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SUMMARY

During the recent Ebola crisis in West Africa, individual person-level details of disease onset,
transmissions, and outcomes such as survival or death were reported in online news media. We
set out to document disease transmission chains for Ebola, with the goal of generating a timely
account that could be used for surveillance, mathematical modeling, and public health decision-
making. By accessing public web pages only, such as locally produced newspapers and blogs,
we created a transmission chain involving two Ebola clusters in West Africa that compared
favorably with other published transmission chains, and derived parameters for a mathematical
model of Ebola disease transmission that were not statistically different from those derived from
published sources. We present a protocol for responsibly gleaning epidemiological facts,
transmission model parameters, and useful details from affected communities using mostly
indigenously produced sources. After comparing our transmission parameters to published
parameters, we discuss additional benefits of our method, such as gaining practical information
about the affected community, its infrastructure, politics, and culture. We also briefly compare
our method to similar efforts that used mostly non-indigenous online sources to generate
epidemiological information.
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INTRODUCTION

The Ebola virus disease epidemic in 2014 highlighted
barriers to timely, accurate, sufficiently detailed, and

accessible case and community data. Mathematical
modelers of infectious disease need parameters
derived by reported transmission events, including
who infected whom and when, to generate appropri-
ate model transmission parameters. In addition, they
need to know the nature of and context surrounding
contacts, both of which come into play when trying
to forecast disease. Data meeting these requirements
for the Ebola virus disease epidemic were not avail-
able. In spite of best efforts at forecasting through a
very engaged modeling community, the paucity of
case transmission data was cited as one of the reasons
for disease forecasts that greatly overestimated the
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number of likely cases [1]. The total outbreak size is
now estimated at <29 000 documented cases [2], and
yet early model projections forecasted more than 1
million cases.

Late 2014 saw many online Ebola virus disease
transmission stories events recounted online, some
with the level of detail necessary for generating
model parameters. Some of these online transmission
accounts included remarkable detail of transmission
events, including dates of contact, contact names,
and the dates of symptom onset. The distribution of
individual incubation periods (the period between
infection and clinical presentation of symptoms) is
important for assessing the duration of quarantine
strategies [3]. The distribution of serial intervals or
generation times between subsequent cases in trans-
mission chains is required to extract estimates of the
population reproductive number from time series of
case counts [4] and is useful for assessing the effective-
ness of patient isolation in preventing transmission
during various stages of disease progression [5].
Finally, the variability in the number of transmissions
from individual cases is useful for characterizing new
outbreak probabilities and the circumstances of poten-
tial superspreading events [6].

We set out to discover whether, using only online
publicly available sources, we could discover sufficient
details to create an accurate Ebola virus transmission
chain for cases that were diagnosed and documented
during May–October 2014 and thereafter use this
transmission tree to generate reliable estimates for
key disease parameters. We present our method for
building a transmission chain, briefly compare it to
published examples for two clusters, examine the reli-
ability of the associated disease transmission para-
meters, and then discuss the benefits and challenges
of our approach. We conclude with thoughts on gen-
eralizability of this approach and application to the
next public health emergency.

METHODS

Between August and October 2014, we conducted a
human search and review of publicly available
Internet resources to find and record person-level
accounts of Ebola transmission in West Africa, espe-
cially focusing on news stories and online sources ori-
ginating from the affected countries. Our preferred
(sought out) online sources were those that had
records of reporting as news organizations for the
populations in the affected areas. Online, hyperlinked

lists of newspapers by country provided one means for
identifying these news sources. Through the advanced
search features in popular internet search engines
(including Google Search), we were able to conduct
internet searches with query returns as they appeared
in Guinea, Liberia, Nigeria, and Sierra Leone.
(Most news sources identify their geographic distribu-
tion and scope by regions, communities, or countries,
though we also checked the masthead (or its digital
equivalent) to verify where the sources were based.)
We adopted the heuristic that first-hand, primary
accounts of people, places, and transmission events
were reliable starting points for building the transmis-
sion narrative. In particular, we identified text within
these stories that detailed who acquired infection
from whom, dates, locations, and details of symptom
onset, quarantine, isolation, resolution, and exposure,
if known. We grouped sources by the events they
relayed, comparing accounts and attempting to cor-
roborate details between stories and checking that
they made sense from an epidemiological standpoint.
We continued building the chain until we could no
longer find earlier cases and the most recently exposed
people were at that time still in their incubation
periods.

