
J. Aust. Math. Soc. 86 (2009), 145–154
doi:10.1017/S1446788708000529

VECTOR BUNDLES OVER A NONDEGENERATE CONIC

INDRANIL BISWAS ˛ and D. S. NAGARAJ

(Received 12 June 2007; accepted 12 December 2007)

Communicated by J. Du

Abstract

Let k be a field and X a k-form of the projective line. We classify all the isomorphism classes of vector
bundles over X .
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1. Introduction

Let k be any field. Let X be an absolutely irreducible regular closed subscheme of the
projective plane P2

k of dimension one and degree two. Such a scheme is also called a
nondegenerate conic. These are precisely the k-forms of the projective line. If X has
a k-rational point x0, then a projection from x0 gives an isomorphism of X with the
projective line P1

k .
A theorem of Grothendieck says that any vector bundle E of rank r over P1

k is
isomorphic to a vector bundle of the form

⊕r
i=1 OP1

k
(di ), where di ∈ Z and OP1

k
(1)

denotes the tautological line bundle, and, furthermore, the element {di }
r
i=1 ∈ Zr is

uniquely determined by E up to a permutation of the index set {1, 2, . . . , r}.
Assume now that the conic X does not have any k-rational point. We first show that

X admits a unique indecomposable vector bundle of rank two and degree two. This
unique vector bundle over X will be denoted by S. We then prove the following result
(see Theorem 4.1).

Any vector bundle E over X is isomorphic to a vector bundle of the form( r0⊕
i=1

(TX )
⊗mi

)
⊕

( r1⊕
i=1

S ⊗ (TX )
⊗ni

)
,
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where ni , mi ∈ Z and TX is the tangent bundle of X. Furthermore, the two elements
{mi }

r0
i=1 ∈ Zr0 and {ni }

r1
i=1 ∈ Zr1 are uniquely determined by E up to permutations of

the index sets {1, 2, . . . , r0} and {1, 2, . . . , r1} respectively.

In the special case where k is the field of real numbers, the above result was obtained
in [2] by a different method.

2. Preliminaries

Fix a field k. By a vector bundle on a scheme Y defined over k we will mean a
locally free OY -module of finite rank. For any integer n ≥ 1, the ample generator of
the Picard group of the projective space Pn

k is denoted by OPn
k
(1).

The following proposition is due to Grothendieck [3]; see [6, p. 61, Lemma 4.4.1]
for a proof.

PROPOSITION 2.1. Let E be a vector bundle of rank r over P1
k . Then E is isomorphic

to a direct sum of line bundles, or, in other words,

E ∼=
r⊕

i=1

OP1
k
(ni ),

where ni ∈ Z. Furthermore, the integers {ni }
r
i=1 ∈ Z⊕r are determined by E uniquely

up to a permutation of the index set {1, . . . , r}.

DEFINITION 2.2. Let X ⊂ P2
k be a closed subscheme of dimension one and degree

two. If X×Spec(k)Spec(k) is reduced and irreducible, where k is an algebraically closed
field containing k, then X is called a nondegenerate conic. A nondegenerate conic that
has no k-rational points is called a nondegenerate anisotropic conic.

Let X be a nondegenerate conic. If X has a k-rational point x0, then the incomplete
linear system

V := {s ∈ H0(X, OP2
k
(1)|X ) | s(x0)= 0}

gives an isomorphism of X with the projective line P(V )∼= P1
k .

3. A vector bundle on a nondegenerate anisotropic conic

In this section we will show that there is a unique indecomposable vector bundle
of rank two and degree two over a nondegenerate anisotropic conic. By ‘degree of a
vector bundle’ we mean the degree of any divisor corresponding to the top exterior
product of the vector bundle.

REMARK 3.1. Let X be a nondegenerate conic over a field k. If the field k is
algebraically closed or if k is a finite field, then it can be shown that X has a k-rational
point. Indeed, if k is a finite field, this is a consequence of the Chevalley–Warning
theorem (see [7]). If k is algebraically closed, then this fact is a consequence of the
Hilbert Nullstellensatz (see [1]).

https://doi.org/10.1017/S1446788708000529 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000529


[3] Vector bundles over a nondegenerate conic 147

LEMMA 3.2. Let X be a nondegenerate anisotropic conic over a field k. Then there
is a degree-two Galois extension k′ of k such that Xk′ = X ×k k′ admits a k′-rational
point. In other words, Xk′ is isomorphic to P1

k′ .

