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Abstract

Khovanov homology, an invariant of links in R3, is a graded homology theory that categorifies the Jones
polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial.
Asaeda et al. [‘Categorification of the Kauffman bracket skein module of I-bundles over surfaces’, Algebr.
Geom. Topol. 4 (2004), 1177–1210] generalised this construction by defining a double graded homology
theory that categorifies the Kauffman bracket skein module of links in I-bundles over surfaces, except
for the surface RP2, where the construction fails due to strange behaviour of links when projected to
the nonorientable surface RP2. This paper categorifies the missing case of the twisted I-bundle over
RP2, RP2×̃I ≈ RP3 \ {∗}, by redefining the differential in the Khovanov chain complex in a suitable
manner.
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1. Introduction

In 1987 Przytycki and Turaev introduced the study of skein modules [12, 13].
The most studied skein module, the Kauffman bracket skein module (KBSM), is a
generalisation of the Kauffman bracket polynomial, which itself is a reformulation of
the Jones polynomial. Since then, the KBSM has been calculated for a number of
different 3-manifolds and is a powerful invariant of framed links in these manifolds
[5, 9–11].

Incidentally, in 1990, Yu. V. Drobotukhina introduced the study of links in the
real projective space by providing an invariant of such links, a version of the Jones
polynomial for RP3 [3].

A major breakthrough in the study of knots in R3 appeared in the late 1990s
in a series of lectures by M. Khovanov, who managed to categorify the Jones
polynomial by constructing a chain complex of graded vector spaces with the
property that the homology of this chain complex, the Khovanov homology, is a
link invariant. Moreover, the graded Euler characteristic of this complex is the Jones
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F 1. Three classical and two additional Reidemeister moves.

polynomial [6]. Perhaps the most outstanding consequence of this theory is the s-
invariant of Rasmussen, which gives a bound on a knot’s slice genus and is sufficient
to prove the Milnor conjecture. More recently, Kronheimer and Mrowka showed that
the Khovanov homology detects the unknot [7].

Various generalisations of the Khovanov homology have been constructed so far.
One example is that the KBSM has been categorified for I-bundles over all surfaces
except RP2 [1]. Another generalisation is due to Manturov, who managed to categorify
the Jones polynomial of virtual links [8], which, as a special case, includes the
categorification of the Jones polynomial of links in RP3.

This paper provides details and explicitly shows how to categorify the KBSM of
links in RP3, which is equivalent to categorifying the KBSM of the twisted I-bundle
over RP2, the missing piece of the puzzle in [1].

2. The Kauffman bracket skein module of RP3

To have a working theory of links in RP3, we must first introduce suitable diagrams
of these links, which we call projective links. By identifying RP3 \ {∗} ≈ RP2×̃I, the
twisted I-bundle over RP2, a link can be projected to RP2, a 2-disc with antipodal
points identified on its boundary. Such diagrams are accompanied by five Reidemeister
moves: the three classical Reidemeister moves R-I–R-III and two additional moves
R-IV and R-V that act across the boundary of the 2-disc (Figure 1) [3]. Two links are
ambient isotopic in RP3 if a diagram of one link can be transformed into a diagram of
the other by a finite sequence of Reidemeister moves R-I–R-V.

The KBSM of a 3-manifold M is constructed as follows. Take a coefficient ring R
with a distinguished unit A ∈ R. Let L f r(M) be the set of isotopy classes of framed
links in M, including the class of the empty link [∅], and let RL f r(M) be the free
R-module spanned by L f r(M).

As in the case of the Jones polynomial, we would like to impose the skein relation
and the framing relation in RL f r(M). We therefore take the submodule S f r(M)
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x

F 2. A generator of the KBSM of RP3.

(a) (b)

Sign Sign

F 3. The sign of a crossing.

of RL f r(M) generated by

− A − A−1 , (skein relation)

L t − (−A2 − A−2)L. (framing relation)

The KBSM S2,∞(M) is RL f r(M) modulo these two relations:

S2,∞(M) = RL f r(M)/S f r(M).

