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Abstract

The interpretation of the ‘standard’ Palm version of a stationary random measure ξ is that
it behaves like ξ conditioned on containing the origin in its mass. The interpretation of
the ‘modified’ Palm version is that it behaves like ξ seen from a typical location in its
mass. In this paper we shall focus on the modified Palm version, comparing it with the
standard version in the transparent case of mixed biased coin tosses, and then establishing
a limit theorem that motivates the above interpretation in the case of random measures
on locally compact second countable Abelian groups possessing Følner averaging sets.
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1. Introduction

The Palm version of a stationary random measure ξ is an important tool in probability. It
is however not well known that there are in fact two Palm versions, with related but different
interpretations. For want of other terminology, let us here call the well-known version standard
and the less-known version modified. Denote them ξ s and ξm, respectively.

The informal interpretation of the standard Palm version ξ s is that it behaves like the
stationary ξ conditioned on the origin lying in the mass of ξ (or, in the case of a simple
point process, conditioned on there being a point of ξ at the origin).

The informal interpretation of the modified Palm version ξm is that it behaves like the
stationary ξ seen from a typical location in the mass of ξ (or, in the case of a simple point
process, seen from a typical point of ξ ). Now, this is also a common interpretation of the
standard Palm version ξ s, but such an interpretation is flawed unless ξ s and ξm have the same
distribution, which happens for instance in the ergodic case (see Section 4).

In this paper we focus on the modified Palm version and its interpretation, using coin tosses
as a transparent example. The concepts of shift-coupling and mass-stationarity play key roles
in proving the main result, Theorem 7.1. That result motivates the above interpretation of ξm in
the case of random measures on locally compact second countable Abelian groups possessing
Følner averaging sets (see Section 3), for instance on R

d .
The plan of the paper is as follows. In Section 2 we compare the two Palm versions in the case

of mixed (possibly) biased coin tosses. Section 3 sets up the general framework for the formal
definition of the two Palm versions in Section 4. Shift-coupling is considered in Section 5 and
mass-stationarity in Section 6. In Section 7 we prove the main result and Section 8 concludes
with some historical remarks.
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272 H. THORISSON

2. Example: coin tosses (possibly biased)

For each 0 < p < 1, let (ξp(i) : i ∈ Z) be a doubly infinite sequence of independent and
identically distributed (i.i.d.) Bernoulli p random variables representing tosses of a coin having
probability p of coming up with a head. Let ξp be the associated Bernoulli random measure
on the integers Z defined by

ξp(B) =
∑
i∈B

ξp(i), B ⊆ Z.

Let ηp denote the restriction of ξp to the nonzero integers Z \ {0}, that is,

ηp(B) =
∑
i∈B

ξp(i), B ⊆ Z \ {0}.

Conditioning on a head at the origin, i.e. ξp(0) = 1, does not affect the other coin tosses; they
remain i.i.d. with probability p of coming up with a head. Thus, the standard Palm version ξ s

p

of ξp has a head at the origin, ξ s
p(0) = 1, and the restriction of ξ s

p to Z \ {0} behaves like ηp.
In order to deduce the structure of the modified Palm version ξm

p of ξp, note that the inter-
head distances of ξp are independent and all geometric p except the distance between the last
head before the origin 0 and the first head at or after the origin (that distance is the sum of
two independent geometric p variables minus 1, this is the waiting time paradox). Thus, if
we shift the origin of ξp to a typical head (a head chosen uniformly at random among all the
infinitely many heads so the exceptional interval disappears to infinity in the limit, stretch your
imagination) then we should obtain a random measure with a head at the (new) origin and inter-
head distances that are all i.i.d. geometric p. This is exactly the distributional structure of the
standard Palm version ξ s

p. Thus, the two Palm versions ξ s
p and ξm

p have the same distribution.
Now take q �= p, and let M be a (nontrivial) ‘mixing’ variable that takes only the values p

and q, and is independent of ξp and ξq (and of their Palm versions). Then the mixed Bernoulli
random measure ξM is still stationary, but the coin tosses are no longer independent.

