,d(A+£)j < r. 

Let z* G 3(A + B) be some nearest point to z, so that 

| z - z * | =dist(z,3(A+£)). 

Write z* = JC* +y* for some JC* G dA and some y* G dB. Let v* be the inward unit normal 
to dA at JC*. By the Corollary just proved it follows that v* is also the inward unit normal 
to dB at y*. Choose sA < rA and sB < rB such that 

SA+SB=\Z-Z*\. 

Then x = x* + sAv* G A and y = y* + sBv* G B. Also 

dist(;c,3A) = sA and dist(j, dB) = sB. 

Now suppose that z** is a point of 3(A + 5) such that | z** — z\ = \z* —z\ and that z** 
is different from z*. We will show that z** cannot lie in 3(A + B). For set 

r r * * 

z — z 
|z**-z| 

It follows that x + 5,4 v G Int A and y + sBv G Int 5, whence 

z** = (x + 5Av) + (y + 5fiv) G Int (A + £). 

This is the desired result. • 
Notice that in fact the Proposition holds if only one of the two sets has positive reach. 

3. Sufficient conditions for the sum to be C1 a . In this section we develop a ge
ometric characterization of Cx,a boundary for a domain in Euclidean space. This result 
should prove useful in other contexts of geometric analysis. For us, the interest is in its 
application to the vector sum of convex sets. 

Throughout this section, let C be a compact, convex subset of R N with C1 boundary 
dC. If JC G dC then let vx be the unit inward normal at x. Define 

ricOO = y - (y • vx)vx, 

the orthogonal projection into the tangent plane to dC at x. Write 

VJCOO = y - UcCy). 
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LEMMA. Let C be a compact convex domain in KN with Cl boundary. Let notation 
be as above. Fix 0 < a < 1. Then dC is Cl,a if and only if there exists a positive constant 
c such that for each x G dC it holds that 

(*) {y:c\Ux(y)-x\l+a <vx-y-x<c~1} ÇA 

PROOF. If dC is Cl,a then it is a straightforward exercise to see that (*) holds. 
For the converse, we begin with some definitions. Because of the smoothness of dC 

there are positive constants 7i, li such that for each x G dC it holds that 

dCn{y:\Ux(y)-x\ < 7i, \vx(y) -x\ < 72} 

is the graph of a C1 function. We denote that function by fx. Notice that Dfx(x) = 0. 
Thus given an e > 0 there is a 8 > 0 such that for £ G KN~l with | £ | < 6 we have 

l#/*(Ol < e. 
Now fix a and c for which (*) is assumed to be true. Fix also a point xo of dC We 

show that, in a neighbourhood of JCO, dC is the graph of a Clûr function; the size of the 
neighbourhood and the Cl,a norm of the function will not depend on xo. 

There is no loss of generality to suppose that xo = 0 and that the tangent plane to dC 
at xo is 

n o = {y- y -eN = 0} . 

Here <?yv — (0,0, • • •, 0,1). We also will write points y G R^ in the form y = C / ,^ ) 
wi th / G R^"1 a n d ^ G R. 

We choose £ > 0 such that for any x G dC and any £ G RN_1 with | £ | < £ it holds 
that 

Let y be a point of dC with 

|*o-yl < min{l ,6,7i ,72}. 

Let n>, be the tangent plane to dC at y. Since (*) holds there exists a positive constant d 
such that 

Ed = {(y',d\yV+a):yeKN-'} 

is tangent to ITo at some point (s*, s). 
Let us examine this situation more closely. The slope of Ey at the point y in the radial 

direction (from xo — 0) is, by calculus, 

(**) (1 + « ) • * / • l^l". 

This is the slope of the tangent plane FLy, also, so we can estimate how close the set 
Fly n Flo is to the origin. The radial symmetry of the situation reduces this to a problem 
in plane geometry, and we find that 

dist 0 ,FLnrio i | ' i a(\ + a)-l\s' 
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Here "dist" denotes the usual Euclidean distance of sets. We also have that 

l/l > dist kn^n n0 

Combining these two estimates gives 

(* * *) l̂ l < (1+a)a - 1 |s | . 

We claim that d < c. This would imply that the slope of the tangent plane n v is 
bounded by 

(l + a ) ( 1 + a ) a - a c | / | a , 

proving the lemma. 
In order to prove the claim, we assume the contrary. Then s > c~l so that 

It follows that 

On the other hand, 

d\s'\l+a =s> c'\ 

{\+a)d\s'\a > ( l + a ) c " V l 

>ccc-l\y'\-{ 

> a -c"1. 

(l + a)d\s'\a = \Dfx(y')\ <ac~ 

The last two strings of inequalities taken together provide the desired contradiction. • 
We use the lemma to obtain the following result. 

THEOREM 3. For 0 < a < I let A be bounded, convex, and have Cl,a boundary. 
Let B be any convex domain. Then the vector sum A + B has Cl,a boundary. 

PROOF. For simplicity we give the proof for a — 1 and comment on the general 
case afterward. If dA is C11 then, by the work in [KRP] there is a number r > 0 so that 
for each x G dA there is a Euclidean ball Bx of radius r that is internally tangent to dA 
at x. The same claim cannot be made for B; however there is an e > 0 such that at each 
point y of dB there is the inward normal segment Se

y of length e that is contained in B. 
But then each point z of d(A + £), coming as it does from a point x G dA and a point 
v G dB, has the internally tangent region given by Bx + Se

y. This region is convex and has 
C2 boundary—indeed the boundary is spherical—near z = x + y. It follows immediately 
that the hypotheses of the lemma are satisfied for the set A + B with a = 1. Therefore 
A + B has C11 boundary. • 

To treat the case of Theorem 3 when a < 1 we replace internally tangent balls by 
homothetes of regions of the form {(V,xN) : x^ > c - \x/\l+a} for some fixed c. The rest 
of the proof is the same. 

We refer to [KIS2] and [BOM] for examples indicating the limits of what is possible 
for the smoothness of vector sums of convex sets. If no hypotheses are made about the 
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flatness of the boundary, then the boundary of the vector sum of two sets with Ck bound
aries is Ck for k — 1,2,3, and 4—provided that the dimension is two. This assertion 
fails for k = 5 in dimension 2. A recent startling result of Jan Boman [BOM] exhibits in 
all dimensions greater than three a pair of bounded real analytic convex domains whose 
sum domain is not C2 (by our Theorem 3, the sum is C u ) . It remains an open problem 
to see whether there exist such examples in R3. The only general positive results in R N 

for N > 3 are those presented in this paper. 
For some purposes, it is natural to view the results of this paper in the context of 

projections of convex sets. For a consideration of this point of view, we refer the reader 
tofKISl]. 

NOTE ADDED IN PROOF. The recent reprint Regularity classes for operations in con
vexity theory by C. O. Kiselman sheds new light on the topics considered here. 
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