PROOF. The nondegenerate anisotropic conic X is a subscheme of P2
k that is defined

by some homogeneous polynomial F(Y1, Y2, Y3) of degree two in three variables
Y1, Y2, Y3.

First assume that the characteristic of the field k is different from two. By
specializing two of the variables suitably, we get an irreducible polynomial in one
variable. Set k′ to be the splitting field of this irreducible polynomial in one variable.
Then it is easy to see that the field k′ has the required property.

Now assume that the characteristic of the field k is two. If

F(Y1, Y2, Y3)= a1Y 2
1 + a2Y 2

2 + a3Y 2
3 + aY1Y2 + bY1Y3 + cY2Y3,

then from our assumption that X is nondegenerate it follows that at least one of a, b
and c is not zero. Say a 6= 0. Since X has no k-rational point, the polynomial

F(Y1, 1, 0)= a1Y 2
1 + a2 + aY1

is an irreducible separable polynomial of degree two. The splitting field k′ of this
polynomial F(Y1, 1, 0) has the required property. This completes the proof of the
lemma. 2

LEMMA 3.3. Let k be an infinite field and L be a field extension of k. Let V be a
finite-dimensional vector space over k. The subset

V = V ⊗ 1 ⊂ V ⊗k L =: VL

is dense in the Zariski topology.

PROOF. Using induction on n, we will show that any nonempty open subset of Ln

contains points of kn . The field k being infinite, any nonempty Zariski open subset
of L contains points of k, hence the statement is true for n = 1. Assume that, for all
j ∈ [1, n − 1], any nonempty open subset of L j contains points of k j .

Let U ⊂ Ln be a nonempty Zariski open subset. Take any point (c1, . . . , cn) ∈U .
Consider the nonempty Zariski open subset

Ucn := {λ ∈ L | (c1, . . . , cn−1, λ) ∈U } ⊂ L .

Fix any x ∈Ucn ∩ k, and consider the nonempty Zariski open subset

U ′x := {(λ1, . . . , λn−1) ∈ Ln−1
| (λ1, . . . , λn−1, x) ∈U } ⊂ Ln−1.

By the induction hypothesis, U ′x ∩ kn−1
6= ∅. For any (x1, . . . , xn−1) ∈U ′x ∩ kn−1,

we have (x1, . . . , xn−1, x) ∈U ∩ kn .
If V is a finite-dimensional vector space over k, then by choosing a basis V we can

identify V with kn and VL with Ln . This identifies the inclusion of V in VL with the
natural inclusion of kn in Ln . Therefore, the earlier observation completes the proof
of the lemma. 2
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LEMMA 3.4. Let Y be a variety defined over an infinite field k such that Y does not
admit any nonconstant regular functions. Let E and E ′ be two vector bundles over Y ,
and let L be a field extension of k. If E and E ′ are isomorphic after base change to L,
then they are already isomorphic over k.

PROOF. Let YL , EL and E ′L be the base changes to L of Y , E and E ′ respectively. If
EL and E ′L are isomorphic, then they remain isomorphic over any extension field of
L . Therefore, we can assume without any loss of generality that YL has an L-rational
point. We will assume so.

Set
V := H0(Y, Hom(E, E ′)), (3.1)

where Hom(E, E ′) is the sheaf of OY -module homomorphisms from E to E ′. By our
assumption on Y that it does not admit any nonconstant regular functions, the k-vector
space V is finite-dimensional. Consider the L-vector space

VL := H0(YL , Hom(EL , E ′L))∼= V ⊗k L . (3.2)

Since the two vector bundles EL and E ′L are isomorphic, it can be shown that there
is a nonempty Zariski open subset of the affine variety defined by VL (see (3.2)) that
parametrizes all the global isomorphisms of EL with E ′L . To explain this we fix an
L-rational point x0 ∈ YL . By sending any α ∈ VL to the homomorphism

r∧
α(x0) :

r∧
(EL)x0 −→

r∧
(E ′L)x0,

where r = rank(E)= rank(E ′), we obtain a section of the trivial line bundle over
VL with fibre Hom(

∧r
(EL)x0,

∧r
(E ′L)x0). This section constructed using x0 will

be denoted by sL . It is easy to see that sL(α)= 0 if and only if the homomorphism
α : EL −→ E ′L fails to be an isomorphism. Note that, since EL and E ′L are isomorphic,
the section sL is nonzero somewhere.