In this mixed setting, conditioning on a head at the origin, ξM(0) = 1, affects the other coin
tosses ηM . Note that P(ξM(0) = 1) = pP(M = p) + qP(M = q), that is,

P(ξM(0) = 1) = E[M]. (2.1)

Note also that, by independence,

P(ηM ∈ ·, ξM(0) = 1, M = x) = P(ηx ∈ ·, ξx(0) = 1, M = x)

= P(ηx ∈ ·)xP(M = x), x = p, q.

Divide by (2.1) to obtain

P(ηM ∈ ·, M = x | ξM(0) = 1) = P(ηx ∈ ·)xP(M = x)

E[M] , x = p, q.

Thus, the standard Palm version (ξM)s of ξM behaves as ξ s
p and ξ s

q mixed by a size-biased
version of M ,

P(M = x | ξM(0) = 1) = xP(M = x)

E[M] , x = p, q.
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On the other hand, if we consider ξM as seen from a typical head then, conditionally on
M = x (for x = p, q), we would see i.i.d. geometric x inter-point distances. This is exactly
the distributional structure of the modified Palm version ξm

x of ξx (which also happens to be
the standard Palm version ξ s

x of ξx). Thus, the modified Palm version (ξM)m of ξM behaves as
ξm
p and ξm

q mixed by the original M ,

(ξM)m = ξm
M.

Thus, the two Palm versions (ξM)s and (ξM)m do not have the same distribution.

Remark 2.1. The random measure ξp has mass points of size 0 and 1. Let us briefly consider
random measures ξμ on Z with mass points of i.i.d. random size ξμ(i) having distribution μ.
Let the intensities cμ = E[ξμ(i)] be positive and finite (if μ is Bernoulli p then cμ = p).
Again, ξ s

μ = ξm
μ ; in both cases the restriction to Z \ {0} is as the restriction of ξμ to Z \ {0},

and the distribution of ξ s
μ(0) = ξm

μ (0) is now a size-biased version of μ,

P(ξ s
μ(0) ∈ dy) = P(ξm

μ (0) ∈ dy) = yμ(dy)

E[ξμ(0)] .

This size biasing is easy to guess from the interpretation of the modified version: placing a new
origin at a typical location in the mass of ξμ suggests that the new location should be chosen
with probability proportional to the mass y at that location. The results of the size biasing in
three particular cases are as follows. If ξμ(0) is Poisson then ξ s

μ(0) = ξm
μ (0) is distributed as

ξμ(0)+ 1. If ξμ(0) is exponential then ξ s
μ(0) = ξm

μ (0) is the sum of two independent copies of
ξμ(0). If ξμ(0) is geometric minus 1 then ξ s

μ(0) = ξm
μ (0) is the sum of two independent copies

of ξμ(0) plus 1.
Now take ν �= μ, and let M be a (nontrivial) mixing variable that takes only the values μ and

ν, and is independent of ξμ and ξν (and of their Palm versions). As before, although ξ s
μ = ξm

μ ,
the two Palm versions (ξM)s and (ξM)m do not have the same distribution: the standard Palm
version (ξM)s turns out (see Section 4) to behave as ξ s

μ and ξ s
ν mixed by an intensity-biased

version of M ,

P((ξM)s ∈ ·) = P(ξ s
μ ∈ ·)cμP(M = μ)

E[ξM(0)] + P(ξ s
ν ∈ ·)cνP(M = ν)

E[ξM(0)] ,

while the modified Palm version behaves as ξm
μ and ξm

ν mixed by the original M .

3. The stationary setting

The discussion in Section 2 is based on the informal interpretation of the two Palm versions.
We now set up the framework for their formal definition in Section 4. Let (�, F , P) be the
probability space supporting the random elements below.

Let G be a locally compact second countable topological Abelian group with Borel sets G
and Haar measure λ (in Section 2, G = Z under addition and G = 2Z). For t, s ∈ G, denote t

applied to s by ts, and denote the group inverse of t by t−1. In Corollary 5.1 and Theorem 7.1
below we further assume the existence of Følner sets, that is, sets Br ∈ G, r > 0, of finite
positive λ-measure such that (with ‘�’ denoting symmetric difference), for r → ∞,

Br ↗ G and
λ(Br�t−1Br)

λ(Br)
→ 0 for all t ∈ G.