It is shown in [4] that the KBSM of the lens space L(p, q) is free with bp/2c + 1
generators; in particular, S2,∞(RP3) has two generators, the isotopy class of the empty
set [∅] and the class of the orientation reversing curve x of RP2 ⊂ RP3, shown in
Figure 2.

By expressing a link L ∈ RP3 in terms of the two generators and setting [∅] =

(−A2 − A−2)−1 and [x] = 1, we get the Kauffman bracket polynomial 〈L〉 of L. By
further normalising the Kauffman bracket by (−A3)−w(L) we get the Laurent polynomial
X(L) = (−A3)−w(L)〈L〉, where w(L) stands for the writhe of L. By substituting A = t−1/4

in X(L) we get the Jones polynomial in RP3 described in [3]. Due to the normalisation,
the Jones polynomial is an invariant of unframed links in RP3.

We continue by providing a state-sum formula for calculating the KBSM of a
projective link. Let D be an oriented projective link diagram with n crossings. First,
order the crossings arbitrarily from 1 to n and denote the set of crossings by X. Assign
each crossing a + or − sign using the right-hand rule in Figure 3. The number of
positive crossings is denoted by n+ and the number of negative crossings is denoted
by n−.

Each crossing can be smoothened by a smoothening of type 0 or 1 (Figure 4). We
call {0, 1}X the discrete cube of D and a vertex s ∈ {0, 1}X a (Kauffman) state of D.
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(a) (b)

F 4. Two types of smoothenings.

Each state corresponds to a diagram with all crossings smoothened either by a type 0
or a type 1 smoothening. For convenience, this complete smoothening is also called
a state of D. Each state is just a collection of disjoint closed loops which are called
circles. A circle is trivial if it bounds a disc in RP2 and projective if it does not.
By examining the parity of the number of components crossing the boundary of the
projecting disc in RP2, it can be easily deduced that there is at most one projective
circle in each state.

For a state s, we denote by |s|T the number of trivial circles and by |s|P the number
of projective circles, the number of all circles is denoted by |s| = |s|T + |s|P. We denote
by #0(s) the number of 0 factors in s and by #1(s) the number of 1 factors.

The state-sum formula for calculating [L] ∈ S2,∞(RP3) in terms of the standard
generators is

S2,∞(RP3)([L]) =
∑

s∈{0,1}X

A#0(s)−#1(s)(−A2 − A−2)|s|T [x]|s|P [∅]1−|s|P ,

where we often use the normalisation [∅] = 1.

3. The chain complex

For a link L ⊂ R3 Khovanov managed to construct a chain complex of graded
vector spaces that categorifies the Jones polynomial in the sense that the graded Euler
characteristic of that complex is precisely the Jones polynomial [6]. The homology of
the chain complex turns out to be a link invariant stronger than the Jones polynomial
itself. Asaeda et al. managed to construct a chain complex of bigraded vector spaces
that categorify the KBSM of I-bundles over surfaces [1]. This construction did not
work for the twisted I-bundle overRP2; the problem is in essence the strange behaviour
of links projected to RP2, or more precisely, the 1→ 1 bifurcations which will be
described latter. Manturov managed to overcome the problem of 1→ 1 bifurcations
when he categorified the Jones polynomial of virtual links [8].

In this section we define the Khovanov chain complex with gradings similar to those
defined by Asaeda et al. In the next section, we define the differential using techniques
of Manturov to control the odd behaviour of circles mentioned above.

Let W =
⊕

j,k W j,k be a Z ⊕ Z-graded Z-module. The Poincaré polynomial, in
variables A and z, of W is defined as

P(W) =
∑

j,k

A jzk rank W j,k.
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In the standard construction of the Khovanov homology the tensor product is used to
form chain complexes; we, however, have to use the wedge product (which is in some
sense an ordered version of the tensor product).