Let
UL ⊂ VL

be the nonempty Zariski open subset parametrizing isomorphisms of EL with E ′L .
Now from Lemma 3.3 it follows that V ∩UL is nonempty, where V is defined in
(3.1). Hence there is a homomorphism α ∈ V that is an isomorphism of the vector
bundle E with E ′. This completes the proof of the lemma. 2

PROPOSITION 3.5. Let X be a nondegenerate anisotropic conic defined over a field
k. Then there is an indecomposable vector bundle S of rank two and degree two over
X. Two such vector bundles over X are isomorphic.

PROOF. Let TX denote the tangent bundle of X . Using Serre duality

H1(X, T∨X )= H0(X, O X )
∨
= k∨ = k.
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Let
0−→ O X −→ S −→ TX −→ 0 (3.3)

be the extension corresponding to 1 ∈ k. For any λ ∈ k \ {0}, the extension bundle
corresponding to λ is isomorphic to S.

We will show that the vector bundle S in (3.3) is indecomposable.
To prove this, fix a Galois extension field k′ of k of degree two such that Xk′ =

X ×k k′ has a k′-rational point; such a field exists by Lemma 3.2. Therefore, Xk′ is
isomorphic to P1

k′ .
Consider the exact natural exact sequence of vector bundles

0−→ OP1
k′
(−1)−→ H0(P1

k′, OP1
k′
(1))⊗k′ OP1

k′
−→ OP1

k′
(1)−→ 0,

defined by the evaluation morphism. Tensoring this with the line bundle OP1
k′
(1)we get

0−→ OP1
k′
−→ H0(P1

k′, OP1
k′
(1))⊗k′ OP1

k′
(1)−→ OP1

k′
(2)∼= TP1

k′
−→ 0, (3.4)

which is a nonsplit extension of TP1
k′

by OP1
k′

; see [5, p. 182, Example 8.20.1].

Since dim H1(P1
k′, T∨

P1
k′
)= 1 and Xk′

∼= P1
k′ , the vector bundle

H0(P1
k′, OP1

k′
(1))⊗k′ OP1

k′
(1)∼= OP1

k′
(1)⊕ OP1

k′
(1)

in (3.4) is isomorphic to the vector bundle S ⊗k k′ over Xk′ , where S is defined in
(3.3).

Let ξ denote the unique line bundle of degree one over Xk′ . So ξ corresponds to
OP1

k′
(1) by any isomorphism of Xk′ with P1

k′ .

The vector bundle S ⊗k k′ decomposes by Proposition 2.1. Let

ξ⊗d1 ⊕ ξ⊗d2 = S ⊗k k′

be a decomposition of S ⊗k k′. Note that d1 + d2 = degree(S)= 2. On the other hand,
as we noted above,

S ⊗k k′ = ξ ⊕ ξ.

If d1 > 1, then

H0(Xk′, Hom(ξ⊗d1, S ⊗k k′))= H0(Xk′, Hom(ξ⊗d1, ξ⊕2))= 0.

But
H0(Xk′, Hom(ξ⊗d1, S ⊗k k′)) 6= 0,

because ξ⊗d1 is a subbundle of S ⊗k k′. Hence d1 ≤ 1. Similarly, d2 ≤ 1.
Consequently,

d1 = 1= d2.
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The complete linear system for any line bundle of degree one over X gives an
isomorphism of X with P1

k . In view of the earlier observation, we therefore conclude
that the vector bundle S is indecomposable.

Let S′ be another indecomposable vector bundle over X of rank two and degree
two. Using the Riemann–Roch theorem,

dim H0(X, S′)≥ 4.

In particular, S′ admits nonzero sections. Take any nonzero section θ of S′. We have a
short exact sequence of coherent sheaves

0−→ O X
θ ·
−→ S′

ϕ
−→ Q := S′/image(θ ·)−→ 0

over X . Set
η := ϕ−1(Torsion(Q)),

where Torsion(Q) is the torsion part of the above quotient Q. We note that η is a line
subbundle of S′. Also degree(η)≥ 0, because θ is a section of η.

Consider the exact sequence of coherent sheaves

0−→ η −→ S′ −→ S′/η −→ 0 (3.5)

over X . We note that, since η is a line subbundle of S′, the quotient S′/η is a
line bundle. If degree(η)= 0, then η = O X and S′/η ∼= TX . In other words, the
exact sequence (3.5) makes S′ a nontrivial extension of TX by O X . Therefore, if
degree(η)= 0, then the vector bundle S′ is isomorphic to S defined in (3.3).