For example, if G = R
d (under addition, with λ the Lebesgue measure) and B is a convex set

of positive finite volume containing 0 in its interior, then Br = rB, r > 0, are Følner sets.
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Let ξ be a random measure on (G, G). In association with ξ we consider a random element
X in a space (H, H) on which the group G acts measurably. This X could be another random
measure on (G, G) or a random field X = (Xs)s∈G indexed by G. Write θt for the shift map
placing a new origin at t ∈ G. For example, θt ξ is defined by

θt ξ(B) = ξ(tB), B ∈ G,

while, if X = (Xs)s∈G is a random field, the definition is

θtX = (Xts)s∈G.

Also, the joint shift is defined by

θt (X, ξ) = (θtX, θt ξ).

Let (X, ξ) be stationary, that is, with ‘
D=’ denoting identity in distribution,

θt (X, ξ)
D= (X, ξ), t ∈ G.

Let P be the stationary distribution

P(A) = P((X, ξ) ∈ A), A ∈ H ⊗ G.

4. The Palm versions

We now give a formal definition of the two Palm versions in the setting of Section 3. The
Palm measure P ξ of ξ with respect to the stationary P is defined by

P ξ (A) = E[∫
B

1{θs (X,ξ)∈A} ξ(ds)]
λ(B)

, A ∈ H ⊗ G,

where B ∈ G and 0 < λ(B) < ∞. Note that P ξ does not depend on B because the measure
B 
→ E[∫

B
1{θs (X,ξ)∈A} ξ(ds)] (with A fixed) is shift-invariant, owing to the stationarity of

(X, ξ), and thus is proportional to λ.
The Palm measure P ξ is not necessarily a probability measure because it need not have total

mass 1. The total mass of P ξ is the intensity c of ξ ,

c = E[ξ(B)]
λ(B)

.

If c < ∞, define the standard Palm distribution P s by

P s = P ξ

c
,

and call a pair (Xs, ξ s) with distribution P s the standard Palm version of (X, ξ).
Let I be the invariant σ -algebra on (H, H) ⊗ (G, G) defined by

I = {A ∈ H ⊗ G : θ−1
t A = A, t ∈ G}.

Let J be the invariant σ -algebra of (X, ξ), that is, the sub-σ -algebra of F defined by

J = (X, ξ)−1I.
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Define the sample intensity C of ξ by

C = E[ξ(B) | J]
λ(B)

.

If C < ∞ almost surely (a.s.), define the modified Palm distribution P m by

P m(A) = E[∫
B

1{θs (X,ξ)∈A} ξ(ds)/C]
λ(B)

, A ∈ G ⊗ H , (4.1)

and call a pair (Xm, ξm) with distribution P m the modified Palm version of (X, ξ). Note that
E[C] = c and that P s = P m if and only if C = c a.s.

For notational convenience, let both (Xs, ξ s) and (Xm, ξm) be defined on (�, F , P).

Remark 4.1. The Palm versions (Xs, ξ s) and (Xm, ξm) can be constructed in a similar two-
step (pathwise, measurewise) way as applied to random measures on R

d in [9] (see also the
notes in [18]), as follows.

Fix some B ∈ G such that 0 < λ(B) < ∞. Let SB be a typical location in the mass of ξ

on the set B conditionally on (X, ξ), that is, let SB be a random element in G with conditional
distribution ξ(· | B) given (X, ξ),

P(SB ∈ · | (X, ξ)) = ξ(· | B) := ξ(· ∩ B)

ξ(B)
(any distribution when ξ(B) = 0).

If c < ∞ then θSB
(X, ξ) has the standard Palm distribution P s under the measure P

s defined
on (�, F ) by

dP
s = ξ(B)

c
dP.

If C < ∞ P-a.e. then θSB
(X, ξ) has the modified Palm distribution P m under the measure P

m

defined on (�, F ) by

dP
m = ξ(B)

C
dP.

