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SUMMARY

Mathematical modelling is an established tool for planning and monitoring vaccination

programmes. However, the matrices describing contact rates are based on subjective choices,

which have a large impact on results. This paper reviews published models and obtains prior

model probabilities based on publication frequency and expert opinion. Using serological survey

data on rubella and mumps, Bayesian methods of model choice are applied to select the most

plausible models. Estimates of the basic reproduction number R0 are derived, taking into account

model uncertainty and individual heterogeneity in contact rates. Twenty-two models are

documented, for which publication frequency and expert opinion are negatively correlated. Using

the expert prior with individual heterogeneity, R0=6.1 [95% credible region (CR) 4.3–9.2] for

rubella and R0=19.3 (95% CR 4.0–31.5) for mumps. The posterior modes are insensitive to the

prior for rubella but not for mumps. Overall, assortative models with individual heterogeneity are

recommended.

INTRODUCTION

Infectious disease modelling is an important element

in the planning of mass vaccination programmes.

While many models are available [1–5], most com-

monly used are the deterministic age-stratified SIR

(susceptible–infected–removed) models and their

variants. For a modern treatment, see ref. [3]. These

models have been used to study measles [6–18],

mumps [18,19], rubella [12, 14, 15, 18–21], whooping

cough [22], Haemophilus influenzae type b (Hib) [23],

varicella [24–26], parvovirus B19 [19], hepatitis A [27]

and hepatitis B [28]. They have helped guide the in-

troduction of mass vaccination programmes [20, 24]

and monitor their implementation [29]. They have

also been used to estimate epidemiological par-

ameters, including forces of infection, reproduction

numbers and immunization thresholds [3, 19, 30].

In this paper we document some of these models,

distinguished primarily by assumptions about contact

patterns. These are represented by matrices of contact

rates, describing the contacts between individuals in a

small number of distinct age groups. Our review is,

therefore, one of contact rate matrices, known vari-

ously as contact, mixing, or WAIFW (Who Acquires

Infection From Whom) matrices [3].

The contact matrix cannot generally be estimated

directly from epidemiological data without strong

assumptions. Four approaches have been taken. The

first and least satisfactory is to allow mathematical

tractability to determine model choice. In the simplest

model, contact rates do not vary with age [31]. More

elaborate tractable models include those based

on proportional mixing [32, 33] in which the age
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distribution of contacts is the same at all ages. Such

models ignore important epidemiological features of

many infections. The second approach, most com-

monly used, is to reduce the number of parameters so

that they become identifiable, without sacrificing key

epidemiological features [3]. However, there is no

obvious way of choosing between models : different

models fit the data equally well, but can produce quite

different values of quantities such as the basic repro-

duction number R0 [19, 27]. R0 is the average number

of secondary infections produced by a single typical

infective in a completely susceptible population. It is a

measure of the epidemic potential of an infection: the

larger the value of R0 the more difficult the infection

will be to eradicate. A third approach [34, 35] is to

survey a measurable proxy variable, for example fre-

quency of conversations. This method is attractive,

but relies on the questionable assumption that con-

versations are representative of contacts. The fourth

approach, which we adopt in this paper, is to exploit

the fact that different infections may share the same

route of transmission. This has been described in

Farrington et al. [19]. Briefly, if two infections share

the same route of transmission, then their contact

matrices should be roughly proportional. This can be

formulated in a Bayesian statistical framework to de-

rive a criterion with which to assess the relative

plausibility of different models.

We determine a collection of matrix models used

for modelling common childhood infections, and

specify informative prior probabilities for these mod-

els. We then derive posterior probabilities for each

model and obtain point and interval estimates of R0

for mumps and rubella, taking into account both

sampling variability and model uncertainty.

Throughout, we also investigate the impact of indi-

vidual variability in contact rates.

METHODS

Modelling contact rates

The underlying assumption of all matrix models is

that contacts between individuals occur at rates that

differbetweena small numberKofage groups (aix1,ai],

i=1, …, K where a0=0 and aK is the maximum

age, taken to be 100 years. Contacts are described by a

KrKmatrix Bwhose entries denote the rate at which

individuals in one age group make contacts with in-

dividuals in another age group. ‘Contacts ’ refers to

those that are epidemiologically relevant, depending

on the transmission route of the infection. For infec-

tions transmitted by airborne droplets, for example,

contact implies close spatio-temporal proximity.

