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WEAKLY COMPACT SETS AND SMOOTH NORMS
IN BANACH SPACES

MARIAN FABIAN, VICENTE MONTESINOS AND VACLAV ZIZLER

Two smoothness characterisations of weakly compact sets in Banach spaces are given.
One that involves pointwise lower semicontinuous norms and one that involves pro-
jectional resolutions of identity.

The Gateaux smoothness of norms has a profound impact on the structure of non-
separable Banach spaces, especially if the smoothness is accompanied by additional prop-
erties like pointwise lower semicontinuity, lattice property or projectional resolutions of
identity (see for example, [3, 4, 5, 6, 7, 8, 9, 10]).

The purpose of the present note is to discuss the relationship between the Gateaux
smoothness of norms and the weak compactness of sets in Banach spaces. The result in
Theorem 1 is of interest in separable spaces as well.

Let M be a bounded set in a Banach space (X, \\ • ||J. We shall say that the norm
|| • || is M-smooth at 0 ^ x € X if

sup{||a; + th\\ + \\x - th\\ - 2\\x\\; h £ M] = o(t) for t > 0.

The norm is M-smooth if it is M-smooth at every point 0 ^ x € X.
If M = Bx, we get the usual notion of Frechet differentiability (see for example [6]).
If M is linearly dense in X (that is, if spanM = X), then M-smoothness implies the

usual Gateaux smoothness. If X is a separable Banach space and its norm is Gateaux
smooth, then this norm is M-smooth for a linearly dense set M C X. Indeed, if {i*; i
€ N} is a countable dense set in Bx, then M := {i~lXi\ i g N } works. Both these things
can be seen by using the Lipschitz property of the norm.

An example of a Banach space X with Gateaux smooth norm that has no equivalent
M-smooth norm for any linearly dense set M in X is a non weakly compactly generated
subspace of a weakly compactly generated space of density u\ (see [13] and Corollary 5
below if one assumes the Continuum Hypothesis).
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A Banach space X is called weakly compactly generated, if X contains a weakly

compact set which is linearly dense in X.

The main results of this note are the following two theorems. In their proofs we

shall use the following notation.

If M is a bounded set in X, we shall say that the dual norm || • || on X* is M-locally

uniformly rotund if sup I (a;* - xl)(x)\ -*• 0 whenever x* ,x*n 6 X* and 2||x*||2+ 2 | | x ! | | 2 -

\\x* + x^\\2 —> 0. If M = Bx, we get the usual notion of local uniform rotundity (see for

example [6]).

T H E O R E M 1 .

(i) Let M be a bounded subset in a Banach space X. Then M is relatively

weakly compact if and only if for every norming subspace Y of X*, there

is an equivalent Y-lower semicontinuous norm on X that is M-smooth.

(ii) Let M be a bounded set in the dual space X*. Then M is relatively weakly

compact if and only if there is an equivalent dual norm on X* which is M-

smooth.

THEOREM 2 . Assume that X is a Banach space of density u)\. Then X is weakly

compactly generated if and only if there exist a bounded linearly dense set M in X,

an equivalent norm \\ • \\ on X which is M-smooth, and a projectional resolution of the

identity (PQ; w0 ^ a ^ wi) on (X, || • ||) with Pa{M) C coiiv(MU-M) for every
LJQ ̂  a ^ u)\.

Recall that the projectional resolution (Pa; LJ0 ^ a ^ wi} of the identity is a
transfinite sequence of projections such that Pwo = 0, PU1 =Identity. For all CJ0 < a ^
/? < cJi, the following hold: | |Pa | | = 1, PaX is separable, PaP0 = P0Pa = Pa, and
U Py+iX is dense in PaX. For more information on projectional resolutions of the

~l<a

identity we refer to [3, Chapter VI], [4, Chapter 6], or [6, Chapter 11] for example.

In order to avoid technical difficulties, we have formulated the results for spaces of

density u>i only.

The rest of this paper is devoted to the proofs of Theorem 1 and Theorem 2.

Let Y be a subspace of the dual space X*. We put

||x||y = sup {x*{x); I ' s B ^ n r } , x e x.

Note that || • ||y is lower semicontinuous with respect to the topology w(X, Y) of pointwise
convergence on the elements of Y (Y-lower semicontinuous, in short). We can check that
|| • ||y is the largest one among all F-lower semicontinuous convex minorants of the norm
|| • ||. This is why || • ||y is called the Y-lower semicontinuous envelope of || • ||. Note
that B(X,\\\\Y) — -̂ (A\|H|)*" ' • If II • l|y is an equivalent norm on X, then Y is called a
norming subspace of X*. If || • ||y = || • ||, then Y is called 1-norming. Obviously, Y is
1-norming for the norm || • \\y- We note that a subspace Y is 1-norming if and only if
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Bx- = Bx- C\YW , if and only if the norm || • || on X is Y-lower semicontinuous, or if

and only if Bx is w(X, Y)-closed. For a bounded subset M of X we denote

= sup{|:r'(m)|; m G M J , X* £ X".