Curating the transmission chain often required
matching imprecisely stated event dates, places, and
other details. We recorded vague or imprecise details
such as sometime during the previous week or during
her hospitalization with ranges of dates or simple state-
ments of fact (e.g., Case A and Case B were quaran-
tined on the same day). Documenting details that
were discovered during our search on a desktop calen-
dar proved to be helpful, as it was common to report
events according to days of the week, such as last
Thursday or the prior weekend. We also had to be cog-
nizant of times and dates, as, for example, ‘now’ in
Utah, USA is different than ‘now’ in Lagos, Nigeria.
Discrepancies between and across sources were
resolved using our best judgement, based on subject
matter expertise in infectious diseases, including
Ebola, while others that could not be precisely recon-
ciled were recorded and reported as uncertainties.

We fit the gamma distribution to these data on incu-
bation period and serial interval we collected. The
gamma distribution was chosen for consistency in com-
paring our results to those derived from World Health
Organization (WHO) data [5]. For the incubation per-
iod, we established a date or range of dates of exposure
and symptom onset for N= 23 individuals. We first
treated this information as doubly interval-censored

1994 W. B. P. Pettey and others

https://doi.org/10.1017/S0950268817000760 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268817000760


data [7], meaning that both the time of exposure and
time of symptom onset were not precisely known but
fell within finite intervals. Even when a precise date
for an event was reported, we assumed an interval for
the precise timing of the event across the 24-h period
of that date. We then reduced the data to single inter-
vals for each individual i= 1,. . .,N, representing possible
incubation periods, where the minimum possible incu-
bation period Ti

min was the minimum symptom onset
time minus the maximum time of exposure, and the
maximum possible incubation periodTi

max was the max-
imum symptom onset time minus the minimum expos-
ure time. We then optimized the gamma distribution
parameters by maximizing the likelihood function

L(θ) =
∏N

i=1

Fθ Ti
max

( )− Fθ Ti
min

( ){ }
,

where F_θ is the cumulative distribution function of the
gamma distribution with parameter set θ. Confidence
intervals were constructed using 10 000 bootstrap
resamples of the dataset. We found that the more
complicated likelihood function acting on the full
doubly interval-censored data produced nearly the
same maximum likelihood estimate, so we chose to
use the simpler likelihood function above to reduce
the computational time required to perform sufficient
bootstrapping.

For the serial interval, we collected the range of
possible symptom onset times for N= 28 pairs of
Ebola patients in which one patient was identified as
the source of infection of the second patient in each
pair. We then used the same likelihood function
above, where Ti

min and Ti
max were defined as the min-

imum and maximum possible intervals, for patient
pair i, between symptom onset times of the index
patient and the patient who acquired infection from
that index patient.

This study was reviewed by the Institutional Review
Board (IRB) of the University of Utah School of
Medicine and was determined to be exempt from
IRB oversight.

RESULTS

We accessed a total of 5340 web pages from 293 unique
web domains (example: liberianobserver.com) between
August 1 and October 31, 2014 in our search for infor-
mation to build an Ebola transmission chain for cases
reported in West Africa from May 1 to October 31,
2014. The time invested totaled approximately 60 h,
with half of these hours focused on the Nigeria and

St Joseph’s Catholic Hospital (Monrovia, Liberia)
clusters.

