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ON THE TWICE DIFFERENTIABILITY OF VISCOSITY
SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS

NEIL S. TRUDINGER

We prove, under very general structure conditions, that continuous viscosity subsolutions
of nonlinear second-order elliptic equations possess second order superdifferentials almost
everywhere. Consequently we deduce the twice differentiability almost everywhere of
viscosity solutions. The main idea of the proof is the backwards use of the Aleksandrov
maximum principle as invoked in a previous work of Nadirashvili on sequences of solutions
of linear elliptic equations.

A notion of weak solution, called viscosity solution, was introduced for first order
equations by Grandall and Lions [3] and extended to degenerate elliptic, second order
equations by Lions [11]. The operators covered are of the general form,

(1) F[u] = F(x, u,Du, D2u)

where F e C°(T), T - fi x R x R" x S", ft is a domain in Euclidean 7i-space, Rn

and S" denotes the linear space of real, n x n symmetric matrices. The operator F is
degenerate elliptic in F if

(2) F{x,z,p,r+V)>F(x,z,p,r)

for all x,z,p,r £ T and TJ > 0, £ Sn. The definition of viscosity solution can be
expressed in terms of second order differentials. For a real function u on the domain
S7, the second order superdifferential at a point x 6 fi is defined by

(3) D\2u{x) = {(p,r) 6 Rn X S" | u(x + y) < u(x) + p • y + \ry • y + o{\y\2)},

and the second order subdifferential by

(4) Dl2u(x) = -D\.2{-u)(x).

A function u G C°(fi) satisfies the inequality F[u] > 0 (respectively, F[u] < 0), in fl,
in the viscosity sense, if

(5) F{x,u{x),p,r)>0 (respectively, < 0),
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for all x G ft, p ,r G D\2u{x) (respectively D^2u{x)). Note that the inequality (5) is
only meaningful at those points x where the function tt is twice superdifferentiaWe (re-
spectively, subdifferentiable), that is where the set D^2u(x) (respectively Di;2u(x))
is non-empty. A function tt G C°(ft) is called a viscosity solution of the equation
F[u] — 0 in ft, if it is both a viscosity subsolution and supersolution; that is it satisfies
both inequalities F[u] > 0, < 0, in the viscosity sense. The purpose of this note is to
provide conditions under which viscosity subsolutions, supersolutions, solutions, are re-
spectively twice super differentiable, subdifferentiable, differentiable almost everywhere
in the domain ft. Other regularity results, in particular continuous differentiablity,
are treated in the author's papers [14, 16] and the notes of Caffarelli [2]. Comparison
principles and uniqueness are treated by Jensen [7, 8], Jensen, Lions and Souganidis
[9], Ishii [5], Ishii and Lions [6] and Trudinger [15], while the existence of viscosity
solutions is established through the Perron process in Ishii [5] and through discrete
approximation in Kuo and Trudinger [10].

We shall first assume the following structure conditions

(6) F(x,z,p,r + 77) - F(x,z,p,r) > 50(det TJ)17";

CO \F{x,z,p,r)\ < /LIO(1 + \p\ + \r\),

for all x G ft, \z\ < M o , p G R", r G S" , 77 > 0, G S", Mo G (0,oo), where <50 and
fi-o are positive constants (depending on Mo ). Then we have the following regularity
results.

THEOREM 1. Let u £ C°(ft) satisfy F[u] > 0 (respectively, < 0, = 0 ) , in the
viscosity sense, where F satisfies (6) and (T). Then u is twice superdifferentiaWe
(respectively subdifferentiable, differentiable) almost everywhere in ft .