In [9] the constructions could be reversed to obtain the stationary version from the Palm
versions. Here the constructions can be reversed only when P(ξ(B) = 0) = 0.

5. Shift-coupling

In this section we present a shift-coupling result for the stationary (X, ξ) and its modified
Palm version (Xm, ξm). The proof is based on theory from [16] and [18].

Let Y and Z be random elements in a measurable space (K, K) on which the group G acts
measurably. Say that Y and Z admit shift-coupling if there exists (possibly after extension of
the underlying probability space) a random element T in G such that θT Y and Z have the same
distribution, that is,

θT Y
D= Z (shift-coupling).

The following theorem is from [16] (and holds without the restriction that G is Abelian); see
also Section 7.4 of [18, Chapter 7].

Theorem 5.1. The random elements Y and Z admit shift-coupling if and only if their distribu-
tions agree on the invariant σ -algebra of (K, K).
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Let ‖ · ‖ denote the total variation norm and let ‘�’ denote symmetric difference. From
θT Y

D= Z it follows (see [18, Chapter 7, Section 7.3]) that, for B ∈ G with 0 < λ(B) < ∞,

‖P(θUB
Y ∈ ·) − P(θUB

Z ∈ ·)‖ ≤ E

[
λ(B�T −1B)

λ(B)

]
(shift-coupling inequality),

where UB is distributed according to λ(· | B) and is independent of Y and Z (and T −1 denotes
the group inverse of T and not the inverse of T as a function of ω ∈ �).

Furthermore, suppose that there exist Følner sets Br, r > 0; see Section 3. Then the
shift-coupling inequality yields (by bounded convergence)

‖P(θUBr
Y ∈ ·) − P(θUBr

Z ∈ ·)‖ → 0 as r → ∞.

In particular, if Z is stationary then θUBr
Z

D= Z and this limit result can be written as

θUBr
Y

TV−→ Z as r → ∞,

where ‘
TV−→’ denotes convergence in total variation.

We are now at a key observation on our way towards motivating the interpretation of the
modified Palm version. (Here the condition that G is Abelian is not needed.)

Proposition 5.1. The distributions of the stationary (X, ξ) and its modified Palm version
(Xm, ξm) agree on the invariant σ -algebra of (H, H) ⊗ (G, G):

P(A) = P m(A), A ∈ I.

Proof. Take A ∈ I. Then {θs(X, ξ) ∈ A} = {(X, ξ) ∈ A}, and thus (see (4.1))

P m(A) = E[1{(X,ξ)∈A} ξ(B)/C]
λ(B)

. (5.1)

Both {(X, ξ) ∈ A} and C := E[ξ(B) | J]/λ(B) are measurable with respect to J, and thus

E

[
1{(X,ξ)∈A} ξ(B)

C

∣∣∣∣ J

]
= 1{(X,ξ)∈A} E[ξ(B) | J]

C
= 1{(X,ξ)∈A} λ(B).

Take the expectation, divide by λ(B), and consult (5.1) to obtain

P m(A) = E[1{(X,ξ)∈A}] = P(A). �

The above (with Y = (Xm, ξm), Z = (X, ξ) and with Y = (X, ξ), Z = (Xm, ξm)) yields
the following result.

Corollary 5.1. There exist (possibly after extension of (�, F , P)) random elements T m and T

in G such that
θT m (Xm, ξm)

D= (X, ξ) and θT (X, ξ)
D= (Xm, ξm).

Furthermore, suppose that there exist Følner sets Br, r > 0, and let UBr be a typical location
in Br and independent of (Xm, ξm), that is,

P(UBr ∈ · | (Xm, ξm)) = λ(· | Br).

Then
θUBr

(Xm, ξm)
TV−→ (X, ξ) as r → ∞.
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6. Mass-stationarity

Corollary 5.1 can be interpreted as saying that the stationary (X, ξ) behaves as (Xm, ξm)

seen from a typical location in the mass of λ. Our aim however is to establish the reverse
interpretation, namely, that the modified Palm version (Xm, ξm) behaves as (X, ξ) seen from a
typical location in the mass of ξ . For that purpose, we need mass-stationarity, a characterising
property of Palm measures introduced in [7].