Fromour internet search, afinal set of 116onlinenews
stories were used to build the transmission chain seg-
ments. We focused especially on the segment represent-
ing transmission in the Nigeria cluster and St Joseph’s
Catholic Hospital cluster, which is displayed as
Figure 1. We tried, as often as possible, to use indigen-
ously produced news and web sites from the affected
countries. Sources included, but were not limited to,
news articles from Nigeria, including Vanguard,
Punch, Premium Times, Guardian, Observer, and from
Liberia, including FrontPage Africa, Liberian Observer,
Liberian Times, and The Inquirer [7–11]. (A list of these
online source links and which ones we used to build
Figure 1 is available in the Supplementary Material.)
We used blogs, news aggregation services, and televised
accounts of transmission as well, but generally these
served to improve our search queries. The social net-
working site Facebook was not a primary source, but
was helpful for verifying dates, especially when con-
nected friends and family wrote about loved ones who
were sick or deceased. Each news source had the poten-
tial to confirm or refute facts, or to open additional
paths for investigation through new clues, often by offer-
ing a different spelling for names, places, and events. To
provide further context to our search strategy, Table 1
provides a classification of these 116 online sources by
type of epidemiological information gleaned and by ori-
gin of the online source.

The transmission chains we constructed included
three-related segments comprised of 59 symptomatic
individuals who were infected with Ebola virus
between May and September 2014 in Guinea, Sierra
Leone, Liberia, and Nigeria. (For comparison, con-
tact tracing efforts in CDC reports that contact tra-
cing efforts in Nigeria alone identified 894 contacts,
requiring an estimated 18 500 face-to-face visits [12].)
Three major sections of the chain included Ebola
transmission involving an herbalist who seeded one
of the major Sierra Leone chains, a chain arising in
Redemption Hospital in New Kru Town, Monrovia,
Liberia, and a chain comprised of two large clusters
(St Joseph’s Catholic Hospital in Monrovia, Liberia,
and in Nigeria) stemming from a single Ebola case
(the left-most line in Fig. 1) leading to 37–38 infec-
tions in this section. For this paper, we focused our
efforts on refining the transmission chain from the
two clusters in Nigeria and at St Joseph’s Catholic
Hospital (illustrated in Fig. 1), and the transmission
parameters we present are based on those two clusters
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(we included the online sources for all three segments
in the Supplementary Material). Compared with pub-
lished sources such as Morbidity and Mortality
Weekly Report [12] and WHO 2014 reports (pub-
lished in early and late October, 2014, respectively),
we estimate that a low-resolution chain could have
been constructed by mid-September 2014, but the
final resolution with reliable parameters would have
required a further 3–4 weeks (mid-to-late October)
for the information to be available from the online
sources we used.

Based on the maximum likelihood fit of the gamma
distribution, we estimated the mean incubation period
to be 12·5 days (95% CI 10·6–14·5 days). The 5th

percentile incubation period result was 6·3 days (4·8–
8·8 days) and the 95th percentile was 20·4 days
(16·5–23·5 days). The mean serial interval was 19·4
days (17·6–21·3 days) with standard deviation 5·1
days. In Table 2, we compare our mean incubation
and serial interval estimates to other published results,
including those reviewed in Van Kerkhove et al. Our
range for the mean incubation period overlaps the
9–12 day range of estimates from these other studies,
but our mean serial interval estimate was higher
(Table 2). Our result of 20·4 days for the 95th percent-
ile incubation period was quite similar to the WHO
Ebola Response Team’s estimate of 21 days [5] in
2014, which at the time was the first evidence that

Fig. 1. Timeline showing transmission of Ebola virus disease developed from online, publicly available sources. Diamonds
represent noteworthy developments in Ebola infections. They are centered on the dates we identified, and elongated
diamonds represent uncertainty in the dates (multiple exposures may have occurred during some of these periods). Solid
lines represent transmissions at First Consultants Hospital in Lagos, Nigeria. Dashed lines represent transmissions in Port
Harcourt, Nigeria. Dotted lines represent transmission at St Joseph’s Catholic Hospital in Monrovia, Liberia. All cases in
these clusters originated with a single case, represented with the line entering the figure from the far left-hand side. This
same figure, annotated with the online sources, is available in the Supplementary Material.
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Table 1. Types of online sources used to build the Figure 1 transmission chain by type of online source and type of information helpful for building a transmission
chain