The wedge product W ∧W ′ of the modules W =
⊕

j,k W j,k and W ′ =
⊕

j,k W ′j,k is
defined as

W ∧W ′ =
⊕

j= j1+ j2
k=k1+k2

W j1,k1 ∧W ′j2,k2
.

The wedge product is associative and anticommutative.
For a permutation σ ∈ S n, the wedge product of n modules W1, W2, . . . , Wn is

subject to the permutation rule:

Wσ(1) ∧Wσ(1) ∧ · · · ∧Wσ(n) = sign(σ) W1 ∧W2 ∧ · · · ∧Wn.

The degree shift operator ·{l, m} shifts the gradings of W =
⊕

j,k W j,k by (l, m):

W{l, m} =
⊕

j,k

W j−l,k−m.

The degree shift ·{l, 0} is abbreviated to ·{l}. Such a shift corresponds to multiplication
by Al in the Poincaré polynomial: P(W{l}) = AlP(W).

Let V = 〈1, X〉 be the bigraded Z-module freely generated by elements 1 and X with
bigradings deg 1 = (−2, 0) and deg X = (2, 0), and let V = 〈1, X〉 the module generated
by 1 and X with deg 1 = (0, 1) and deg X = (0, −1). Note that P(V) = A2 + A−2

and P(V) = z + z−1, which is exactly what we assign a circle (trivial or projective,
respectively) in the state-sum formula of the KBSM.

Using the notation in Section 2 and assuming the circles are enumerated in such
a way that the possible projective circle is at the end, Cs will represent the module
associated with the state s. A circle in s, enumerated with i, contributes a factor Vi if
the circle is trivial or a factor V i if the circle is projective. The module Cs is therefore
equal to either

Cs = (V1 ∧ V2 ∧ · · · ∧ Vn){#0(s) − #1(s)}

or
Cs = (V1 ∧ V2 ∧ · · · ∧ Vn−1 ∧ Vn){#0(s) − #1(s)},

depending whether s has a projective circle or not.
The module of i-chains is now defined to be the sum of all Cs where the difference

between the number of 0 and 1 factors in s is i:

Ci =
⊕

s∈{0,1}X
#0(s)−#1(s)=i

Cs.

Forming such direct sums of certain modules is sometimes called a flattening of {Cs}s.
We claim that

0 −→Cn −→Cn−2 −→ · · · −→C−n+2 −→C−n −→ 0

with suitable differentials yet to be defined, forms a Khovanov chain complex.
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(a) (b) (c)

F 5. Three types of bifurcations.

4. The differential

Let α ∈ {0, 1, ?}X be a sequence with the property that ? appears only once in α.
By replacing ? by 0 we get a vertex of the discrete cube {0, 1}X denoted by α?→0, and
by replacing ? by 1 we get an adjacent vertex α?→1. We call such an α an edge of
{0, 1}X. Recall that each vertex corresponds to a state of a diagram; that being so, each
edge corresponds to a local ‘change’ of two adjacent states. Each α is associated with
a linear map dα : Cα?→0 −→Cα?→1 called a partial differential, which will be defined in
the next few paragraphs.

For a diagram D, we call the collection of modules {Cs}s∈{0,1}X , together with their
partial differentials, the cube ~D� of D. Now, ~D� needs to form an anticommutative
diagram, since this forces the flattened ~D� to form a well-defined chain complex
(C•, d•). As seen in [1] there is no obvious way to define the partial differential for
links in RP3, but as shown in [8] it is possible to achieve this for the Jones polynomial
if the links and the circles in the states are oriented and certain signs are applied to the
partial differentials.

Hence, we orient both the diagram D and the circles of the states in an arbitrary
manner. In the neighbourhood of a crossing there are either one or two circles. If we
change the smoothening in a crossing from type 0 to type 1, we call the change of the
circles involved a bifurcation. It is evident that the circles involved in the states α?→0

and α?→1 are in one-to-one correspondence, with one of these exceptions (Figure 5):

(a) two circles in α?→0 join into one circle in α?→1 (type 2→ 1 bifurcation);
(b) a circle in α?→0 splits into two circles in α?→1 (type 1→ 2 bifurcation);
(c) a circle in α?→0 twists into a circle in α?→1 (type 1→ 1 bifurcation).