Let Y be a random element in (H, H), and let η be a random measure on G having the origin
in its support. A set B ∈ G is called a λ-continuity set if its boundary ∂B has λ-mass zero,
λ(∂B) = 0. The pair (Y, η) is mass-stationary if, for all bounded λ-continuity sets B ∈ G of
positive λ-measure, it holds that

(θVB
(Y, η), UBVB)

D= ((Y, η), UB),

where UB and VB are random elements in G such that UB is a typical location in (the mass of
λ on) the set B and independent of (Y, η), that is,

P(UB ∈ · | (Y, η)) = λ(· | B),

and VB is a typical location in the mass of η on the set U−1
B B given ((Y, η), UB) (with U−1

B the
group inverse of UB ), that is,

P(VB ∈ · | (Y, η), UB) = η(· | U−1
B B) := η(· ∩ U−1

B B)

η(U−1
B B)

.

We still say that (Y, η) is mass-stationary when the above holds even if the distribution Q of
(Y, η) is only σ -finite.

The following theorem was established in [7] for Abelian G; the restriction to Abelian G

was removed in [6].

Theorem 6.1. A pair (Y, η) is mass-stationary if and only if its (possibly only σ -finite) distribu-
tion Q is the Palm measure P ξ of the (possibly only σ -finite) distribution P of some stationary
(X, ξ).

Note that, although the distribution P of (X, ξ) and the Palm measure P ξ can both be only
σ -finite, the distributions P s and P m of the two Palm versions are always probability measures
(when they exist).

Corollary 6.1. Both Palm versions (Xs, ξ s) and (Xm, ξm) are mass-stationary.

7. Interpretation of the modified Palm version

We are now ready for the limit theorem motivating the interpretation of the modified Palm
version in the case that the Abelian group G possesses Følner sets, namely,

(Xm, ξm) behaves like (X, ξ) seen from a typical location in the mass of ξ.

In this result we demand (as throughout the paper except in Theorem 6.1) that the distribution
P of the stationary (X, ξ) has mass 1.
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Theorem 7.1. Let (X, ξ) be stationary with sample intensity C < ∞ a.s. Let (Xm, ξm) be
the modified Palm version of (X, ξ). Suppose that G is Abelian and that there exist bounded
λ-continuity Følner sets Br, r > 0. Then

θSBr
(X, ξ)

TV−→ (Xm, ξm) as r → ∞,

where SBr is a typical location in the mass of ξ on the set Br given (X, ξ), that is,

P(SBr ∈ · | (X, ξ)) = ξ(· | Br), r > 0.

Proof. For convenience, write X for (X, ξ) and Xm for (Xm, ξm). Let UBr and VBr be as
in the definition of mass-stationarity, that is,

P(UBr ∈ · | Xm) = λ(· | Br)

and
P(VBr ∈ · | Xm, UBr ) = ξm(· | U−1

Br
Br), (7.1)

where U−1
Br

is the group inverse of UBr . By the mass-stationarity of Xm (Corollary 6.1),

‖P(θSBr
X ∈ ·) − P(Xm ∈ ·)‖ = ‖P(θSBr

X ∈ ·) − P(θVBr
Xm ∈ ·)‖.

Since G is Abelian, this can be rewritten as

‖P(θSBr
X ∈ ·) − P(Xm ∈ ·)‖ = ‖P(θSBr

X ∈ ·) − P(θUBr VBr
θ
U−1

Br

Xm ∈ ·)‖.

Since θSBr
X is obtained from (X, SBr ) by the same measurable map as θUBr VBr

θ
U−1

Br

Xm from
(θ

U−1
Br

Xm, UBr VBr ), we deduce from this that

‖P(θSBr
X ∈ ·) − P(Xm ∈ ·)‖ ≤ ‖P((X, SBr ) ∈ ·) − P((θ

U−1
Br

Xm, UBr VBr ) ∈ ·)‖. (7.2)

Now (7.1) implies that P(UBr VBr ∈ · | Xm, UBr ) = (θ
U−1

Br

ξm)(· | Br), and thus

P(UBr VBr ∈ · | θ
U−1

Br

Xm) = (θ
U−1

Br

ξm)(· | Br).