PROOF: The key idea is the backwards use of the Aleksandrov maximum principle
[1], following Nadirashvili [12]. In fact, our proof can be used to both simplify and
improve [12]. First, it is convenient to invoke the semi-convex approximations of vis-
cosity subsolutions, as introduced by Jensen [7] or Jensen, Lions and Souganidis [9].
Following the latter, we define, for positive s, the functions,

\<i) M £ yx) =-

noting the the suprernum in (8) will be achieved at points x+ satisfying

|X — X \ < e^/LOg, <JJQ = O S C t l ,

n
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provided dis t(s ,9f l) > e^/w^. The functions u* are Lipschitz and semi-convex in ft,
with

(9) %

D*t > J
in the sense of distributions. Moreover, u+ is accordingly twice differentiable almost
everywhere in ft and at any point x of twice differentiablility

(10) F(x+,u(x+),Dut(x),D2xi + {x)) > 0.

Henceforth there is no loss of generality in assuming F to be independant of 2. To
proceed further we fix a ball B — Bn{y) C SI, and for k > 1, set

(11) 4>(x) = \x - y\2 - R2, wk,c=ut-W.

Then on the upper contact set E^e of the function Wk,e we have, by virtue of the
structure conditions (6) and (7), with MQ — sup |tt|,

6o|det D2ivkit\V
n < F(x+,Dut,kD2xl>) - F(x+,Du+,Z»2u+)

(12) <Mo(l + |£>«+|-|-2fc%Ar)

\Dwk<e\ + 2k(R + yfH)}.

Consequently, by the Aleksandrov maximum principle (see the proof of Theorem 9.1 in

[4]), we obtain

(13) suptyfc,e < sup u+ + CkR\E+k\
1/n

B 8B

where C is a constant depending only on n, (.IO/SQ and diarnfi. Letting e tend to

zero, we have u~£ —• u uniformly, together with

(14) l i m s u p | £ + J < | £ + | ,

where E£ denotes the upper contact set of the function xvk = u — ki['. Consequently,
dividing by k , we have

(15) R2 < ?-oscu + CR\EZ\1/n,
K B

and hence if E+ is the set of points of ft where u is twice differentiable, we obtain,
by taking k sufficiently large,
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where 7 is a positive constant depending only on n, t̂o/̂ o a n d diamft. But since the
ball B is arbitary, E+ must have full measure in ft and thus the first part of Theorem
1 is proved. The twice subdifferentiability of supersolutions then follows by replacing
u by —u. Finally, we deduce the almost everywhere twice differentiability of viscosity
solutions from the Rademacher-Stepanov theorem (see [13]). R

When the function u is known to be Lipschitz continous in ft, we can weaken the
structure conditions (6) and (7), so that they need hold only for \p\ < Mg. Condition
(7) may also be weakened for non-Lipschitz solutions, provided (6) is strengthened to
a uniform ellipticity condition

(17) Ao tracer < F(x,z,p,r + 17) - F(x,z,p,r) < Ao tracer;

in this case we may replace (7) by

(18) |JF(!C,2,p,r)|<M(,(l + |p|2 + |r|).

The arguments in (16) and (17) vary as in (6) and (7) with Ao , Ao further positive
constants. Instead of Theorem 1 we have the regularity result

THEOREM 2. Let u £ C°(ft) satisfy F[u] > 0 (respectively, < 0, — Q) in ft, in
the viscosity sense, where F satisfies (16) and (17). Then u is twice superdifferentiable

(respectively, subdifferenti&ble, differentihble) almost everywhere in ft .

PROOF: We observe that condition (16) implies that the function F is Lipschitz

continuous with respect to r and

(19) A 0 / < F , . < A 0 / .

Consequently the differential inequality (10) can be written in the form

a'Wijut > -F{x+,u(x+),Dut,0)

>-Ho{l + \Dut\2),

with coefficients

ai*(x)= I Fr (x+,u{x+),Du + (x),W2ut(x
Jo

Hence the function

(21) t;+ =

satisfies the differential inequality.-

(22) a^Dijvt > -fiOe5M<>

almost everywhere in ft, to which the proof of Theorem 1 can be applied. P
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