Note that the type 1→ 1 bifurcation can only appear when the circle lies within
a Möbius band. This type of bifurcation can therefore only appear in the case of
projecting to a nonorientable surface, such as RP2 (see [1, Example 5.2]).

Looking at a crossing c of D in such a way that the two outgoing arcs are facing
northwest and northeast and the ingoing arcs are facing southwest and southeast, we
call a circle of some state locally consistently oriented at c if its orientation agrees with
the orientation of the northeast arc or disagrees with the orientation of the southwest
arc (with respect to the arc before the smoothening); likewise, a circle is locally
inconsistently oriented at c if its orientation disagrees with the northeast arc or agrees
with the southwest arc (see Figure 6). It can happen that both arcs in the state belong
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F 6. Locally consistent orientations.

(a) (b)

F 7. Order of (locally consistently oriented) circles of a bifurcation.

to the same circle and the consistency cannot be uniquely defined; in this case the local
consistency is undetermined at c.

In order to define the differential, we rearrange the ∧-factors of Cα?→0 by a
permutation σ ∈ S |α?→0 | in such a way that the factors involved in the bifurcation are at
the beginning of the wedge product. Furthermore, if the bifurcation is of type 2→ 1,
assuming that the arcs of the diagram are facing northwest and northeast, we want the
first factor in the domain to be represented by a ‘left’ circle when the bifurcation site
is at a positive crossing and by a ‘top’ circle when the bifurcation site is at a negative
crossing (see Figure 7).

If the bifurcation is of type 2→ 1, we multiply the first two factors; if the bifurcation
is of type 1→ 2, we comultiply the first factor and if the bifurcation is of type 1→ 1
we apply the 0 map to the first factor. On the remaining factors we apply the semi-
identity I = I ∧ I ∧ · · · ∧ I (∧ I),where the map I : V −→ V (respectively, I : V −→ V)
is defined by I(1) = 1, I(X) = ±X (respectively, I(1) = 1, I(X) = ±X), with a plus sign
on the generator X if the circles that two Vs (respectively, Vs) represent have the same
orientations and with a minus sign if the orientations are opposite.

Let m be the multiplication operator and ∆ the comultiplication operator. Both are
linear maps subject to the rules in Table 1.

As suggested in Figure 7, the order of the factors in the codomain of ∆ depends
on the position of the circles they represent. At a positive crossing the first factor is
presented by the ‘top’ circle and at a negative crossing the first factor is represented by
a ‘left’ circle.
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T 1. Multiplication and comultiplication (shifts omitted).

m : V1 ∧ V2 −→ V ∆ : V −→ V1 ∧ V2

11 ∧ 12 7−→ 1 1 7−→ 11 ∧ (±X2) + (±X1) ∧ 12

11 ∧ (±X2) 7−→ (±X) (±X) 7−→ (±X1)∧ (±X2)
(±X1)∧ 12 7−→ (±X)
(±X1)∧ (±X2) 7−→ 0

m : V1 ∧ V2 −→ V ∆ : V −→ V1 ∧ V2

11 ∧ 12 7−→ 1 1 7−→ 11 ∧ (±X2)
11 ∧ (±X2) 7−→ 0 (±X) 7−→ (±X1)∧ (±X2)

(±X1)∧ 12 7−→ (±X)
(±X1)∧ (±X2) 7−→ 0

m : V1 ∧ V2 −→ V ∆ : V −→ V1 ∧ V2

11 ∧ 12 7−→ 1 1 7−→ (±X1)∧ 12

11 ∧ (±X2) 7−→ (±X) (±X) 7−→ (±X1)∧ (±X2)
(±X1)∧ 12 7−→ 0
(±X1)∧ (±X2) 7−→ 0

The sign of each factor X (respectively, X) in Table 1 depends on the local
consistency of the circle that X (respectively, X) represents at the crossing where the
bifurcation appears. If the circle is locally consistently oriented at the crossing the sign
is positive, and if the circle is locally inconsistently oriented the sign is negative. Note
that the consistency is undetermined only at bifurcations of type 1→ 1.

