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A GEOMETRIC DRIFT INEQUALITY FOR A
REFLECTED FRACTIONAL BROWNIAN MOTION
PROCESS ON THE POSITIVE ORTHANT
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Abstract

We study a d-dimensional reflected fractional Brownian motion (RFBM) process on
the positive orthant S = R

d+, with drift r0 ∈ R
d and Hurst parameter H ∈ ( 1

2 , 1).
Under a natural stability condition on the drift vector r0 and reflection directions, we
establish a geometric drift towards a compact set for the 1-skeleton chain Z̆ of the
RFBM process Z; that is, there exist β, b ∈ (0,∞) and a compact set C ⊂ S such
that�V (x) := Ex [V (Z̆(1))]−V (x) ≤ −βV (x)+b 1C(x), x ∈ S, for an exponentially
growing Lyapunov function V : S → [1,∞). For a wide class of Markov processes,
such a drift inequality is known as a necessary and sufficient condition for exponential
ergodicity. Indeed, similar drift inequalities have been established for reflected processes
driven by standard Brownian motions, and our result can be viewed as their fractional
Brownian motion counterpart. We also establish that the return times to the set C itself
are geometrically bounded. Motivation for this study is that RFBM appears as a limiting
workload process for fluid queueing network models fed by a large number of heavy-tailed
ON/OFF sources in heavy traffic.
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1. Introduction

We consider a multidimensional reflected fractional Brownian motion (RFBM) process
{Z(t) : t ≥ 0} on the positive orthant S := R

d+, with drift r0 ∈ R
d and Hurst parameter

H ∈ ( 1
2 , 1). This model serves as an approximation for stochastic networks with a large number

of heavy-tailed ON/OFF sources (see [4]), or with long-range dependent arrival and service time
processes (see [14] and [17]), in the heavy traffic regime. This model was further studied in the
subsequent papers [5] and [6], where the heavy traffic limit theorems for a multiclass multiserver
fluid network and various asymptotic behaviors of the (weighted) maximum processes were
studied, respectively. The logarithmic asymptotics of the tail probabilities of such reflected
processes were obtained (cf. [16] and the references therein). In a recent paper [15], a
uniform moment estimate on expected return times of the RFBM process to a compact set
was established. While there is an ample body of literature for heavy traffic analysis based
on short-range dependent (Markovian-like) models and light tails, the study on the long-time
stability properties of the RFBM process is a largely unexplored area. This is mainly due to the
lack of semimartingale and/or Markov properties of fractional Brownian motion (FBM) and,
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Geometric drift inequality for an RFBM process on the positive orthant 821

hence, many techniques from the classical theory of stochastic calculus are inapplicable to its
analysis.

In this work we establish a few basic stability properties of the RFBM process, mainly by
proving the geometric drift towards a compact set C ⊂ S for the discretely sampled RFBM
process {Z̆(n) : n ≥ 0}. More precisely, we show that {Z̆(n) := Z(n), n = 0, 1, . . .} satisfies
the following drift inequality. There exist β, b ∈ (0,∞) and a compact set C ⊂ S such that

�V (x) := Ex[V (Z̆(1))] − V (x) ≤ −βV (x)+ b 1C(x), x ∈ S, (1.1)

with a suitable Lyapunov function V : S → [1,∞) satisfying an exponential growth condition.
Here (and throughout the paper), Ex denotes the expectation conditional on the process Z̆
starting from x ∈ S and 1C(·) denotes the indicator function of a set C. This result (commonly
referred to as a geometric drift condition (V4) in the literature—cf. Chapter 15 of [20]),
combined with a petite set requirement for C, is reminiscent of a necessary and sufficient
condition for the exponential ergodicity of a ψ-irreducible, aperiodic Markov process (see,
e.g. [7], [19], and [20, pp. 393–394]). Similar results as in (1.1) were established for reflected
processes driven by standard Brownian motions; indeed, the V -uniform ergodicity result of
[3] (see also [11] for an ergodicity result) in view of Theorem 5.3 of [7] implies (1.1) for
semimartingale reflecting Brownian motions. In this regard, the results in this paper can be
viewed as a significant step towards further time-asymptotic analysis of RFBM with the aim
of establishing similar ergodic properties for reflected processes driven by non-Markovian
processes.