The contact matrix is not usually directly observed.

We obtain it from the force of infection, namely the

rate at which susceptible individuals become infected,

estimated from serological survey data [36–38]. The

method is outlined in Appendix 1. In principle, B

could have up to K2 distinct entries. For infections

mainly transmitted by droplets, it is sensible to as-

sume B symmetric, thus reducing the number of dis-

tinct entries to K(K+1)/2. However, only K separate

parameters are estimable. Thus, the entries of B must

be restricted to at most K different values.

A typical 5r5 matrix is represented below. The

numbers 1–5 represent five distinct parameters dis-

tributed among the 25 possible positions.

1 1 4 4 5
1 2 4 4 5
4 4 3 4 5
4 4 4 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA:

For example, the three 1’s in the top left-hand corner

of the matrix imply that the contact rate within the

first age group is the same as the contact rates between

the first and second age groups. No further con-

straints are placed upon the parameters other than

that they should be non-negative.

Mumps and rubella data

A serological survey was undertaken in the United

Kingdom in 1986 to establish baseline immunity prior

to the introduction of measles, mumps and rubella

vaccine. The survey has been described in ref. [39]. We

used paired mumps and rubella data for males aged

1–44 years published in ref. [19]. The UK population

age structure in 1986 was obtained from ref. [40]. We

used only data on males as some teenage girls and

pregnant women were vaccinated against rubella in-

fection. This selective vaccination programme reduces

slightly the force of infection in males by reducing

contacts with infectious teenage girls and older

women. However, the effect is small as relatively few

infections occur in older age groups, and we therefore

decided to ignore it.

Matrix models

We searched the epidemiological literature up to

2001 for age-stratified compartmental models. We
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restricted our search to symmetric models used for

modelling infections of childhood in developed coun-

tries including measles, mumps, rubella, pertussis,

varicella, Hib, parvovirus, hepatitis A and hepatitis B.

With the exception of hepatitis A and B, all these in-

fections are transmitted by a combination of airborne

droplets and direct contact [41]. We included models

for hepatitis A and B provided they did not incor-

porate any features specific to faecal–oral or sexual

transmission. We excluded two asymmetric models

for Hib designed to capture specific features of close

contact in Hib transmission [23].

We restricted our search to models of the type

popularized by Anderson and May [3]. Thus, we

excluded continuous mixing models [42, 43]. We

excludedmodels used primarily for their mathematical

tractability, such as homogeneous and proportional

mixing models [33, 44]. We excluded models that

we deemed to be unreasonable on epidemiological

grounds, such as purely assortative models with zero

off-diagonal entries [30, 45], or with contact rates

depending only on the age of the infective or of the

susceptible [3, 7, 12]. More generally, we only included

models if they had been used for estimation rather

than mathematical modelling per se [46]. Finally, we

excluded finely age-stratified models [16, 47] which we

could not accommodate owing to the limitations of our

data.

Prior structural probabilities

Given a contact matrix M, the prior structural prob-

ability p(M) quantifies the a priori plausibility of

structure M. We used three sets of prior structural

probabilities.

The first was obtained by assigning an equal prob-

ability to each model. Thus, if there are N models Mi,

i=1, …, N, we set p(Mi)=1/N. This prior is unin-

formative: it does not exploit any additional expert

knowledge. We call this our ‘neutral prior ’.

Our second prior was obtained by counting the

number of times ri each matrix Mi was used in the

published literature, and set p(Mi)=ri/Srj. This is our

‘publication prior ’. Here Srj refers to the total num-

ber of matrices referred to, not the total number of

papers. This prior sought to capture the implicit be-

liefs of the epidemiological research community

through their actual model choices.

Finally, we elicited a prior from a panel of five

epidemiologists currently actively engaged in math-

ematical modelling of infectious diseases (other than

this qualification, our choice of experts was entirely

ad hoc). To these experts we sent a document includ-

ing (a) the rationale of the study, (b) our list of models

with references to their use in the epidemiological

literature, and (c) a questionnaire. Panelists were

invited to state whether we had overlooked a model

that they considered important, to assign scores to the

models in the list proposed to them, and to comment

on the models and the elicitation procedure. If pan-

elist j assigned score sij to matrix model Mi, we cal-

culated

p(Mi)=
1

5

X5

j=1

sij
Sisij

� �
:

The rationale behind this ‘expert prior ’ was to quan-

tify the explicit preferences of experts currently

working in the field.