Origin of online source type

State Country International Cannot classify Total
n= 11 n= 72 n= 24 n= 9 n= 116

Epidemiologically important information from source (n, % origin of online source type)
Person 9 (0·82) 69 (0·96) 20 (0·83) 4 (0·44) 102 (0·88)
Case history 7 (0·63) 46 (0·64) 12 (0·5) 3 (0·33) 68 (0·59)
Transmission 6 (0·54) 44 (0·61) 14 (0·58) 3 (0·33) 67 (0·56)
Place 10 (0·91) 56 (0·78) 19 (0·79) 3 (0·33) 88 (0·76)
Date/time 10 (0·91) 57 (0·78) 17 (0·71) 4 (0·44) 87 (0·75)
Type of online source (n, % origin of online source type)
Forum/social news/blog 0 (0·0) 5 (0·07) 1 (0·04) 4 (0·44) 10 (0·09)
Reports/press releases 0 (0·0) 6 (0·08) 12 (0·5) 0 (0·0) 18 (0·16)
News 1 (1·0) 61 (0·85) 11 (0·46) 0 (0·0) 83 (0·72)
Cannot classify 0 (0·0) 0 (0·0) 0 (0·0) 5 (0·55) 5 (0·04)

Definitions

Local/state Content produced by and for local or state audience
Country Content produced by and for national audience (may include content by and for local or state regions)
International Content produced by and for audiences in more than one country
Cannot classify Unable to determine audience or contains a broad mix
Epidemiologically important information
from source

People Demographic details and other information that help identify individuals, including names, pronouns, sex, careers,
and more

Case history Information useful for developing model parameters, such as symptom onset and resolution, contact, and more
Transmission Information about contacts, contact circumstances, and contact events, including names, events, circumstances, and more
Place Descriptions of locations where individuals traveled, live, work, and more
Date/time Provides information for when events occurred
Type of online source
Forum/social news/blog Content produced by users
Reports & press releases Content produced by organizations and governments
News Content produced by a news media organization
Cannot classify Unable to determine content producer or contains a broad mix
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21-day quarantine policies were suitable for the West
African outbreak.

DISCUSSION

We have demonstrated that reviewing news reports and
online sources originating primarily within the coun-
tries ravaged by Ebola in West Africa yielded details
sufficient to create transmission trees of infection. In
addition, we were able to derive certain disease trans-
mission model parameters that compared favorably
with results published elsewhere. Having partial dates,
names, or locations, we estimate that approximately
two-thirds of the webpages and unique web domains
were found to be useful for our purposes of extracting

relevant details about the cases of Ebola (Table 1). We
conclude that these online details can provide a reason-
able means for epidemiologists and disease modelers to
derive reliable transmission parameters. In some cases,
data derived by this manner may suffice until superior
or additional data becomes available through those
who are directly involved in the outbreak response.
We list advantages as well as challenges of using this
method for building a transmission chain (Table 3).

Our approach to gathering epidemiological details
via indigenous online sources adds a ‘local’ news
angle to the growing collection of papers reporting
similar methods that tap international and specialty
online sources. A paper on the Ebola virus disease epi-
demic by Cleaton et al. [13] sourced reports from

Table 2. A comparison of Ebola virus disease parameters derived from online sources based largely in Guinea,
Liberia, Nigeria, and Sierra Leone as compared with other published estimates

Source Mean incubation period (days) Mean serial interval (days) Reference

Our estimate 12·5 (95% CI 10·6–14·5) 19·4 (95% CI 17·6–21·3)
Valencia et al. 12 [22]
Van Kerkhove et al. 9–12 (mean range) 14–15 (mean range) [23]
WHO 2014 11·4 (observed); 9·7 (fitted) 15·3 [5]
WHO 2015 10·3 14·2 [24]
Faye et al. 9·9 14·2 [25]

Note: The estimates in Van Kerkhove et al. are based on a review of other published estimates, including those listed here as
WHO 2014, WHO 2015, and Faye et al.