The organization of the paper is as follows. In Section 2 we carefully describe our model in
Definition 2.1 and make a standard assumption on the reflection matrix (see assumption (HR)
in Section 2), which is used in heavy traffic analysis for invoking a functional central limit
theorem in [4] and [5]. In addition, similar to [13], we assume a natural stability condition (see
condition (S) in Section 2) on the RFBM process. Our proof of the main result is based on
exploiting basic properties, such as Lipschitz continuity and linear growth, of a hitting time to
the origin function T (·) (see Lemma 3.1) on a family of certain deterministic dynamical systems
obtained from the underlying RFBM process. This result, combined with an exponential
moment estimate for the maximal increment of FBM with H ∈ ( 1

2 , 1) yields an estimate
on the expected exponential hitting times to the origin in terms of the initial state (Lemma 3.3).
In order to connect this result with the desired drift inequality (1.1), we make a suitable choice
of δ ∈ (0,∞) and show that V (Z̆(n)) := eδT (Z̆(n)) is bounded in mean on some compact set
C ⊂ S, and also that it has a uniform negative drift off of the set C (see Theorem 3.1).

As a consequence of the geometric drift inequality, we obtain the comparison result (The-
orem 3.2) and then establish an exponential regularity result for the sampled process (see
Theorem 3.3). Such results are used to conclude that the return times to the set C itself are
geometrically bounded. Lastly, we show in Theorem 3.4 that the drift inequality (1.1) can
be extended with a larger compact set D ⊂ S (in place of C), and, hence, the subsequent
exponential regularity results hold on the set D as well.

We use the following notation. The set of positive integers is denoted by N, and we let
N0 = N ∪ {0}. The set of real numbers is denoted by R and the nonnegative real numbers by
R+. For a ∈ R, let a+ = max{a, 0}. Let R

d be the d-dimensional Euclidean space, and, for
x ∈ R

d , the L1-norm of x, i.e.
∑d
i=1 |xi |, will be denoted by |x|. For a (d × d)-dimensional

matrix A, we will use the norm ‖A‖ = max1≤j≤d
∑d
i=1 |aij |. For a given matrix M , denote

byM
 its transpose and byMi the ith row ofM . Let � = �d×d denote the identity matrix for
some d. When it is clear from the context, we will omit the subscript. For a setA ⊂ R

d , denote
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its interior and boundary by A◦ and ∂A, respectively. For sets A,B ⊂ R
d , dist(A,B) will

denote the distance between two sets, i.e. inf{|x− y| : x ∈ A, y ∈ B}. Let C(X, Y ) denote the
space of continuous functions fromX to Y , endowed with the topology of uniform convergence
on compact intervals. Inequalities for vectors are interpreted componentwise.

2. Model and assumptions

We begin with the definitions of multidimensional FBM and RFBM. Let d ∈ N. A stochastic
process BH = {BH(t) = (B

(1)
H (t), . . . , B

(d)
H (t))
, t ≥ 0}, defined on some filtered probability

space (�,F , (Ft )t≥0,P), is called a d-dimensional FBM of (Hurst) parameter H ∈ (0, 1),
starting from BH(0) ∈ R

d , and associated matrix �, if it satisfies the following conditions.
The processBH is a continuous Gaussian process with initial conditionBH(0), P-almost surely
(P-a.s.) and its covariance function is given by

cov(BH (t), BH (s)) = E[(BH (t)− BH(0))(BH (s)− BH(0))

] = �H(s, t)�

for any s, t ≥ 0, where � is a d × d positive definite matrix and

�H(s, t) := 1
2 (t

2H + s2H − |t − s|2H ).
Without loss of generality, we will assume throughout that the diagonal entries of � are all 1s.
Also, it is assumed that BH is adapted to the filtration (Ft )t≥0. We will say that BH is a
d-dimensional FBM with associated data (BH (0),H,�).

Fix some column vectors r0, r1, . . . , rd ∈ R
d , and define the matrix R := [r1, . . . , rd ]d×d .

The quintuple (BH (0),H,�, r0, R) will be called the data for an RFBM. The following
definition is similar to that given in [4].