After (co)multiplying and applying the identity, we rearrange the factors in the
result by the permutation ρ ∈ S α?→1 , so that they agree with the order of factors in
the codomain Cα?→1 .

The above steps describe the partial differential dα : Cα?→0 −→Cα?→1 . In detail, if
Pσ is a map that rearranges factors in Cα?→0 by σ and Pρ is the map that rearranges
factors in Cα?→1 by ρ,

dα =


Pρ ◦ (m ∧ I) ◦ Pσ if |α?→0| = |α?→1| + 1,

Pρ ◦ (∆ ∧ I) ◦ Pσ if |α?→0| + 1 = |α?→1|,

Pρ ◦ (0 ∧ I) ◦ Pσ if |α?→0| = |α?→1|.

(4.1)

The total differential d(i) : Ci −→Ci−2 is the sum of partial differentials:

d(i) =
⊕

α∈{0,1,?}X
#0(α)−#1(α)=i−1

dα.

We shall also call such a sum a flattening of partial differentials.
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As an illustration of how the partial and total differentials work, a detailed example
is presented at the end of the next section.

5. The homology

The ith Khovanov homology group is

Hi =
Ker d(i)

Im d(i+2)
.

The following two theorems are proved in Section 6.

T 5.1. Let L be a link in RP3 and D a diagram of L. Then d ◦ d = 0, so that
(C•, d•) is a chain complex.

T 5.2. For a diagram D of the link L ⊂ RP3, H•(D) is preserved under R-II,
R-III, R-IV and R-V. Therefore, H• is an invariant of framed links in RP3.

The Euler characteristic of a Z3-graded Z-module W =
⊕

i, j,k W i
j,k is for our

purposes defined as
χ(W) =

∑
i, j,k

(−1)( j−i)/2A jzk rank W i
j,k.

It is an easy exercise to check that for a diagram D of L ⊂ RP3 it follows from the
construction that χ(C•(D)) = χ(H•(D)) = S2,∞(RP3)(L), where the last equation holds
by substituting [x] for z + z−1.

E 5.3. In the link in Figure 8 we get C00 = V1 ∧ V2{2}, C01 = V , C10 = V
and C11 = V1 ∧ V2{−2}. Omitting shifts, partial differentials work in the following
manner: d0?(11 ∧ 12) = 1, d0?(−11 ∧ X2) = X, d0?(X1 ∧ 12) = 0, d0?(−X1 ∧ X2) = 0;
d?0(12 ∧ 11) = 1, d?0(−12 ∧ X1) = 0, d?0(X2 ∧ 11) = −X, d?0(−X2 ∧ X1) = 0; d?1(1) =

X1 ∧ 12, d?1(−X) = −X1 ∧ X2; d1?0(1) = −12 ∧ X1, d1?0(X) = −X2 ∧ X1. The total
differential is: d(2)(11 ∧ 12) = 1 ⊕ (−1), d(2)(11 ∧ X2) = (−X) ⊕ X, d(2)(X1 ∧ 12) =

0 ⊕ 0, d(2)(X1 ∧ X2) = 0 ⊕ 0; d(0)(1 ⊕ 0) = X1 ∧ 12, d(0)(X ⊕ 0) = X1 ∧ X2, d(0)(0 ⊕ 1) =

X1 ∧ 12, d(0)(0 ⊕ X) = X1 ∧ X2; d(−2) = 0. It is clear that d ◦ d = 0. The homology
groups are H2 � 〈X1 ∧ 12, X1 ∧ X2〉{2}, H0 � 0 and H−2 � 〈11 ∧ 12, 11 ∧ X2〉{−2}, that
is, the only nontrivial dimensions of H• are

(H2)4,1 � (H2)4,−1 � (H2)−4,1 � (H2)−4,−1 � Z.