Table 3. Advantages and challenges of using publicly available online resources to build transmission chains

Advantages Comments

Timeliness Data are published often and can be near real-time
Accessible An internet connection is usually the only requirement
Potentially high granularity Data can include detailed contact events, onset times of specific symptoms
Understand extrinsic factors Appreciation for important social, economic, and political factors
Multiple reports of one event Many viewpoints can enrich and clarify events, and uncover others
Capture of probable events Can include likely infections not meeting a strict case definition
Reveal otherwise hidden details Journalists’ questions may reveal keys to transmission that might have gone undetected

Challenges Comments

Subject to news competition Only the most newsworthy and sensational events make the news.
Requires considerable effort Extract, match, and verify information; requires understanding of indigenous references
Disrespect for privacy News reports can be intrusive and reveal private details
Loose case definition Reporters may not be aware of or follow evolving, strict case definitions
Subject to media gags or
censorship

Some governments can place a media gag or restrict journalists

Subject to undocumented edits Online accounts can be altered and removed without warning
Unknown accuracy and precision Reports can include speculation, misinformation, contradictory information, and even lies.
Capture unpopular details May include politically/culturally unpopular events that might not be found in official

reports

1998 W. B. P. Pettey and others

https://doi.org/10.1017/S0950268817000760 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268817000760


US-based news agencies (The New York Times and
The Washington Post), from official WHO publica-
tions, and from an online news organization that
launched in October 2014 specifically to cover the
Ebola virus disease epidemic (EbolaDeeply, which
hired some reporters with indigenous knowledge
of the affected countries). Similarly, a paper by
Majumder et al. [14] involved assembly of an exten-
sive list of MERS-CoV cases from a 2014 outbreak
in Saudi Arabia. While the Majumder paper sourced
some smaller stories, it relied heavily on WHO press
releases, reports from the Saudi Arabia Ministry of
Health, and a paper from the New England Journal
of Medicine. Furthermore, a supplementary paper by
Chowell et al. [15], described as an ‘exten[sion] and
update’ of the Cleaton paper, reported successful
builds of 104 clusters of Ebola virus disease using
WHO reports, situational reports, and ‘online authori-
tative media outlets’. By contrast, we focused our
online searches on accounts written by indigenous
West African online sources for these same communi-
ties as the intended audiences.

Both approaches appear to yield details useful for
generating transmission trees and estimating modeling
parameters, and each of these approaches has its advan-
tages. The sources used in the Cleaton, Majumder, and
Chowell papers were trusted, ‘authoritative’ sources,
including reports generated by the public health organi-
zations themselves (such as the WHO reports), and stor-
ies authored by professional journalists who had
experience reporting in medical and public health news
beats. A potential risk of these sources is that some
(WHO situation reports aside) probably existed because
the Ebola and MERS-CoV epidemics had caught suffi-
cient worldwide attention. It is likely that these inter-
national news services and journal-based resources
would not have been publishing news during and prior
to the critical initial weeks of an outbreak, or for an out-
break that had failed to gather a worldwide audience.
An advantage of our approach is that the majority of
online sources we used were already publishing stories
at the local, state, or national level before the Ebola
virus disease epidemic began, persisted through it, and
most remain online to this day. While incorporating
Ebola virus disease stories into the regular news cycle
was new, familiarity with the culture and population
would have required few (if any) additional steps.

The transmission chain we constructed for the
Nigeria cluster compared favorably with the one
reported in the MMWR for the same cluster [12] and
similar (though not identical) to the account published