Bayesian model choice

We used a Bayesian approach to discriminate between

models [19, 48]. Mumps and rubella are transmitted

by similar routes, and hence should have similar

contact matrices BM and BR, up to some constant of

proportionality a. If the routes of transmission were

exactly the same, then BM=arBR. In practice we

would expect the matrices not to be exactly pro-

portional, owing to differences between mumps and

rubella virus. Our criterion for model choice was that

the plausibility of a model structureM increases as the

proportionality assumption is more closely met, as

measured by the log likelihood when fitting pro-

portional matrices. We distinguished between the

mixing structureM and the model B, which comprises

M together with a set of parameters b=(b1, b2, … ).

We assumed unspecified diffuse priors on [0, O) for

the bi and on [0,1] for a, and relied on asymptotic

theory. For large sample size n, the posterior prob-

ability of the serological data y given structure M,

p0(y|M), is approximated by

log p0(yjM) ’ log lik0(bbb, baa; y,Mn o
x1

2 (k+r) log nð Þ

+1
2 (kxr) log 2pð Þ, (1)

where k is the number of parameters, r is the number

of parameters estimated on a boundary, bbb and baa are

the maximum-likelihood estimates of b and a under

the proportionality assumption, and lik0 is the max-

imized likelihood. We followed Draper [48] in in-

cluding the term 1
2(kxr) log (2p), which gives greater

weight to more complex models. Equation (1) also

Matrix models 1011

https://doi.org/10.1017/S0950268805004528 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268805004528


differs from the Bayesian information (or Schwartz)

criterion [49] by allowing for parameters estimated on

the boundary, as described by ref. [50, pp. 170–171].

This is necessary since the priors on the parameters

are informative in this region. The effect of this ad-

justment is to downweight models for which some of

the contact rates are estimated to be zero.

Given two model structures M1 and M2, the Bayes

factor p0(y|M2)/p0(y|M1) measures the relative extent

to which the data supportM1 andM2 : a large value of

the Bayes factor favours M2, a small value favours

M1. Given a comprehensive universe of models Mi,

i=1, …, N, and prior probabilities p(Mi), we obtained

the posterior structural probabilities

p(Mi|y)=cp0(y|M1)p(M1),

the proportionality constant c being chosen so that

the probabilities sum to 1. These posterior prob-

abilities combine evidence from the data and prior

knowledge, and can be used as the basis for choosing

one or several models.

Estimates of the basic reproduction number that

take into account the variation attributable to model

choice were also obtained. For a given model struc-

tureMwe approximated the posterior distributions of

log R0 for mumps and rubella, pm(log R0 ; y,M) and

pr(log R0 ; y,M), by the normalized profile likelihoods

of log R0 with the matrix parameters for mumps and

rubella no longer subject to a proportionality as-

sumption [19]. The joint posterior distributions over

all models are thenP
i

pm(logR0; y,Mi)p(Mijy) andP
i

pr(logR0; y,Mi)p(Mijy)

from which posterior modes and 95% credible re-

gions (CR) based on regions of high posterior density

are derived. We used the log R0 scale to improve the

normal approximations involved.

Individual heterogeneity

So far we have only considered age variation in con-

tact rates. Variation in individual behaviour induces

further heterogeneity : individuals vary in their socia-

bility, and hence in their propensity to come into

contact with others. It is well known that heterogen-

eity increases the value of R0 [5, 51]. Nevertheless, in-

dividual heterogeneity is seldom allowed for in

practice. However, with paired serological survey

data, this effect can be estimated by incorporating it

into the model as a gamma-distributed frailty U [19].

We undertook all calculations both without and with

allowance for (individual) heterogeneity.

RESULTS

Matrix models

Our final list included 22 matrix models, listed in

Appendix 2. To avoid a proliferation of combi-

nations, we chose a single age grouping for each model

dimension. The following age groups (in years) were

chosen empirically so as to produce good model fits :

3 age groups: 1 matrix : 0–3, 3–10, 10+
4 age groups: 4 matrices : 0–3, 3–8, 8–15, 15+
5 age groups: 14 matrices : 0–3, 3–8, 8–13, 13–20, 20+
6 age groups: 3 matrices : 0–3, 3–8, 8–13, 13–20,

20–30, 30+

The matrices were classified according to type in

five categories labelled A to E.