The Euler characteristic is χ(H•) = (−A4 − A−4)(z + z−1) = (−A4 − A−4)[x].

6. Proofs

Lemmas 6.1–6.3 show that the homology is independent of the free choices we
made for choosing orderings of circles and orientations of the link and the circles in
the states.

https://doi.org/10.1017/S0004972713000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000105


416 B. Gabrovšek [10]

(a) (b)

F 8. The link L and its cube.

L 6.1. The homology is invariant under the ordering of circles.

P. For each state s of D, let os and o′s be two different orderings of circles in s
and let os and o′s differ by a permutation πs. Permutations πs induce isomorphisms
Pπs : Cs −→Cs on the associated modules Cs. For two adjacent states q = α?→0 and
r = α?→1, let the partial differential dα : Cq −→Cr be defined in terms of the first
ordering as Pρr ◦ d ◦ Pσq , where in place of ds we have either m ∧ I, ∆ ∧ I or 0.
It follows from definition that the differential in terms of the second ordering equals
Pπrρr ◦ d ◦ Pσqπ

−1
q

. Since Pπrρr ◦ d ◦ Pσqπ
−1
q
◦ Pπq = Pπr ◦ Pρr ◦ d ◦ Pσq , it follows that

the maps {Pπs}s form a chain map. �

L 6.2. The homology is invariant under the change of link orientation.

P. It is enough to prove invariance under changing the orientation of one
component. Let c be a crossing of the changed component. If c is a self-crossing,
changing the orientation of both strands of c has the same effect as transposing the
orderings of the circles that split at c, which is invariant under Lemma 6.1. If c is
not a self-crossing, changing the orientation of one component leads to inverting the
locally consistent orientation on all participating circles and transposing the ordering
of the two circles if the bifurcation site is of type 1→ 2; by writing down the partial
differentials before and after the orientation change, it is easy to check that they both
agree. �

L 6.3. The homology is invariant under the change of orientations of the circles
in the states.
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F 9. Vertices v and u.

P. Let fs : Cs −→Cs be the semi-identity that sends X to −X and 1 to 1
(respectively, X to −X and 1 to 1) on the V (respectively, V) components of Cs that
represent circles with changed orientations. We observe that changing the orientation
of a circle changes the local consistency in the definition of the partial differential d.
But this is exactly the opposite of what f does, so f ◦ d ◦ f −1 = d. �

P  T 5.1 To show that d ◦ d = 0 holds for a projective link diagram D,
it is sufficient to prove that every two-dimensional face of ~D� is anticommutative.
Every two-dimensional face corresponds to a smoothening of n − 2 crossings, since
the remaining two crossings are resolved in four different ways. Since the circles that
are nonadjacent to either of the two crossings are mapped by I, they can be omitted
in the proofs. It therefore suffices to prove anticommutativity for all possible two-
crossing projective diagrams. For constructing all such diagrams, we take a similar
approach as in [1] and [8]. Here is an outline.

Take all 4-valent graphs in RP2 with two rigid vertices and replace each vertex
with either an overcrossing or an undercrossing. This produces all possible two-
crossing diagrams. Certain graphs can be omitted due to symmetries that leave
circles in a natural one-to-one correspondence preserved under partial differentials.
Take vertices v and u and enumerate their edges by v0, v1, v2, v3 and u0, u1, u2, u3

(Figure 9).
We disregard nonconnected graphs, since it is clear that in this case either d0? =

−d1?, d?0 = d?0 or d0? = d1?, d?0 = −d?0. We may assume that v0 is connected to v1.
Two graphs are symmetric if they are related by the following operations (see [1] for
details):

(1) exchanging v and u produces the same graph;
(2) a cyclic permutation vi→ vi−k(mod 4) and ui→ ui−k(mod 4) for i ∈ {0, 1, 2, 3} if vk

and uk are connected for some k ∈ {0, 1, 2, 3};
(3) a flip whereby either vi↔ vi+2(mod 4) or ui↔ ui+2(mod 4) are exchanged for some

i ∈ {0, 1, 2, 3}.