by Folarin et al., which was based on genomic and
official contact tracing records [16] (we are unaware
of any published versions of the cluster at St Joseph’s
Catholic Hospital in Monrovia, Liberia). Compared
with the MMWR report, our first-generation case dis-
ease onset times tended to be nearly 1 week later, and
were approximately the same for second- and third-
generation cases. Our transmission tree differs from
that in Figure 2.B reported in Folarin et al. in the num-
ber of cases (we have 20, they have 19) and in the num-
ber of second-generation branches stemming from the
index case (we have three, they have two). Both trans-
mission trees show 13 cases linked to the index case,
and the branches related to Port Harcourt secondary
and tertiary cases are in agreement. We were not able
to articulate why we had one more second-generation
branch than that stemming from the contact tracing
record as reported in Folarin. Of these three secondary
branches, two were fairly well established in the online
accounts: a professional contact to the Nigeria index
case fled to Port Harcourt, and a nurse to the index
case had extended contact with her fiancé. The third
second-generation branch was harder to establish,
though we believe there was sufficient evidence to sup-
port the case that a physician who contacted the index
case likely also had contact with his wife who later
became symptomatic. Explanations for the discrepan-
cies between our account and those recounted in
MMWR and Folarin include incorrect recall or recall
bias, errors (for example, one story detailed an
extremely unlikely account of patient–physician con-
tact, transmission, subsequent symptom onset, and iso-
lation all taking place on 28 July 2014), dissimilar use
of the concept of elapsed days, or just incorrect first-
or second-hand information. Whereas the contact
tracing information from the Folarin paper’s supple-
mentary material had precise dates for hospitalization
and symptom onset, we sometimes had to infer symp-
tom onset based on mentions of seeking medical
attention or hospitalization. Survivors gave the most
detailed reports, but they generally needed to be dis-
charged from isolation and spend some time recovering
before they could tell their stories to the media. There
was an inevitable loss of precision since as much as
2–4 weeks would elapse before survivors could meet
with journalists. In practice, this would cause in an
important lag or delay before these more precise
survivor-based details became available.

Incubation time data from Ebola patients collected
from online sources during the outbreak produced
estimates of both the mean and 95th percentile that
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were remarkably similar to those produced by WHO
2014 study [5], which required detailed investigation
of thousands of patients by workers in the affected
countries. While internet-derived data cannot replace
such investigations, their consistency in this case is
promising evidence that internet sources can be used
to derive at least reasonably accurate estimates of use-
ful incubation statistics. For example, the estimate of
20·4 days for the 95th percentile incubation time
could potentially have provided earlier, concrete
reassurance that the >21 day quarantine policy for
potentially exposed cases was likely to be reasonable.

Our estimate for the mean serial interval derived from
internet sources was higher than the WHO 2014 esti-
mate. A possible explanation for this difference is that
the news stories preferentially reported on patients
within more explosive portions of the outbreak, includ-
ing patients who were not identified and thus continued
to pose risk of transmission to their contacts well after
their symptoms began. Transmissions from these
patients would then produce longer serial intervals
than transmissions from patients identified earlier. This
phenomenon has been observed in data from outbreaks
of other diseases: serial intervals early in the 2003 SARS
outbreak in Singapore were observed to be longer than
those occurring later in the outbreak after control mea-
sures were implemented [17]. Similarly, serial intervals
during the recent explosive outbreak of MERS in
South Korea were observed to be longer than those
occurring during sporadic, smaller transmission clusters
in the Middle East [18].

Mean serial interval estimates during an outbreak
are useful in conjunction with incidence time series
for calculating estimates of the effective reproductive
number R [5]. Using these methods, an overestimate
of the mean serial interval would lead to an overesti-
mate of R [4]. We are unable to determine whether
using the methods we describe will regularly result in
conservatively high estimates of the reproductive num-
ber, or whether that may be a result of the particular
cases and clusters we investigated. Future research on
this issue may help provide clarification.

We can use our familiarity with the experiences to
explain some of the serial interval overestimation.
The bulk of the transmissions at St Joseph’s
Catholic Hospital happened after the hospital’s med-
ical director fell ill but was wrongly declared Ebola
negative (either a false-negative result or testing was
too early). About 5 days before this test, the medical
director had direct contact with a symptomatic
Ebola patient. Eleven days after the initial negative

test, the medical director’s health had not improved
and he was retested – this time the result was positive
for Ebola virus. Unfortunately, following the initial
test result (the false negative), many of those caring
for the medical director believed he was suffering
with malaria and relaxed their use of personal protect-
ive equipment. (We included the false-negative and
true-positive test events in Fig. 1 for the hospital dir-
ector.) This event produced relatively high-risk expo-
sures among the hospital staff some 5 days later
than what they would have otherwise encountered.
Our serial interval estimates were about 4 days longer
than those published by the WHO, some of which
may be the result of the unique circumstances sur-
rounding the exposures just outlined.