Assume that degree(η) > 0. Then degree(Hom(S′/η, η))≥ 0. Therefore,

H1(X, Hom(S′/η, η))= 0.

Consequently, the exact sequence (3.5) splits, which contradicts the assumption that
S′ is indecomposable. Hence degree(η)= 0 and S′ is isomorphic to S. This completes
the proof of the proposition. 2

REMARK 3.6. Let S be the indecomposable vector bundle in Proposition 3.5. The
vector bundle Sk′ := S ⊗k k′ on Xk′

∼= P1
k′ is semistable but not stable. Since

Sk′
∼= ξ⊕2, where ξ is as in the proof of Proposition 3.5, and X does not admit any

line bundle of degree one, we conclude that the vector bundle S is stable. Therefore,
any nonzero global endomorphism of S is an isomorphism.

REMARK 3.7. Let Endk(S) denote the k algebra of global endomorphisms of the
vector bundle S. From Remark 3.6 it follows that Endk(S) is a division algebra. Since

Endk(S)⊗kk′ ∼= Endk′(Sk′)∼= M2(k
′),

where M2(k′) is the algebra of 2× 2 matrices over k′, we conclude that Endk(S) is
a quaternion division algebra with k′ as one of its splitting fields. Thus the stable
vector bundle S is not simple. (A vector bundle is said to be simple if all its global
endomorphisms are scalars.)
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REMARK 3.8. It is easy to see that the indecomposable vector bundle S⊗O X TX on a
nondegenerate anisotropic conic X is isomorphic to TP2

k
|X , the restriction to X of the

tangent bundle of P2
k . If the characteristic of k is different from two, then the vector

bundle S is isomorphic to the first jet bundle J 1(TX ) of the tangent bundle TX .

4. Vector bundles over anisotropic conic

The following theorem classifies the isomorphism classes of vector bundles over a
nondegenerate anisotropic conic.

THEOREM 4.1. Let X be a nondegenerate anisotropic conic over a field k. Let TX
be the tangent bundle of X and S the unique indecomposable vector bundle over X
of rank two and degree two. Any vector bundle E over X is isomorphic to a vector
bundle of the following form:( m⊕

i=1

T⊗ai
X

)
⊕

(
S ⊗

( n⊕
j=1

T
⊗b j
X

))
, (4.1)

where m and n are nonnegative integers, and {ai }
m
i=1 ∈ Z⊕m and {b j }

n
j=1 ∈ Z⊕n .

Furthermore, if ( m⊕
i=1

T⊗ai
X

)
⊕

(
S ⊗

( n⊕
j=1

T
⊗b j
X

))

∼=

( m′⊕
i=1

T
⊗a′i
X

)
⊕

(
S ⊗

( n′⊕
j=1

T
⊗b′j
X

))
,

then m = m′, n = n′ and {a′i }
m′
i=1 ∈ Z⊕m′ (respectively, {b′j }

n′
j=1 ∈ Z⊕n′) is a

permutation of {ai }
m
i=1 (respectively, {b j }

n
j=1).

PROOF. First assume that( m⊕
i=1

T⊗ai
X

)
⊕

(
S ⊗

( n⊕
j=1

T
⊗b j
X

))

∼=

( m′⊕
i=1

T
⊗a′i
X

)
⊕

(
S ⊗

( n′⊕
j=1

T
⊗b′j
X

))
. (4.2)

Let k′ be a degree-two Galois field extension of k such that Xk′ := X ×k k′ ∼= P1
k′

(see Lemma 3.2). So the vector bundle Sk′ := S ⊗k k′ over Xk′
∼= P1

k′ is isomorphic to
OP1

k′
(1)⊕2 (see the proof of Proposition 3.5).
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From (4.2) we have( m⊕
i=1

T⊗ai
Xk′

)
⊕

(
Sk′ ⊗

( n⊕
j=1

T
⊗b j
Xk′

))

∼=

( m′⊕
i=1

T
⊗a′i
Xk′

)
⊕

(
Sk′ ⊗

( n′⊕
j=1

T
⊗b′j
Xk′

))
.

The degree of T⊗a
Xk′

is even and the degree of T⊗b
P1

k′
⊗ OP1

k′
(1) is odd, and we

have Sk′
∼= OP1

k′
(1)⊕2. Therefore, from Proposition 2.1 it follows that m = m′,

n = n′ and {a′i }
m′
i=1 ∈ Z⊕m′ (respectively, {b′j }

n′
j=1 ∈ Z⊕n′) is a permutation of {ai }

m
i=1

(respectively, {b j }
n
j=1).