L 6.4. There are exactly six nonsymmetric graphs in RP2. The graphs are shown
in Figure 10.
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(a) (b) (c)

(d) (e) (f)

F 10. Nonsymmetric 4-valent connected graphs with two vertices in RP2.

(a) (b) (c) (d)

(e)

(i) (j) (k)

(f) (g) (h)

F 11. Nonsymmetric essential links with two crossings in RP2.

To list all the possible two-crossing links, we place all four possible combinations
of crossing on each vertex of the graphs in Figure 10. We can omit links where the
1→ 1 bifurcation appears in each of the composites of the partial differentials.

L 6.5. Up to symmetry and disregarding nonessential cases with two 1→ 1
bifurcations appearing on opposite sides of the composites, there are 11 projective
links with two crossings. These are shown in Figure 11.
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(a) (b)

F 12. The link L of Figure 11(a) and its cube.

The proofs of Lemmas 6.4 and 6.5 rely on case-by-case checking and are left to the
reader.

Due to Lemmas 6.1–6.3, we can orient the above 11 links and their states arbitrarily,
order the circles arbitrarily and calculate the differentials to show that d ◦ d = 0. We
check anticommutativity only for the link in Figure 11(a), the rest are done likewise.

From Figure 12 we get

d?0(1) = 12 ∧ X1 − X2 ∧ 11, d?0(−X) = −X2 ∧ X1;

d1?(11 ∧ 12) = 1, d1?(−11 ∧ X2) = X, d1?(−X1 ∧ 12) = X, d1?(X1 ∧ X2) = 0;

d0? = d?1 = 0.

Hence d?0d1? = d0?d?1 = 0.

P  T 5.2 The proofs of invariance under moves R-II and R-III almost
entirely coincide with those of the classical case [2]. The main tool used for showing
invariance is the cancelation principle of the next lemma.

L 6.6. Let C be a chain complex and let C′ ⊂C be a subchain complex. If
C′ is acyclic then H(C) = H(C/C′); on the other hand, if C/C′ is acyclic then
H(C) = H(C′).

P. Both equalities follow trivially from the long exact homology sequence

· · · −→ Hn(C′) −→ Hn(C) −→ Hn(C/C′) −→ Hn+1(C) −→ · · ·

associated with the short exact sequence 0 −→C′ −→C −→C/C′ −→ 0. �
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I  R-II. The cube of can be expressed in terms of subcubes as
shown in the left-hand diagram below.

Let C be the flattening of this cube. The chain complex C contains a subcomplex

C′ in which the subscript 1 of denotes the cube of submodules where the trivial
‘middle’ circle is not assigned the module V , but instead the free module 〈1〉. Since m
is an isomorphism in C′, C′ is acyclic and H(C) � H(C/C′) by Lemma 6.6.

In the above diagram the map ∆ is an isomorphism in C/C′, so we can define a map
τ that is the composition τ = d?0∆−1. Let C′′ be the subcomplex of C/C′ consisting of

all elements α ∈ and all elements of the form β ⊕ τβ ∈ ⊕ . Taking C/C′

mod C′′, we kill and impose the relation β ⊕ 0 = 0 ⊕ τβ in ⊕ , but we

have an arbitrary choice of γ ∈ , hence (C/C′)/C′′ is isomorphic to .

I  R-III. In order to prove invariance under the third Reidemeister

move, we expand both cubes and to give the left-hand and right-hand
diagrams below.

https://doi.org/10.1017/S0004972713000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000105


[15] The categorification of the KBSM of RP3 421

In the above diagrams we omit degree shifts. For simplicity, we also keep the states of
both cubes coherently oriented.