Thus, the conditional distribution of UBr VBr given the value of θ
U−1

Br

Xm is the same as that of
SBr given the value of X, that is,

P(UBr VBr ∈ · | θ
U−1

Br

Xm = ·) = P(SBr ∈ · | X = ·).

This implies (see Lemma 3.1 of [18, Chapter 6]) that

‖P((X, SBr ) ∈ ·) − P((θ
U−1

Br

Xm, UBr VBr ) ∈ ·)‖ = ‖P(X ∈ ·) − P(θ
U−1

Br

Xm ∈ ·)‖. (7.3)

Since G is Abelian, the sets B−1
r , r > 0, are λ-continuity Følner sets and

P(U−1
Br

∈ · | Xm) = λ(· | B−1
r ).

Thus, Corollary 5.1 yields ‖P(X ∈ ·) − P(θ
U−1

Br

Xm ∈ ·)‖ → 0 as r → ∞, and combining this
with (7.2) and (7.3) yields the desired result:

‖P(θSBr
X ∈ ·) − P(Xm ∈ ·)‖ → 0 as r → ∞. �
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8. Notes

When Conny Palm [13] introduced his theory in 1943, he was focussed on the randomised-
origin interpretation of what we now call Palm versions (see his Chapter 2). Thus, it is a pity
to use the term ‘modified’ for the Palm version with this interpretation. Also, strictly speaking,
the ‘modified’ Palm version is not really a modification of the ‘standard’ version. It can exist
even when the ‘standard’ version does not; we can have C < ∞ a.s. when c = E[C] = ∞. But
the ‘modified’ Palm distribution is a modification of the (formally simpler and more general)
Palm measure. So, what can be said?

The relationship between the two Palm versions and the role of the sample intensity C is
implicit in the 1962 paper [14] by Slivnyak, dealing with point processes on the line; see also
the 1978 book [11] by Matthes et al. In the early 1990s the modified Palm version and its
interpretation was rediscovered independently by Glynn and Sigman [3], Nieuwenhuis [12],
and this author [15], in the context of point processes on the line. In [17] the view was extended
to point processes on R

d .
The path of this author to the modified Palm version was through work on shift-coupling.

Shift-coupling, in the one-sided context of nonnegative integers, dates back to the amazing 1979
monograph by Berbee [2], where the link to the Cesaro total variation convergence (such as
in Corollary 5.1) was established. The term ‘shift-coupling’ was coined in the 1993 paper [1],
where the link to the invariant σ -algebra was established. The extension to the group setting of
the present paper is from the 1996 paper [16], where the shift-coupling inequality can also be
found (embedded in the proof of Theorem 2). See [18] for more background.

Mass-stationarity of random measures, an intrinsic characterisation of Palm measures,
was introduced in the 2009 paper [7]. It is a generalisation of point-stationarity of simple
point processes which was introduced in [17] (the necessity part of the point-stationarity
characterisation is in fact implicit in Satz 4.3 of the 1975 paper [10]). Point-stationarity is in turn
a generalisation of cycle-stationarity, the well-known characterising property of Palm measures
of simple point processes on the line that the inter-point distances (and the paths between the
points) form a stationary sequence. See [8] for a survey of developments concerning point-
and mass-stationarity and for some clarification in the compact-group case of the (mysterious)
double-randomisation property (see Section 6) used to define mass-stationarity.

The proof above of Theorem 7.1 is an example of how mass-stationarity works. It is
adapted from the proof of Theorem 9.3(b) of [17] (the double-randomisation property had
been established in Theorem 5.1 in that paper as a characterisation of point-stationarity, and
therefore of Palm versions, in the case of simple point processes on R

d ).
For a comprehensive treatment of random measures and Palm theory, see Olav Kallenberg’s

new book [5]. See also his Foundations of Modern Probability [4].
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