The following proposition, whose proof is standard and will be omitted, gives a Smulyan-
like characterisation of the M-smoothness (see for example [3, Theorem 1.1.4 (i)] or [6,
Lemma 8.4]).

PROPOSITION 3 . Let (x, || • ||) be a Banach space, let M be a bounded subset

of X, and let x € Sx- Then the following statements are equivalent.

(i) The norm || • || is M-smooth at x.

(ii) Whenever (/„) and (gn) are sequences in Bx- such that fn(x) -» 1 and

gn(x) ->• 1, then \fn - gn\M -> 0 as n ->• oo.

Therefore, if the dual norm is M-locally uniformly rotund, then the original norm is
M-smooth.

P R O O F OF THEOREM 1: (i) Assume that the condition holds for the set M. The
argument we shall follow has its origin in the proof of [5, Lemma 1]. Take any x" in
the weak* closure of M and assume that x" £ X. Then Y :— x**~l(0) is a norming
subspace of X* (see for example [6, Chapter 3]). Find ||| • ||| an equivalent y-lower semi-
continuous norm on X that is M-smooth. By the Bishop-Phelps theorem, there exists
x* € £(XMIHI|) and x € S(x,|||.|||) such that (x",x*) ^ 0 and (x,x*) — 1. Find a sequence
(y') in B(XMIIIII) n Y such that j/t*(i) ^> x*(x) — 1. As ||| • ||| is M-smooth, Proposition
3 gives that \x* — y\\M —»• 0. We recall that x" is in the weak' closure of M. Since the
convergence of yt* to x* is uniform on M, we thus have x**(x* — j/,*) —> 0. As x**(j/*) = 0
for all i S N, we have (x**,x*) = 0, a contradiction. Therefore the weak* closure of M
belongs to X and hence M is relatively weakly compact.

Assume now that M is relatively weakly compact. According to the Davis-Figiel-
Johnson-Pelczyfiski factorisation theorem (see, for example, [4, Theorem 1.2.3] or [6,
Theorem 11.17]), there exist a reflexive space (R, \ • \j and a bounded linear operator
T : R-> X with M C T{BR). Following Troyanski (see, for example, [3, Section VII.l]),
we may and do assume that the norm on R* dual to the norm | • | on R is locally uniformly
rotund. Put

D = \j{aB(XM)+0T(BlR,H)); a > 0 , 0 ^ 0 , a2 + /?2*$l}.

Then D is a convex symmetric bounded and linearly dense set in X. Using the weak

compactness of B(R, | | ) , it is not difficult to show that the set D is weakly closed, and

hence closed. Let ||| • ||| be the Minkowski functional of D; this is an equivalent norm on

X and £(x,|[|.|||) = D.

Now, let Y be any norming subspace of X* and let || • ||y and ||| • |||y be the V-lower

semicontinuous envelopes of || • || and ||| • ||| respectively. Then we have

https://doi.org/10.1017/S0004972700020268 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020268


226 M. Fabian, V. Montesinos and V. Zizler [4]

B
(X,\\\-\\W) = B{X,\\

{
Here we used the weak, and hence w(X, Y) compactness of the set

Having this, we get that for every x* 6 X*,

\\x*\fy = supjz*(ab + PT(r))2 : b € B{XMY), r G Bw.l)t a £ 0,0 > 0, a2 + p2 sC 1J

= sup {a||a;*||y + P\T*x*\ : a > 0, P > 0, a2 + p2 < l } ' - ||x*||y
2 + |TV| 2 .

In order to check that ||| • |||y is M-locally uniformly rotund, consider x*,x*n € X* for
which

2|||o;*|||K2 + 2 | | K | | | / - | | | a ; ' + < | | | y
2 - > 0 as n -> oo.

Using the convexity, we get

|2 + 2 | T X | 2 - | r V + T X | 2 - > 0 as n-> oo.

Since the norm | • | on R* is locally uniformly rotund, we conclude that \T*x^—T*x*\ —$• 0,
that is, sup {(z* - x*){x); x e T^BR)} -> 0 as n -^ oo. Now it remains to recall that
M C T(£fl).