Category A (6 matrices) comprised models with one

special mixing group for children of pre-school and

early primary-school age. These models have a single

dedicated parameter (a dedicated parameter is a par-

ameter occurring in just one cell) to model within-

group transmission in young children.

Category B (5 matrices) comprised models allowing

for teenage or secondary-school mixing. These models

have one or two dedicated parameters, one of which

models within-group mixing between teenagers or

older children.

Category C (4 matrices) comprised models allowing

for mixing with or within pre-school children. These

models either have a single dedicated parameter cor-

responding to mixing within pre-school children, or

have special off-diagonal parameters corresponding to

mixing between adults and children of pre-school age.

Category D (5 matrices) comprises assortative mix-

ingmodels, with dedicatedparameters on all but one or

two of the diagonal positions. These models broadly

differentiate between general background mixing, and

preferential contacts within age groups.

Category E (2 matrices) comprises models that are

essentially assortative, with some allowance for mix-

ing between adults and children.

This typology of contact structures is by no means

unique or exclusive. For example, matrix C2 could

also be listed in category A, and C4 in category E.

None of the expert panelists felt that there were any

major omissions in the list of matrix models proposed

to them, within the limits of the exercise.
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Prior structural probabilities

The neutral prior is p(Mi)=1/22, i=1, …, 22. The

publication prior is shown in Table 1; the references

used to construct it are listed in Appendix 2. The most

frequently used matrix was A2 (10 mentions) followed

by A3 (8 mentions) and D1 (5 mentions). None of the

others was used more than twice.

The five panelists scored the 22 matrices in broadly

concordant fashion: four panelists ranked E1 first ;

the fifth ranked it fourth. Thus, averaging the five in-

dividual priors is justified. The expert prior is shown

in Table 1. Matrix E1 obtained the highest expert

prior probability (0.2031), followed by C4(0.1098),

D3(0.0932) andD6(0.0877). None of the others scored

more than 0.05.

The Spearman rank correlation between the publi-

cation and expert priors isx0.47,P=0.029 calculated

using a two-tailed Monte Carlo permutation test :

the two priors are significantly negatively correlated.

Mumps and rubella data, models and posterior

distributions

Paired serological survey data were available on n=
4193 boys. Figure 1 shows the bivariate distribution

of serological test results formumpsand rubella by age.

Goodness of fit

All regular models gave acceptable deviances when

fitted separately to the mumps and rubella data, and

when fitted to the paired data using frailty models ; the

regular models are those for which the unrestricted

maximum-likelihood estimates satisfy the non-

negativity constraints. The best fit was achieved with

the regular 4r4 models, with deviances 41.53

[40 degrees of freedom (D.F.), P=0.40] for rubella,

48.87 (40 D.F., P=0.16) for mumps, and 141.72 (123

D.F., P=0.12) for the frailty model. The worst model

fit for a regular model was for the 3r3 model A1,

with deviances 48.70 (41 D.F., P=0.19) for rubella,

56.75 (41 D.F., P=0.05) for mumps, and 154.20 (125

D.F., P=0.04) for the frailty model. The regular 5r5

and 6r6 models achieved a similar goodness of fit to

the 4r4 models. Non-regular models, namely those

with a contact rate parameter constrained to zero,

generally produced considerably worse fits than

regular models of the same dimension.

Bayes factors: no individual heterogeneity

Matrix A6 gave the maximum probability in eq (1)

and so was chosen as reference. The Bayes factors

(r100) relative to matrix A6 for the models without

heterogeneity are shown in Table 1. The smaller the

Bayes factor, the less the data supports the matrix

relative to A6. Five matrices with high Bayes factors

relative to A6 stand out. This group includes A6,

B4, D4, E2 and A3, all with Bayes factors in excess

of 5 (A6w100). None of the 6r6 matrices scored

highly, all producing non-regular fits under pro-

portionality.