Definition 2.1. (RFBM.) For x ∈ S, an RFBM associated with the data (x,H,�, r0, R) is
a continuous d-dimensional process Zx , defined on some probability space (�,F ,P), such
that

(i) Zx(t) = x + BH(t)+ r0t + RY(t) ∈ S for all t ≥ 0, P-a.s.,

(ii) BH is a d-dimensional FBM with data (0, H,�),

(iii) Y is a d-dimensional process such that Yi(0) = 0 for i = 1, . . . , d, P-a.s. For each
i = 1, . . . , d, Yi is continuous, nondecreasing, and can increase only when Z(·) is on the
face F i := {x ∈ S : xi = 0}, i.e.

∫ t
0 1{Zi(s)�=0} dYi(s) = 0 for all t ≥ 0.

The set of directions of reflections on the boundary is defined as follows. For y ∈ ∂S,

r(y) :=
{ d∑
i=1

qir
i :

d∑
i=1

qi = 1, qi ≥ 0, and qi > 0 only if yi = 0

}
.

An RFBM, introduced in the above definition, behaves like an FBM in the interior of the
orthant S and it is confined to the orthant by an instantaneous ‘reflection’ (or, more accurately,
‘regulation’) at the boundary ∂S. For each i, the ith column of the reflection matrix R gives
the direction of the reflection on the ith face F i . Specifically, if the boundary F i is hit, it is
Yi that increases, the direction of displacement is given by ri , the ith column of R, and the
magnitude of the displacement is the minimal amount required to keep Zi nonnegative. At an
intersection of faces, the allowed directions of reflection are given by the convex combinations
of the reflection directions associated with the faces meeting there (cf. [23]).
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A square matrix R is called completely-S if, for every k × k principal submatrix G of R,
there is a k-dimensional vector vG such that vG ≥ 0 andGvG > 0. The completely-S condition
on the reflection matrix R ensures that, for every y ∈ ∂S, there exists a convex combination
of vectors in r(y) which points into S◦ from y. Also, the completely-S property is sufficient
to ensure the existence of a pair (Z, Y ) satisfying Definition 2.1(i) and (iii) (cf. Theorem 2
of [2]). However, this property does not ensure the adaptness of the process Y to a filtration to
which BH is adapted. This problem is overcome under a stronger assumption on R, which we
quote below (cf. Proposition 4.2 of [22] and Section 2 of [4]). We will impose throughout the
following assumption on the reflection matrix R.

(HR) (i) The reflection matrixR can be expressed as � +�, where� is a (d×d)-dimensional
matrix such that |�|, that is, the matrix obtained from� by replacing all the entries in�
by their absolute values, has spectral radius r(|�|) strictly less than 1.

(ii) Moreover, the matrix � = (θij ) satisfies θij ≤ 0 and θii = 0 for 1 ≤ i, j ≤ d.

We now describe some of the important implications of assumption (HR). Under (HR), it
can be shown (cf. [4] and [22]) that if BH is adapted to some filtration {Ft : t ≥ 0} then (Z, Y )
is adapted to the filtration {Gt : t ≥ 0}, with Gt = Ft ∨ N , where N denotes the collection
of P-null sets in F . Henceforth, with an abuse of notation, we will assume that (Z, Y ) is
adapted to the filtration {Ft : t ≥ 0}. We also note that part (i) of (HR) implies that the matrix
R is completely-S and invertible. Furthermore, part (i) of (HR) is a sufficient condition for
strong pathwise uniqueness of a solution of the Skorokhod problem described below. Part (ii)
of (HR), together with part (i), verifies the so-called Harrison–Reiman condition in [12]. As a
consequence, (HR) will imply that a solution to the Skorokhod problem exists, and, moreover,
the Skorokhod map is Lipschitz continuous in the sense of Proposition 2.1 below.

Definition 2.2. (Skorokhod problem.) Let ψ ∈ C([0,∞),Rd) be given with ψ(0) ∈ S. Then,
we say that (φ, η) ∈ C([0,∞),Rd) × C([0,∞),Rd) solves the Skorokhod problem for ψ
with respect to S and R if and only if the following assertions hold:

(i) φ(t) = ψ(t)+ Rη(t) ∈ S for all t ≥ 0,

(ii) for 1 ≤ i ≤ d, (a) ηi(0) = 0, (b) ηi is nondecreasing, and (c) ηi can increase only when
φ is on the ith face of S, that is,

∫ ∞
0 1{φi(s)�=0} dηi(s) = 0.