(ii) Assume M C X* is relatively weakly compact. By Theorem 1 (i) there is an
equivalent dual norm norm on X* that is Af-smooth. In order to see this, it suffices to
note that X is a norming subspace of X**.

On the other hand, assume that the norm of X*, dual to the norm || • || of AT, is M-
smooth. Assume that M is not relatively weakly compact. Like in the proof of Theorem
1 (i), there exists x*** in the weak* closure of M which does not belong to X*. Denote
by x* the restriction of re*** to X. Consider x* as an element of X***. We need to show
that F := x*** — x* = 0. Assume this is not the case and choose an element x** € Sx~
with F(x**) ^ 0 and x"(y*) = 1 for some y* £ Sx'- Find a net (yt) in Bx such that
yc —>• x** in the weak* topology. As the dual norm is M-smooth, \x** — y^M -> 0. The
element x*" belongs to the weak* closure of M. Thus x***(x** — yL) —> 0. As x* 6 X",
we have x*{x** - yt) -> 0. Thus F(x** - yt) -> 0. However, F(yL) = 0 for all i. Hence
F(x**) — 0, a contradiction. This finishes the proof of Theorem 1. D

In the proof of Theorem 1, some ideas from [1] were used.
In the proof of Theorem 2 we shall use the following definition.

DEFINITION: Let (X, || • ||J be a Banach space. Let M be a bounded linearly dense

subset of X. We shall say that a projectional resolution of the identity (Pa; wQ ^ a ^
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on (* , || • ||) is M-shrinking if Pa(M) C conv(M U - M ) and

W ) = U ^+I(^*)H M

for every UJ0 < a ^ /*.

If M = Bx, we get the usual notion of a shrinking projectional resolution of the

identity (see for example [3, 4, 6]). It follows that a projectional resolution of the identity

[Pa) is M-shrinking if and only if for every a we have Pa(M) C conv (M U — M) and

\PpX* - P*X*\M -* 0 as /? f et for every x* G X*. Note that the Mackey-Arens theorem

(see for example [6, Theorem 4.33]) implies that, if M is a weakly compact set in a

Banach space X and \Pa) is a projectional resolution of the identity on X such that

Pa(M) C conv (M U — M) for every a, then (Pa) is M-shrinking.

LEMMA 4 . Let (X, || • ||J be a Banach space whose norm is M-smooth for some

bounded set M C X. Assume that (Pa; CJ0 ̂  ot < /x) is a projectional resolution of the

identity on (X, || • ||) that satisfies PaM C conv (M U —M) for every a. Then (Pa) is

M-shrinicing.

P R O O F OF LEMMA 4: We need to prove that

Pa(X*) = U P'+l(Xt)
0<a

for every CJ0 < a ^ /i. Fix such a. It is enough to prove the inclusion "c" . Fix
x* G PZ(X'). We note that P^x* ->• P^x* in the weak star topology as /? t <*• Assume
first that ||P^x*|| = P«x*(x) for some x G S*. As HP x̂'H = ||P^P^x'|| < ||P^i*||,
Proposition 3 guarantees that |P^x* -x*\M as /? f <*• Hence x* belongs to the right hand
side of the above formula.

Second, assume that x* is not norm attaining. Then the Bishop-Phelps theorem
and the canonical isometry between {PaX)* and P^(X') enable us to find a norm at-
taining y* G P^X* such that ||x* — y*\\ < e, where e > 0 is an arbitrary, a priori given
positive number. Then, by the first case, IP^y* — J/*|M —>• 0 as /? t <*• This yields that
limsup |PaX* - x*\M ^ 2e. Here we used that Pe{M) C conv (M U — M). As e > 0 was

arbitrary, we get that x* belongs to the right hand side of the above formula. D
PROOF OF THEOREM 2: Sufficiency. Assume we have || • ||, M and [Pa\ w0 ^ a

^ uA as in the statement. For every w ^ a < W\ we find a countable dense set

{mf; i G N} in (Po+1 - PO)M n Bx- Put

C = < —mf: wn ^ a < i j , i G NJ U {0}.
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The set C is linearly dense in X. It remains to prove that C is weakly compact. Let

(CJ) g N be a sequence of disctinct elements in the set C. According to the Eberlein-

Smulyan theorem, it is enough to prove that this sequence has a weakly convergent

subsequence. For j € N find LJ0 ̂  c^ < w\ and ij 6 N such that Cj = (l/ij)m^. If the

set iij\ j 6 N} is infinite, then it is easy to find a subsequence of (cA which converges

to 0 (even in norm). Assume now that the set UJ; j € N ! is finite. Then j o , ; j € N}

is an infinite set. By passing to a subsequence, if necessary, we may, and do assume

that «i < a2 < • • • . Let Y denote the linear span of the set U (Pa+i - Pa)X*-

Because of the "orthogonality" of the projections Pa+i — Pa, we can see that for every
x* 6 Y we have X*(CJ) = 0 for all j E.N large enough. Using Lemma 4, we can prove by
transfinite induction that Y = X*. Thus x*(cfj —> 0 for every x* € X* and the weak
compactness of the set C follows. Therefore X is weakly compactly generated.