Bayes factors: with individual heterogeneity

Allowing for heterogeneity, the matrix with the high-

est probability is D4. Table 1 shows the Bayes factors

Table 1. Publication and expert priors and Bayes’ factors without (H: no) and with (H: yes) individual

heterogeneity

Matrix

Priors Bayes factors (r100)

Matrix

Priors Bayes factors (r100)

Publication Expert H: no* H: yes# Publication Expert H: no* H: yes#

A1 0.0208 0.0115 4.997 8.759 C1 0.0417 0.0292 0.000 0.000
A2 0.2083 0.0301 3.216 3.044 C2 0.0208 0.0377 1.905 3.041

A3 0.1667 0.0135 51.337 53.376 C3 0.0417 0.0187 0.000 0.000
A4 0.0208 0.0343 0.003 0.003 C4 0.0208 0.1098 0.000 0.000
A5 0.0417 0.0147 2.552 0.874 D1 0.1042 0.0323 2.152 3.744

A6 0.0417 0.0312 100.0 6.596 D2 0.0208 0.0451 0.001 0.001
B1 0.0417 0.0255 0.003 0.369 D3 0.0208 0.0932 0.000 0.000
B2 0.0417 0.0285 0.000 0.000 D4 0.0208 0.0291 64.859 100.00

B3 0.0208 0.0348 0.000 0.0050 D5 0.0208 0.0877 0.010 0.022
B4 0.0208 0.0287 71.763 15.356 E1 0.0208 0.2031 0.220 0.001
B5 0.0208 0.0168 0.000 0.000 E2 0.0208 0.0445 60.814 0.603

* Relative to A6.
# Relative to D4.
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(r100) relative to D4. The matrices with Bayes factors

greater than 5 relative to D4, are, in descending order,

A3, B4, A1 and A6. Only A1 is not among the top five

without individual heterogeneity, although A6 is now

considerably less plausible.

Posterior structural probabilities

Table 2 gives the posterior structural probabilities

p(Mi|y) for the three prior distributions. Whatever the

choice of structural prior, the matrices with highest

posterior probability are A6, B4, D4, E2 and A3 for

the models without heterogeneity. For the models

with heterogeneity, the models with highest posterior

probability are a little more dependent on the priors.

Models D4, A3, and B4 are all among the top five

whatever the prior. The other two among the top five

positions are A6 and D1 for the expert prior, A2 and

D1 for the publication prior, and A1 and A6 for the

neutral prior.

Matrix E1 is not among the high scoring matrices,

in spite of a high prior probability from the elicitation

procedure and good fits to the data under pro-

portionality. The defining feature of matrix E1 is the

presence of parameter b5 in off-diagonal positions, to

allow for increased mixing between adults and chil-

dren. However, the estimate of b5 is zero when the

contact matrices for mumps and rubella are assumed

proportional. The term x1
2(k+r) log(n) in equation

(1) strongly penalizes models with parameters esti-

mated on the boundary.

Basic reproduction number

As expected [19, 27], the estimates of the reproduction

number R0 vary widely according to the model used;

allowing for heterogeneity increases their value (see

Table 3). The approximate posterior distributions of

log(R0) with and without heterogeneity for mumps

and rubella for the five most plausible models are

shown in Figures 2 and 3. Figures 4 and 5 show the

overall posterior densities for log(R0) for mumps and

rubella, taking into account both the sampling vari-

ation and the uncertainty in model selection between

all 22 models. Table 4 gives the principal modes and

95% CR for R0 based on high density regions of the

posterior of log(R0). For mumps, the position of the

principal posterior mode is sensitive to the structural

prior distribution used: the publication prior tends to

favour lower values of R0 ; the expert and neutral

priors produce broadly similar results. In contrast, the

95% CR are largely insensitive to the choice of prior.

Sensitivity to approximations

We repeated all calculations after omitting the term
1
2(kxr) log(2p) from equation (1), as advocated by

Raftery [52]. The only effect was to permute the

ranking of the five most plausible matrices : toD4, E2,

A3, A6, B4 for the models without heterogeneity, and

to D4, A3, A1, B4, A6 for the models with hetero-

geneity. As expected, inclusion of this term tends to

favour the models with more parameters. The pos-

terior distributions of log(R0) were largely unaffected.
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Fig. 1. Joint distribution of mumps and rubella seropositivity by age.
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DISCUSSION

The availability of good serological survey data has

enhanced the practical application of age-stratified

matrix models for infectious diseases. However, such

data are insufficient to identify the contact matrix

without strong assumptions. Our search of the litera-

ture revealed a great diversity of modelling assump-

tions, leading to widely different estimates of R0. In

this paper we sought to select the ‘best ’ models and

allow for model uncertainty using the methods of

ref. [19].