Let CS([0,∞),Rd) := {ψ ∈ C([0,∞),Rd) : ψ(0) ∈ S}. On the domain E ⊂ CS([0,∞),

R
d), on which there is a unique solution to the Skorokhod problem, we define the Skorokhod

map � as
�(ψ) := φ,

if (φ, R−1[φ−ψ]) is the unique solution of the Skorokhod problem posed byψ . An equivalent
form of RFBM in Definition 2.1 in terms of the Skorokhod map can now be written as

Z = �(x + BH + r0ı), Z − (x + BH + r0ı) = RY,

where ı : [0,∞) → [0,∞) is the identity map, i.e. ı(t) = t for t ∈ [0,∞).
As a consequence of assumption (HR), we have the following proposition on the regularity

of the Skorokhod map [12]. (Although Lipschitz continuity is not stated explicitly in [12], it
follows easily from the method used to prove the existence of solutions and continuity of the
Skorokhod map (map φ(·) in [12]).) See also [8], [9], and [10] for more general sufficient
conditions under which this regularity property holds.
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Proposition 2.1. The Skorokhod map is well defined on all of CS([0,∞),Rd), i.e. E =
CS([0,∞),Rd), and the Skorokhod map is Lipschitz continuous in the following sense. There
exists a constant L ∈ (0,∞) such that, for all ψ1, ψ2 ∈ CS([0,∞),Rd) and t ≥ 0,

sup
0≤s≤t

|�(ψ1)(s)− �(ψ2)(s)| < L sup
0≤s≤t

|ψ1(s)− ψ2(s)|.

Next, we introduce the main stability condition on the drift vector r0 and the matrix R that
will be assumed throughout this paper.

(S) There exists a constant θ > 0 such that sup1≤i≤d [R−1r0]i < −θ.
Remark 2.1. For a model driven by standard Brownian motion (i.e. when H = 1

2 ), condi-
tion (S) is known as a necessary and sufficient condition for the existence of a unique stationary
distribution for the reflected process Z. We refer the reader to [13] and the references therein
for the related asymptotic stability results of reflected Brownian motions (RBMs) on a positive
orthant.

3. Main results

Let Zx be defined as in Definition 2.1 with the initial condition Zx(0) = x ∈ S and Hurst
parameter H ∈ ( 1

2 , 1). Fix x ∈ S, and write the RFBM Zx in Definition 2.1 as

Zx(t) = �(x + r0ı + BH(·))(t), t ≥ 0,

where ı : [0,∞) → [0,∞) is the identity map. Define the corresponding deterministic
trajectory of {Zx(t) : t ≥ 0} by

zx(t) := �(x + r0ı)(t), t ≥ 0.

Next, defining C := {v ∈ R
d : R−1v ≤ 0}, it can be seen from condition (S) that there exists

a ρ ∈ (0,∞) satisfying

dist(r0, ∂C) ≥ 1

‖R−1‖ inf{|R−1r0 − R−1v| : R−1v = 0, v ∈ R
d} ≥ 1

‖R−1‖θd =: ρ > 0,

where θ ∈ (0,∞) is as in condition (S). Thus,

r0 ∈ Cρ := {v ∈ C : dist(v, ∂C) ≥ ρ}.
The cone Cρ was considered in [1] to stipulate the permissible drift vector field and to char-
acterize the positive recurrence of a class constrained diffusion process in some polyhedral
domain. In this work we will treat ρ ∈ (0,∞) as one of the parameters, which can be chosen
appropriately. (See the main result presented in Theorem 3.1 below.)

For x0 ∈ S, denote by Kρ(x0) the collection of all trajectories φρ : [0,∞) → S of the form

φρ(t) = �(x0 +�ı)(t), t ≥ 0, (3.2)

where � ranges over all Cρ . For a fixed x0 ∈ S, we now define the ‘hitting time to the origin’
function T : S → [0,∞) as

T (x0) := sup
φρ∈Kρ(x0)

inf{t ∈ [0,∞) : φρ(t) = 0}. (3.3)

We refer the reader to Section 3 of [1] for the various stability properties of the deterministic
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trajectories defined in (3.2). The following result from [1] (see Lemma 3.1 and its proof therein)
will be crucial in our analysis.