We repeat the definitions of modding out acyclic complexes C′ and C′′ from the
proof of R-II with the top-right parallelograms, as a result obtaining:

Let T be the homomorphism that sends the bottom left parallelogram of the left
cube to the bottom left parallelogram of the right cube, but transposes the top right

parallelogram by sending ⊕ to ⊕ via T (β1 ⊕ γ1) = β2 ⊕ γ2 for

β1 ∈ , γ1 ∈ , β2 ∈ and γ2 ∈ . Carefully writing down the definitions
of the partial differentials, it easily follows that τ1 ◦ d1,?01 = d2,?01 and d1,?10 = τ2 ◦

d2,?10. Hence, T is an isomorphism.

I  R-IV  R-V. Invariance under the Reidemeister moves R-IV and
R-V follows trivially, since there is a natural one-to-one correspondence that preserves
the differentials between states of the diagram before and after these moves.

7. Conclusion and open questions

This paper closes the chapter of categorifying the KBSM of links in I-bundles over
surfaces and may open a new chapter on categorifying Jones-like invariants of other
3-manifolds, the most obvious candidates being the general lens space L(p, q) and
S 1-bundles over surfaces.

Overcoming the difficulties of 1→ 1 bifurcations, the main difficulty from here on
lies in the question of developing a nonrecursive state-sum formula for describing the
link in the particular skein module of the space. In particular, it seems that no easy-to-
describe formula exists for the KBSM of L(p, q) with (p, q) , (2, 1).
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References

[1] M. M. Asaeda, J. H. Przytycki and A. S. Sikora, ‘Categorification of the Kauffman bracket skein
module of I-bundles over surfaces’, Algebr. Geom. Topol. 4 (2004), 1177–1210.

[2] D. Bar-Natan, ‘On Khovanov’s categorification of the Jones polynomial’, Algebr. Geom. Topol. 2
(2002), 337–370.

[3] Yu. V. Drobotukhina, ‘An analogue of the Jones polynomial for links in RP3 and a generalization
of the Kauffman-Murasugi theorem’, Algebra i Analiz 2(3) (1990), 171–191.

[4] J. Hoste and J. H. Przytycki, ‘The (2,∞)-skein module of lens spaces; a generalization of the Jones
polynomial’, J. Knot Theory Ramifications 2(3) (1993), 321–333.

[5] J. Hoste and J. H. Przytycki, ‘The Kauffman bracket skein module of S 1 × S 2’, Math. Z. 220(1)
(1995), 63–73.

[6] M. Khovanov, ‘A categorification of the Jones polynomial’, Duke Math. J. 101(3) (2000),
359–426.

[7] P. B. Kronheimer and T. S. Mrowka, ‘Khovanov homology is an unknot-detector’.
arXiv:1005.4346v1 [math.GT], 2010.

[8] V. O. Manturov, ‘Khovanov homology for virtual knots with arbitrary coefficients’, Izv. Math.
71(5) (2007), 967–999.

[9] M. Mroczkowski, ‘Kauffman bracket skein module of the connected sum of two projective spaces’,
J. Knot Theory Ramifications 20(5) (2011), 651–675.

[10] M. Mroczkowski and M. K. Dabkowski, ‘KBSM of the product of a disk with two holes and S 1’,
Topology Appl. 156(10) (2009), 1831–1849.

[11] J. H. Przytycki, ‘Fundamentals of Kauffman bracket skein modules’, Kobe J. Math. 16(1) (1999),
45–66.

[12] J. H. Przytycki, ‘Skein modules of 3-manifolds’, Bull. Pol. Acad. Sci. 39(1–2) (1991), 91–100.
[13] V. G. Turaev, ‘The Conway and Kauffman modules of the solid torus’, J. Soviet Math. 52 (1990),

2799–2805.

BOŠTJAN GABROVŠEK, Faculty of Mathematics and Physics,
University of Ljubljana, Jadranska ulica 19,
SI-1000 Ljubljana, Slovenia
e-mail: bostjan.gabrovsek@fmf.uni-lj.si

https://doi.org/10.1017/S0004972713000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000105