The underlying rationale for our approach merits

discussion. The choice of matrix model in a particular

study may be guided by the specific epidemiological

question the investigator is seeking to elucidate. It

may, therefore, be objected that, in working from our

list of 22 models, we have ignored the context in which

they were developed. However, while it is true that

different models may have been developed for differ-

ent purposes, it is also true that the investigator’s aim

in each case is to capture some important feature

of infection transmission. Our approach provides

a way of ranking and combining these features.

Furthermore, the expert prior allows for contextual

judgements, at least as perceived by the experts.

Nevertheless, we recognize that the Bayesian model

averaging approach remains controversial (see the

discussion in ref. [48]).

The preferences expressed in our ‘publication

prior ’ are likely to be strongly influenced by precedent

and seminal publications such as ref. [3], a form of

publication bias. For this reason we do not regard the

publication prior as a reliable indicator of current best

expert opinion. On the other hand, the neutral and

expert prior produced broadly similar results.

Interestingly, the models preferred by the experts

tended not to be supported by the data. This could

suggest that expert opinion is unreliable and may be

ignored. Perhaps more likely, it could also suggest

that our elicitation procedure, based on the simple

approach of allocating overall scores, did not suc-

cessfully exploit the panel’s expertise. More work on

elicitation methods in this area is required.

The elicitation exercise raised interesting issues.

Experts tended to prefer higher dimensional over

lower dimensional models per se rather than for sub-

stantive epidemiological reasons, a preference not

supported by the data. We suspect also that their

choice of matrix structure was influenced by beliefs

about matrix parameters. For example, four of the

five experts ranked matrix E1 first, probably with the

idea that b5>b6. Specifying such orderings may pro-

vide further discrimination.

We limited our elicitation exercise to matrix struc-

ture. In particular, we chose not to make any explicit

assumptions about priors on the parameters, other

than their range, e.g. bio0. Instead we relied on

approximations for Bayes factors. This was sufficient

to identify the groups of most plausible models ; the

orderings within these subgroups are perhaps of lesser

importance. In averaging over values for the basic

reproduction number R0 we used profile likelihoods

approximations to the posterior distributions. This is

not unreasonable since we are interested primarily in

‘ball park’ values of R0.

We kept the analyses with and without individual

heterogeneity separate as the literature generally ig-

nores it. However, the evidence for it is strong and its

magnitude is readily quantifiable. Ignoring individual

heterogeneity produces estimates of R0 that are far

too low.

The results for rubella are insensitive to the struc-

tural prior. For mumps, the posterior distribution of

log R0 is not unimodal and the relative height of the

Table 2. Posterior structural probabilities calculated

using three prior distributions

Matrix

No heterogeneity With heterogeneity

Expert
Publi-
cation Neutral Expert

Publi-
cation Neutral

A1 0.0053 0.0058 0.0137 0.0211 0.0141 0.0447

A2 0.0089 0.0372 0.0088 0.0192 0.0491 0.0155
A3 0.0638 0.4757 0.1411 0.1514 0.6891 0.2726
A4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

A5 0.0035 0.0059 0.0070 0.0027 0.0028 0.0045
A6 0.2880 0.2317 0.2749 0.0434 0.0213 0.0337
B1 0.0000 0.0000 0.0000 0.0020 0.0012 0.0019

B2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
B3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
B4 0.1900 0.0831 0.1972 0.0928 0.0248 0.0784
B5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C2 0.0066 0.0022 0.0052 0.0241 0.0049 0.0155
C3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D1 0.0064 0.0125 0.0059 0.0255 0.0302 0.0191
D2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D4 0.1739 0.0751 0.1783 0.6117 0.1614 0.5107
D5 0.0000 0.0000 0.0000 0.0004 0.0000 0.0001
E1 0.0041 0.0003 0.0006 0.0000 0.0000 0.0000

E2 0.2495 0.0704 0.1671 0.0056 0.0010 0.0031
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Table 3. Estimates of R0 for rubella and mumps for each matrix