Lemma 3.1. ([1].) The function T : S → [0,∞) defined in (3.3) satisfies the following
properties.

(i) For some c1 ∈ (0,∞), |T (x)− T (y)| ≤ c1|x − y| for all x, y ∈ S.

(ii) For some c2, c3 ∈ (0,∞), c2|x| ≤ T (x) ≤ c3|x| for all x ∈ S. Thus, in particular, for
all M ∈ (0,∞), the set {x ∈ S : T (x) ≤ M} is compact.

(iii) Fix x ∈ S, and let z ∈ Kρ(x). Then, for all t > 0, T (zx(t)) ≤ (T (x)− t)+.

Here the positive constants ci (i = 1, 2, 3) depend only on L ∈ (0,∞) and ρ ∈ (0,∞), given
in Proposition 2.1 and (3.1), respectively. In particular, c1 = 4L3ρ−1.

Next we present an exponential moment estimate for the maximal increment of the FBM
BH with H ∈ ( 1

2 , 1), which may be of independent interest.

Lemma 3.2. Let h ∈ (0,∞) be a constant. For n ∈ N, let νn be defined as

νn := sup{|BH(s)− BH((n− 1)h)| : (n− 1)h ≤ s ≤ nh},
where BH(·) is a d-dimensional FBM with data (0, H,�) and Hurst parameter H ∈ ( 1

2 , 1).
Then, for any γ ∈ (0,∞) and n ∈ N,

E[eγ νn ] ≤ 4deγ
2d2h2H /2,

where d ≥ 1 is the dimension of the FBM BH .

Proof. We begin by recalling that, for a positive random variable νn,

E[eγ νn ] = 1 +
∫ ∞

0
γ eγy P[νn > y] dy. (3.4)

From the stationary increment and self-similar properties of FBM (cf. Theorem 3.3 of [18]), it
follows that

νn
d= sup{|BH(s)− BH(0)| : 0 ≤ s ≤ h}
a.s.= sup{|BH(s)| : 0 ≤ s ≤ h}
d= hH sup{|BH(s)| : 0 ≤ s ≤ 1},

where ‘
d=’denotes equality in distribution and ‘

a.s.= ’follows from the assumption thatBH(0) = 0,
P-a.s. (Recall part (ii) of Definition 2.1.)

We therefore obtain

P[νn > y] = P[sup{|BH(s)| : 0 ≤ s ≤ 1} > h−Hy]

≤ P

[ d∑
i=1

sup{|B(i)H (s)| : 0 ≤ s ≤ 1} > h−Hy
]

≤ d P

[
sup{|B(1)H (s)| : 0 ≤ s ≤ 1} > h−H

d
y

]

≤ 2d P

[
sup{B(1)H (s) : 0 ≤ s ≤ 1} > h−H

d
y

]
, (3.5)

where the last inequality follows from the symmetry property of FBM.
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For H ∈ ( 1
2 , 1), it is known from Statement 4.2 (part 2) of [21] that

P[sup{B(1)H (s) : 0 ≤ s ≤ 1} > λ] ≤
√

2

π

∫ ∞

λ

e−x2/2 dx (3.6)

for any λ ≥ 0. More precisely, (3.6) follows from setting f = 1 and r = 1 in Statement 4.2
of [21]. For a more direct presentation of this result, we refer the reader to the penultimate
displayed inequality on page 1067 of [21]. (We note that since the definition of FBM in [21] is
slightly different from ours, we should setα = 2H−1, and the functionqf (s, t) in Statement 4.2
should be corrected by multiplying a missing constant factor Cα(α + 1) = H(2H − 1); see
also the first displayed equality on page 1067.) Applying the estimate in (3.6) to (3.4) and (3.5),
we obtain

E[eγ νn ] ≤ 1 + 2d

√
2

π

∫ ∞

0
γ eγy

[∫ ∞

y/(dhH )

e−x2/2 dx

]
dy

= 1 + 2d

√
2

π

∫ ∞

0
e−x2/2

[∫ dhH x

0
γ eγy dy

]
dx

= 1 + 2d

√
2

π

∫ ∞

0
e−x2/2[eγ dhH x − 1] dx.