Now we will prove the first part of the theorem.
Take any vector bundle E over X . Let

0= F0 ⊂ F1 ⊂ · · · ⊂ F`−1 ⊂ F` = E (4.3)

be the Harder–Narasimhan filtration of E (see [4, p. 220, Lemma 1.3.7]).
Let F ′i := Fi ⊗k k′ be the vector bundle over Xk′

∼= P1
k′ , where k′ and Xk′ are as

above. From the uniqueness of the Harder–Narasimhan filtration of a vector bundle
and the fact that k′ is a Galois extension of k, it follows immediately that the filtration

0= F ′0 ⊂ F ′1 ⊂ · · · ⊂ F ′`−1 ⊂ F ′` = Ek′ (4.4)

obtained from (4.3) coincides with the Harder–Narasimhan filtration of Ek′ . Therefore,
each successive quotient F ′i /F ′i−1, i ∈ [1, `], is isomorphic to a vector bundle of the
form OP1

k′
(ni )
⊕mi , and ni > n j if i < j .

As H1(P1
k′, OP1

k′
(n))= 0 for all n ≥ 0, from the above properties of the successive

quotients F ′i /F ′i−1 it follows immediately that

H1(Xk′, Hom(F ′j/F ′j−1, F ′j−1))= 0, (4.5)

for all j ∈ [1, `].
The filtration in (4.3) gives a sequence of short exact sequences

0−→ F j−1 −→ F j −→ F j/F j−1 −→ 0,

j ∈ [1, `]. Since the obstruction to the splitting of the above short exact sequence is
an element of H1(X, Hom(F j/F j−1, F j−1)), and

H1(X, Hom(F j/F j−1, F j−1))⊗k k′ = H1(Xk′, Hom(F ′j/F ′j−1, F ′j−1))
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(the cohomology base changes), using (4.5) we conclude that the filtration in (4.3)
splits completely. Therefore,

E ∼=
⊕̀
i=1

(Fi/Fi−1). (4.6)

As each successive quotient Fi/Fi−1, i ∈ [1, `], in (4.3) is semistable, from (4.6) we
conclude the following. To prove the first part of the theorem, it is enough to prove it
under the assumption that the vector bundle E is semistable (note that the collection of
vector bundles of the form (4.1) is closed under the direct sum operation). Henceforth,
we will assume that the vector bundle E is semistable.

Consequently, the vector bundle Ek′ = E ⊗k k′ over Xk′ is semistable. Therefore,

Ek′
∼= ζ
⊕r , (4.7)

where ζ denotes a line bundle over Xk′ and r = rank(E).
First assume that degree(ζ ) is even. In that case,

ζ = (TXk′
)⊗d ,

where d ∈ Z. Hence from (4.7) it follows that the base change to k′ of the vector
bundle ((TX )

⊗d)⊕r over X is isomorphic to Ek′ . Now using Lemma 3.4, we have

E ∼= ((TX )
⊗d)⊕r .

(Note that, since X is a nondegenerate anisotropic conic defined over k, the field k must
be infinite; see Remark 3.1.) Therefore, the theorem is proved when E is semistable
and degree(ζ ) is even.

Next we assume that degree(ζ ) is odd, say degree(ζ )= 2d + 1. So

ζ = (TXk′
)⊗d
⊗O Xk′

ξ, (4.8)

where ξ denotes the unique line bundle of degree one on Xk′ (as in the proof of
Proposition 3.5).

We note that X does not admit any line bundle of odd degree. Indeed, the conic X
being anisotropic, there is no line bundle over X of degree one. On the other hand,
degree(TX )= 2. Hence X does not admit any line bundle of odd degree.

For the vector bundle Ek′ in (4.7), from (4.8) it follows that the degree of the top
exterior product

∧r Ek′ is r(2d + 1). Since degree(
∧r Ek′)= degree(

∧r E), and X
does not admit any line bundle of odd degree, we conclude that r = 2r0, where r0 ∈ N.

Therefore, the base change to k′ of the vector bundle (TX )
⊗d
⊗ S⊕r0 over X is

isomorphic to Ek′ , where S is the vector bundle in Proposition 3.5. Hence from
Lemma 3.4 it follows that E is isomorphic to (TX )

⊗d
⊗ S⊕r0 . This completes the

proof of the theorem. 2
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