Matrix

No heterogeneity With heterogeneity

Matrix

No heterogeneity With heterogeneity

Rubella Mumps Rubella Mumps Rubella Mumps Rubella Mumps

A1 5.19 4.19 8.01 7.48 C1 3.77 3.32 5.36 4.52
A2 3.77 3.21 5.80 4.64 C2 3.68 3.16 6.13 4.56
A3 3.87 3.35 5.86 5.00 C3 3.22 5.26 11.86 9.75

A4 3.56 3.75 5.48 6.61 C4 3.65 4.69 5.73 15.66
A5 3.78 3.28 5.82 4.82 D1 4.15 20.41 6.24 43.93
A6 3.86 5.81 5.93 9.93 D2 4.19 20.40 6.58 43.93
B1 3.79 3.34 6.04 4.79 D3 3.67 8.98 5.35 15.09

B2 3.20 3.58 6.63 5.93 D4 4.12 10.74 6.15 19.40
B3 3.20 3.58 6.54 5.96 D5 10.77 13.20 18.11 23.07
B4 3.87 5.83 5.92 9.83 E1 4.04 13.35 6.01 24.49

B5 3.28 5.68 6.91 12.93 E2 4.08 6.18 6.20 8.00
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Fig. 3. Rubella : approximate posterior densities of log(R0) for five plausible models. (a) Without heterogeneity ; (b) with

heterogeneity.
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heterogeneity.
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(a) Expert
Publication
Neutral

Expert
Publication
Neutral

Po
st

er
io

r 
de

ns
ity

1·0 1·5 2·0 2·5
log (R0)

3·0 3·5

(b)

0·0

0·5

1·0

1·5

0·0

0·5

1·0

1·5

2·0

2·5

3·0

1 2 3 4
log (R0)

5

Fig. 4. Mumps: approximate overall posterior densities of log(R0) based on three structural prior distributions. (a) Without

heterogeneity ; (b) with heterogeneity.

Table 4. Principal modes and 95% credible regions (CR) for R0

Prior
distribution

No heterogeneity With heterogeneity

Rubella Mumps Rubella Mumps

Mode CR Mode CR Mode CR Mode CR

Expert 4.10 3.00–5.31 6.17 3.16–11.82 6.11 4.31–9.21 19.30 4.01–31.50
Publication 3.90 2.97–5.21 3.35 3.06–10.70 5.99 4.06–8.94 4.44 3.71–11.59 [ 12.06–27.39

Neutral 4.10 2.97–5.31 6.17 3.16–11.82 6.05 4.31–9.30 19.30 3.97–29.67
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modes is sensitive to the prior. This is because the

seroprevalence profile for mumps is virtually flat in

older age groups, and hence there is very little infor-

mation in the data on contact rates between adults.

However, the credible regions were not unduly sensi-

tive to the prior. Overall, our preferences are for the

expert prior, and for the analyses with heterogeneity.

We conclude that R0 for rubella lies between 4.3 and

9.2 with mode 6.1, whileR0 for mumps lies between 4.0

and31.5,with (principal)mode19.3. If pressed to select

a ‘best ’ model type among those surveyed, we would

recommend assortative mixing models such as D4.

At the heart of our approach lies the proportion-

ality criterion for infections transmitted via the same

route: better fit under proportionality implies greater

plausibility. However, alternative methods based on

contact surveys [34, 35] imply direct proportionality

of contact matrices, and in this sense make still

stronger assumptions. The factors influencing trans-

mission of infections via the same route call for fur-

ther investigation [53]. The problem of identifying the

contact matrix is likely to continue to be a fertile area

of further research.

ACKNOWLEDGEMENTS

We thank our panellists John Edmunds, Mirjam

Kretzchmar, Graham Medley, James Nokes and

Jacco Wallinga. We also thank two anonymous re-

ferees for their constructive comments. This work was

supported by the Wellcome Trust, Project grant

061830.