By recalling
∫ ∞

0 e−x2/2 dx = √
2π/2 and completing the square in the exponent, it can be

shown that the last expression is bounded above by

2d

√
2

π
e(γ dh

H )2/2
∫ ∞

0
e−(x−γ dhH )2/2 dx = 4de(γ dh

H )2/2(1 −�(−γ dhH )),

where�(·) denotes the cumulative distribution function of the standard normal random variable.
Noting that �(·) ∈ [0, 1], we obtain the required bound.

Next, we define a ‘1-skeleton’ process Z̆ and an associated filtration. Recall that an RFBM
process {Z(t) : t ≥ 0} is defined on the filtered probability space (�,F , (Ft )t≥0,P). For
k ≥ 0, we let

Z̆(k) := Z(k), F̆k := Fk.

Combining Lemmas 3.1 and 3.2 yields the following result.

Lemma 3.3. For δ ∈ (0,∞), there is a constant c4 ∈ (0,∞) such that

Ex eδ[T (Z̆(1))] ≤ 4deδ[T (x)−1]ec4δ
2
, t ≥ 0, (3.7)

for all x ∈ S1 := {x ∈ S : T (x) > 1}.
Proof. Note that, for all x ∈ S,

T (Zx(1))− T (zx(1)) ≤ c1|Zx(1)− zx(1)| ≤ c1L sup
0≤s≤1

|BH(s)|,

where the first inequality follows from the Lipschitz property of T (see Lemma 3.1(i)), and the
second inequality follows from Proposition 2.1. Then, from Lemma 3.1(iii) we have, Px-a.s.,

T (Zx(1)) ≤ (T (x)− 1)+ + c1L sup
0≤s≤1

|BH(s)| for all x ∈ S. (3.8)
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Then, for δ ∈ (0,∞) and x ∈ S1, we obtain

eδ[T (Z̆x(1))] ≤ eδ[T (x)−1]eδc1L sup0≤s≤1 |BH (s)| Px-a.s.

Taking the expectation of both sides and using Lemma 3.2 (with n = 1, γ = δc1L, and h = 1)
yields (3.7), setting c4 := 1

2c
2
1L

2d2 (which is proportional to ρ−2 in view of Lemma 3.1).

Hereafter, we impose an assumption on the parameter ρ ∈ (0,∞) in (3.1) so that the
constant c4 ∈ (0,∞) in Lemma 3.3 can be small enough in the following analysis. Recall
that c1 = 4L3ρ−1 and c4 = 1

2c
2
1L

2d2 from Lemma 3.1 and Lemma 3.3, respectively. In what
follows, we choose ρ ∈ (0,∞) appropriately so that c4 < (4 log 4d)−1. This amounts to
assuming that ρ ∈ (κ,∞), where κ := 4dL4√2 log 4d. We now present the main result on the
geometric drift inequality for the 1-skeleton RFBM process.

Theorem 3.1. (Geometric drift towards C.) For x ∈ S, let the RFBM process {Zx(t)}t≥0
be given as in Definition 2.1 and assume that ρ ∈ (κ,∞). Then, the 1-skeleton process
{Z̆x(n) := Zx(n)}n∈N0 satisfies the following drift inequality. There exist δ, β, b ∈ (0,∞) and
a compact set C ⊂ S such that

�V (x) ≤ −βV (x)+ b 1C(x), x ∈ S, (3.9)

with V (x) := eδT (x).

Proof. From Lemma 3.3, for δ ∈ (0,∞) and x ∈ S1 := {x ∈ S : T (x) > 1},
V (x)−1[Ex eδ[T (Z̆(1))]] ≤ 4de−δec4δ

2
,

where c4 ∈ (0,∞) is a constant (independent of δ and x, and proportional to ρ−2) as in (3.7).
Now choose δ := 1/2c4 ∈ (0,∞) so that c4δ

2−δ+log 4d < 0 and, therefore, ec4δ
2−δ+log 4d :=

1 − β < 1. Then we have

Ex V (Z̆(1)) ≤ (1 − β)V (x) for all x ∈ S1. (3.10)

Also, for x ∈ C := S \ S1, we have, from inequality (3.8),

Ex V (Z̆(1)) ≤ 4dec4δ
2 =: b. (3.11)

Combining (3.10) and (3.11) we obtain

Ex V (Z̆(1)) ≤ (1 − β)V (x)+ b 1C(x) for all x ∈ S, (3.12)

and (3.9) follows.