Necessity. Assume that X is weakly compactly generated. Then there exists a lin-
early dense and weakly compact set M in X. By Theorem 1 (i), X admits an equivalent
norm || • || that is M-smooth. As X is weakly compactly generated, there is a projec-
tional resolution of identity (Paj such that Pa{M) C conv (M U —M) for each a (see for
example [3, 4, 6].) For the sake of completeness we shall show the argument here. For
n e N, let | |-| |n be the Minkowski functional of the set conv (M U -M) + Bx/n. As in [4,
p. 109], we construct on X a projectional resolution of the identity (Pa\ u>0 < a < wx)
such that ||-PQ||n = 1 for every n € N and every a> LJQ. Then

Pa{M) CPa(cMv(MU-M) + -Bx) Cconv(MU-M) + -Bx\ n J n

for every n € N, and hence Pa(M) c conv(M U -M). This finishes the proof of Theo-
rem 2. D

If the norm of a Banach space is M-smooth, then M is an Asplund set ([1], see
[4, Section 1.4] for the definition). Then, using [12] or [14], one can prove the following
corollary. However in this note we present a simpler proof of Corollary 5. A Banach space
X is called weakly Lindelof determined if its dual unit ball in its weak star topology is
a Corson compact. A compact space if is a Corson compact if K is homeomorphic
to a subset 5 of some [—l,+l] r in its pointwise topology such that all elements of 5
are countably supported in [—1, + l ] r . Every subspace of a weakly compactly generated
space is weakly Lindelof determined (see for example [4]). For more on weakly Lindelof
determined spaces see for example [4, 6] and references therein.

COROLLARY 5 . Assume that X is a weakly Lindelof determined Banach space of

density wi. Then X is weakly compactly generated if and only if X admits an equivalent

M-smooth norm for some bounded and linearly dense subset M of X.

PROOF: The necessity follows immediately from Theorem 2.

Assume that the condition holds. Let || • || be the equivalent M-smooth norm on X.
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The space X admits a projectional resolution of the identity (Paj such that Pa(M) C

conv(MU —M) for all a (see for example [4, p. 109]). Hence X is weakly compactly

generated by Theorem 2. D

REMARKS. Theorem 1 (i) does not hold true if the condition on the Y-lower semiconti-
nuity is dropped. In order to see this, take any nonreflexive space X with Frechet smooth
norm and put M :— Bx (see for example [3, Chapter 2] or [6, Chapter 8]).

Theorem 1 (i) should be compared with the following result in [8]. If X is a subspace
of a weakly compactly generated space and Y is a norming subspace in X*, then there
is an equivalent norm on X that is Gateaux smooth and K-lower semicontinuous.

Theorem 1 (ii) should be compared with Corollary III-8 in [2], which asserts that
X* is weakly compactly generated if X is an Asplund space and X* admits an equivalent
dual Gateaux dfferentiable norm.

Hajek proved in [9] that the James tree space JT admits an equivalent norm whose
dual norm || • || is Gateaux smooth. As JT* is not even a subspace of a weakly compactly
generated space (see for example [6, Chapter 11]), Theorem 1 (ii) shows that the norm
|| • || on JT* is not M-smooth for any bounded linearly dense set M in X*.

Theorem 2 generalises the classical result that the space is reflexive if the norm X*

dual to the norm of X is Frechet smooth (see for example [6, p. 244]).

Note that the conditions in Corollary 5 are satisfied if X is a subspace of a weakly
compactly generated space of density uj\ having a Frechet differentiable norm. This is
the main result in [11] that is discussed in [3, Chapter 6], [4, Chapter 8] or [6, Chapter
11] for example.

While the non weakly compactly generated space C[0,a>i] of continuous functions
on the ordinal segment admits an equivalent C°° smooth norm ([10]), this space admits
no Gateaux smooth norm that would be either a lattice norm ([7]) or pointwise lower
semicontinuous for t G [0,wi) ([8]). Note that every equivalent norm on C[0,wi] is
pointwise lower semicontinuous as [0, a>i] is a scattered space (see for example [6, Theorem
12.28]).
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