APPENDIX 1. Estimation of contact rates

Let li denote the force of infection in age group i, D the duration of the infectious period, N the population size

and L the life expectancy. The contact rates bij are related to li by:

li=
ND

L

XK
j=1

bijIj, (A 1)

where Ij describes the distribution of infectious individuals. This is

Ij=
Xajx1

a=ajx1

m(a) S(a)xS(a+1)f g,

where m(a) is the proportion of the population alive at ages a=0, 1, …, 99. We set m(100)=0. S(a) is the

proportion of individuals of age a remaining uninfected:

S(a)=exp
�
xl1(a1xa0) . . .xljx1(ajx2xajx1)xlj(axajx1)

�
, for ajx1<afaj: (A 2)

Let B denote the KrK matrix with entries (ND/L)bij. Given a model for B, solve eqn (A 1) to obtain the

corresponding forces of infection li, obtain the proportions susceptible in each age group from eqn (A 2), and fit

them to serological survey data using a binomial model. The procedure is iterated to obtain the maximum-

likelihood estimate of matrix B. The basic reproduction number is the leading eigenvalue of the matrix ErB,

where E is the KrK diagonal matrix with jth diagonal element
Pajx1

a=ajx1
m(a):

APPENDIX 2. The matrix models

The references for each model are given in square brackets.

Category A models

A1 [13] A2 [3, 7, 11, 12, 14, 15,
19, 22, 24, 25]

A3 [6, 8–10, 16, 26,
27, 45]

1 1 3
1 2 3
3 3 3

0
@

1
A 1 1 3 4 5

1 2 3 4 5
3 3 3 4 5
4 4 4 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA

1 1 3 4
1 2 3 4
3 3 3 4
4 4 4 4

0
BB@

1
CCA
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A4 [20] A5 [3, 7] A6 [18, 21]

1 1 3 4 5 6
1 2 3 4 5 6
3 3 3 4 5 6
4 4 4 4 5 6
5 5 5 5 5 6
6 6 6 6 6 6

0
BBBBBB@

1
CCCCCCA

1 1 1 4 5
1 2 3 4 5
1 3 3 4 5
4 4 4 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA

1 1 1 1 5
1 2 4 4 5
1 4 3 4 5
1 4 4 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA

Category B models

B1 [7, 29] B2 [17, 29] B3 [29]

1 1 1 4 5
1 2 2 4 5
1 2 3 4 5
4 4 4 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA

1 1 1 1 5
1 2 2 2 5
1 2 3 4 5
1 2 4 3 5
5 5 5 5 5

0
BBBB@

1
CCCCA

1 1 1 1 5
1 2 2 2 5
1 2 3 4 5
1 2 4 a:3 5
5 5 5 5 5

0
BBBB@

1
CCCCA

with a=2
B4 [19] B5 [27]

1 1 4 4 5
1 2 4 4 5
4 4 3 4 5
4 4 4 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA

1 1 1 1
1 2 2 2
1 2 3 4
1 2 4 4

0
BB@

1
CCA

Category C models

C1 [7, 28] C2 [7] C3 [27, 45]

1 2 3 4 5
2 2 3 4 5
3 3 3 4 5
4 4 4 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA

1 1 3 4 1
1 2 3 4 5
3 3 3 4 5
4 4 4 4 5
1 5 5 5 5

0
BBBB@

1
CCCCA

1 2 3 2
2 2 2 2
3 2 4 4
2 2 4 4

0
BB@

1
CCA

C4 [23]

1 5 5 1 5
5 2 5 5 5
5 5 2 5 5
1 5 5 3 5
5 5 5 5 4

0
BBBB@

1
CCCCA

Category D models

D1 [3, 12, 18, 19, 21] D2 [20] D3 [23]

1 5 5 5 5
5 2 5 5 5
5 5 3 5 5
5 5 5 4 5
5 5 5 5 5

0
BBBB@

1
CCCCA

1 6 6 6 6 6
6 2 6 6 6 6
6 6 3 6 6 6
6 6 6 4 6 6
6 6 6 6 5 6
6 6 6 6 6 6

0
BBBBBB@

1
CCCCCCA

1 5 5 5 5
5 2 5 5 5
5 5 2 5 5
5 5 5 3 5
5 5 5 5 4

0
BBBB@

1
CCCCA

D4 [45] D5 [30]

1 4 4 4
4 2 4 4
4 4 3 4
4 4 4 4

0
BB@

1
CCA

1 5 5 5 5
5 2 5 5 5
5 5 3 5 5
5 5 5 3 5
5 5 5 5 4

0
BBBB@

1
CCCCA
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