Remark 3.1. In view of Lemma 3.1(ii), the set C = {x ∈ S : T (x) ≤ 1} is compact and
the function V : S → [1,∞) is shown to be unbounded and to satisfy an exponential growth
condition. We remark that similar drift inequalities as in (3.9) were established for a wide
class of Markov processes [3], [7], [20, Chapter 16]. The geometric drift result in the form
of (3.9) is known as the necessary and sufficient condition for the V -uniform ergodicity of
underlying Markov processes. Indeed, the proof that geometric ergodicity of the 1-skeleton
process (which follows from (3.9) for Markov processes) implies V -uniform ergodicity of the
semigroup is a simple consequence of the submultiplicative property of the V -norm operator
(cf. Theorems 5.2–5.3 of [7]). In this respect, the geometric drift result in Theorem 3.1 sheds
some light on the time-asymptotic analysis of an RFBM process, anticipating similar long-time
properties of reflected processes driven by standard Brownian motions.
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Remark 3.2. The geometric drift condition (3.9) can be written in the following simpler
contractive form:

Ex V (Z̆(1)) ≤ (1 − β)V (x)+ b for all x ∈ S. (3.13)

Here 1 − β < 1 and b are as in (3.9). Indeed, if (3.9) holds then (3.13) immediately follows.
Conversely, if (3.13) holds then it can be shown that

�V (x) ≤ −β̄V (x)+ b 1C̄ (x), x ∈ S,
where β̄ := β/2 and C̄ := {x ∈ S : V (x) ≤ 2b/β}.

As a consequence of the geometric drift towards a compact set C in Theorem 3.1, we obtain
the following comparison theorem, which will be useful for proving that the return times to the
set C itself are geometrically bounded. For m ≥ 1 and a set B ⊂ S, define the first entrance
time to the set B by

τ̆B := inf{m ≥ 1 : Z̆(m) ∈ B}.
Theorem 3.2. For any r ∈ (1, (1 − β)−1), there exists ε > 0 such that, for any first entrance
time τ̆B ,

Ex

[τ̆B−1∑
k=0

V (Z̆(k))rk
]

≤ ε−1r−1V (x)+ ε−1b Ex

[τ̆B−1∑
k=0

1C(Z̆(k))rk
]
, (3.14)

where the constants β, b ∈ (0,∞) and the set C ⊂ S are as in Theorem 3.1.

Proof. The proof is adapted from Theorem 15.2.5 of [20]. We begin by observing that, for
any r ∈ (1, (1 − β)−1), we can choose ε ∈ (0, β) to be the solution to r = 1/(1 − β + ε).
Then, from (3.12) we have the bound

Ex V (Z̆(1)) ≤ r−1V (x)− εV (x)+ b 1C(x) for all x ∈ S.
It follows that

E[V (Z̆(k + 1))rk+1 | F̆k] ≤ rk+1{r−1V (Z̆(k))− εV (Z̆(k))+ b 1C(Z̆(k))}
= V (Z̆(k))rk − εV (Z̆(k))rk+1 + rk+1b 1C(Z̆(k)). (3.15)

For n ≥ 1 and r ∈ (1,∞), define

τnB := min{n, τ̆B, inf{k ≥ 0 : V (Z̆(k))rk ≥ n}}.
The random time τnB is a stopping time with respect to the filtration {F̆k}, since it is the minimum
of stopping times with respect to the same filtration. Note that, since {τnB ≥ i} ∈ F̆i−1, we have

Ex[V (Z̆(τnB))rτ
n
B ] = Ex[V (Z̆(0))] + Ex

[τnB−1∑
k=0

(Ex[V (Z̆(k + 1))rk+1 | F̆k] − V (Z̆(k))rk)

]
.

(3.16)
Fix N > 0. From (3.15) and (3.16), we see that

0 ≤ Ex[V (Z̆(τnB))rτ
n
B ] ≤ V (x)+ Ex

[τnB−1∑
k=0

(rk+1b 1C(Z̆(k))− εV (Z̆(k))rk+1 ∧N)
]
. (3.17)

https://doi.org/10.1239/jap/1316796917 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796917


Geometric drift inequality for an RFBM process on the positive orthant 829

Hence, by adding a finite term to each side of (3.17), we get

Ex

[τnB−1∑
k=0

(εV (Z̆(k))rk+1 ∧N)
]

≤ V (x)+ Ex

[τnB−1∑
k=0

rk+1b 1C(Z̆(k))
]

≤ V (x)+ Ex

[τ̆B−1∑
k=0

rk+1b 1C(Z̆(k))
]
.