There are inherent strengths to using these types of
resources for generating transmission parameters. As
demonstrated in the paragraph above, familiarity
with event circumstances gleaned through reading
transmission accounts may help infectious disease
modelers think through anomalies in their data.
With respect to locally generated news and online
sources, reporters are often among a community’s
most connected and informed individuals, and the
rapid, competitive news cycle means details will
often be regular and timely. Reading personal
accounts of morbidity and mortality may lead to a
deep appreciation and compassion for the people
and their circumstances at the community level,
including reactions to and perceptions of public health
emergencies. Finally, public health agencies (local,
national, and more so for international) adopting
this approach may gain an understanding of unique
cultural and socio-political issues associated with an
infectious disease outbreak (e.g. West African funeral
practices). This appreciation is not inconsequential: ‘It
is the population experience of disease, in actual soci-
eties, that is the subject of our investigations’, write
Nancy Kreiger and Sally Zierler in their paper [19]
on the nature of explaining the public’s health.
‘Epidemiologic theory reminds us that our work has
a context, and that this context is human society’.

We acknowledge several limitations. The process is
resource-intensive and requires adjudicating conflicting
details. Sometimes informants speculate, descriptions
of people and events can be ambiguous, stories may
be updated without highlighting that corrections were
made, and newspapers may print inaccurate reports.
Reporters may not be aware of or follow official case
definitions – especially when those definitions are in
flux. It is not always possible to know a reporter’s
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accidental or deliberate political, cultural, or social
biases, or how thoroughly reporters vetted and corro-
borated their facts. The nature of interest-in-print and
privacy means certain important transmission activities
(such as sexual transmission of Ebola virus) likely will
not be printed. Government censoring or altering stor-
ies poses a risk to the timely availability of relevant
information. Nearly all of the stories we read were writ-
ten in English; reports in other languages would likely
add another level of complexity that could be addressed
by including native speakers on research teams. Not
surprisingly, the most sensational and extreme events
were the most likely to be reported (journalists some-
times refer to this as the Man Bites Dog effect) and
also the most detailed, and therefore the easiest to
document. The events related to the Ebola cluster in
Nigeria, for example, were easy to reconstruct because
they generated intense public interest and press cover-
age: vivid headlines and stories relayed tales of nurses
and physicians who died preventing Nigeria’s Ebola
index patient – who Nigeria’s (then) President
Goodluck Jonathan called ‘a crazy man’ – from escap-
ing into Lagos, Nigeria, a city of 21 million people,
with one of the world’s deadliest infectious diseases.
Among the dead were a soon-to-be-married (and preg-
nant) nurse and a physician who came from one of
Nigeria’s most prominent families. In this regard, it
would be important to perform these searches with
respect and compassion. Online newspaper reports
appear to be excluded from recent discussions on the
ethics of mining social media and big data for public
health purposes [20, 21]. Finally, the true extent of
the outbreak would likely not be known from news-
paper reports.

It is important to consider the generalizability and
future applicability of this approach. It is likely that
we could reproduce this strategy for another cluster
of cases in the recent Ebola outbreak or another pub-
lic health crisis; the key factor is the availability of
person-level details. It would be challenging to predict
the level of details available especially as the next out-
break may be in a different region of the world with
different social morays, news reporting practices,
and expectations of privacy.

In conclusion, we have shown how mining person-
level details from local publicly available online
sources can yield chains of transmission useful both
for general understanding of transmission and also
for deriving parameters useful to infectious disease
modelers. While acknowledging the tragic nature of
the circumstances and with respect for the privacy of

patients and the heroic, selfless acts of providers who
have risked their lives to control this outbreak, we pro-
vide a protocol and guidance for extracting details
that would be of benefit to public health.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found
at https://doi.org/10.1017/S0950268817000760
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