Letting n → ∞ and then N → ∞ gives

Ex

[τ̆B−1∑
k=0

(εV (Z̆(k))rk+1)

]
≤ V (x)+ Ex

[τ̆B−1∑
k=0

rk+1b 1C(Z̆(k))
]

(3.18)

by the monotone convergence theorem. Finally, multiplying both sides of (3.18) by ε−1r−1 ∈
(0,∞) yields (3.14).

As an immediate consequence of Theorem 3.2, we obtain the following result.

Theorem 3.3. There exists r > 1 such that

sup
x∈C

Ex

[τ̆C−1∑
k=0

V (Z̆(k))rk
]
< ∞, (3.19)

where the set C ⊂ S is as in Theorem 3.1. Hence, in particular, we have

sup
x∈C

Ex[rτ̆C ] < ∞. (3.20)

Remark 3.3. A set C satisfying (3.19) or (3.20) is respectively known as a V -Kendall set or a
Kendall set in the Markov processes literature (cf. Chapter 15 of [20]).

Proof of Theorem 3.3. By choosing B = C in Theorem 3.2, we have

V (x) ≤ Ex

[τ̆C−1∑
k=0

V (Z̆(k))rk
]

≤ ε−1r−1V (x)+ ε−1b 1C(x).

Therefore, we obtain

sup
x∈C

Ex

[τ̆C−1∑
k=0

V (Z̆(k))rk
]

≤ ε−1r−1 sup
x∈C

V (x)+ ε−1b ≤ ε−1r−1eδ + ε−1b < ∞.

Result (3.20) then straightforwardly follows by noting that V (Z̆(k)) ≥ 1 for all k ≥ 0.

Next we show that Theorems 3.1, 3.2, and 3.3 hold with the sublevel sets of V , which can
be chosen larger than the set C = {x ∈ S : T (x) ≤ 1}. We refer the reader to Theorem 15.2.6
of [20] for similar results for a class of ψ-irreducible Markov processes.

Theorem 3.4. Let δ, β, b ∈ (0,∞) and C ⊂ S be as in Theorem 3.1. Then, there exist
β ′, c ∈ (0,∞) and a compact set D ⊃ C in S such that

�V (x) ≤ −β ′V (x)+ c 1D(x), x ∈ S, (3.21)

and, therefore, Theorems 3.2–3.3 hold with D in place of C.
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Proof. Fix �−1 ∈ (1 − β, 1), choose M ∈ (0,∞) sufficiently large so that

eδ ≤ M + b

�−1 − (1 − β)
,

and define

D :=
{
x ∈ S : V (x) ≤ M + b

�−1 − (1 − β)

}
.

Then, it follows that C ⊂ D and, moreover, the set D is compact in view of Lemma 3.1(ii).
Using Theorem 3.1, we have

Ex V (Z̆(1)) ≤ �−1V (x)− (�−1 − (1 − β))V (x)+ b 1C(x)

≤ �−1V (x)−M ≤ �−1V (x) for all x ∈ Dc,

from the definition of the set D. Also, it follows that

Ex V (Z̆(1)) ≤ (1 − β)V (x)+ b ≤ c for all x ∈ D,
for some c ∈ (0,∞), since V is bounded on D by construction. Thus, we have shown that

Ex V (Z̆(1)) ≤ �−1V (x)+ c 1D(x) for all x ∈ S,
and, hence, (3.21) follows with β ′ := 1 − �−1 ∈ (0,∞). Hence, using Theorem 3.2 (replacing
the sets B and C by the set D), there exist s ∈ (1,∞) and ε ∈ (0,∞) such that

Ex

[τ̆D−1∑
k=0

V (Z̆(k))sk
]

≤ ε−1s−1V (x)+ ε−1c 1D(x).

Since V is bounded on D, this leads to

sup
x∈D

Ex

[τ̆D−1∑
k=0

V (Z̆(k))sk
]
< ∞,

and, hence, supx∈D Ex[sτ̆D ] < ∞.
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